Skip to content

The near ultraviolet photodissociation dynamics of 2- and 3-substituted thiophenols: Geometric vs. electronic structure effects

Research output: Contribution to journalArticle

Original languageEnglish
Article number013923
Number of pages12
JournalJournal of Chemical Physics
Volume147
Journal issue1
Early online date27 Apr 2017
DOIs
StatePublished - 7 Jul 2017

Abstract

The near ultraviolet spectroscopy and photodissociation dynamics of two families of asymmetrically substituted thiophenols (2- and 3-YPhSH, with Y = F and Me) have been investigated experimentally (by H (Rydberg) atom photofragment translational spectroscopy) and by ab initio electronic structure calculations. Photoexcitation in all cases populates the 11ππ* and/or 11πσ* excited states and results in S–H bond fission. Analyses of the experimentally obtained total kinetic energy release (TKER) spectra yield the respective parent S–H bond strengths, estimates of ΔE(∼A−∼X), the energy splitting between the ground (∼X) and first excited (∼A) states of the resulting 2-(3-)YPhS radicals, and reveal a clear propensity for excitation of the C–S in-plane bending vibration in the radical products. The companion theory highlights roles for both geometric (e.g., steric effects and intramolecular H-bonding) and electronic (i.e., π (resonance) and σ (inductive)) effects in determining the respective parent minimum energy geometries, and the observed substituent and position-dependent trends in S–H bond strength and ΔE(∼A−∼X). 2-FPhSH shows some clear spectroscopic and photophysical differences. Intramolecular H-bonding ensures that most 2-FPhSH molecules exist as the syn rotamer, for which the electronic structure calculations return a substantial barrier to tunnelling from the photoexcited 11ππ* state to the 11πσ* continuum. The 11ππ* ← S0 excitation spectrum of syn-2-FPhSH thus exhibits resolved vibronic structure, enabling photolysis studies with a greater parent state selectivity. Structure apparent in the TKER spectrum of the H + 2-FPhS products formed when exciting at the 11ππ* ← S0 origin is interpreted by assuming unintended photoexcitation of an overlapping resonance associated with syn-2-FPhSH(v33 = 1) molecules. The present data offer tantalising hints that such out-of-plane motion influences non-adiabatic coupling in the vicinity of a conical intersection (between the 11πσ* and ground state potentials at extended S–H bond lengths) and thus the electronic branching in the eventual radical products.

    Research areas

  • Photodissociation, Photoexcitations, Molecular spectra, Chemical bonds, Atomic spectra

Download statistics

No data available

Documents

Documents

  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via AIP at http://aip.scitation.org/doi/full/10.1063/1.4980035. Please refer to any applicable terms of use of the publisher.

    Final published version, 5 MB, PDF-document

    License: CC BY

DOI

View research connections

Related faculties, schools or groups