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ABSTRACT

A Personal Rapid Transit (PRT) system uses compagtputer-guided vehicles running on
dedicated guideways to carry individuals or smedugs directly between pairs of stations.
Vehicles moveon demand when a passenger requests service at his/hen sta@fion. Because

the number of trips requested from a station negeéqual the number of trips ending there,
some vehicles must run empty to balance the flglsempty vehicle redistribution (EVR)
problem is to decide which empty vehicles to marel when and where to move themEAafiR
algorithm makes these decisions in real time, as passeagess and request service. This paper
describes a method for finding the theoretical mmaxn demand (with a given spatial
distribution) that a given system could serve vaitlf EVR algorithm, which provides a
benchmark against which particular EVR algorithras be compared. The maximum passenger
demand that a particular EVR algorithm can servebsadetermined by simulation and then
compared to the benchmark. The method is appliéddsimple EVR heuristics on two

example systems, and the results suggest thastaigseful method for determining the
strengths and weaknesses of a variety of EVR hesriacross a range of networks, passenger
demands and fleet sizes.
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1. INTRODUCTION

A Personal Rapid Transit (PRT) system provides emahd, non-stop travel with compact,
computer-guided vehicles running on a dedicatedorét of guideways. Each PRT vehicle
carries either an individual or a small party tlangetogether by choice. The vehicle begins its
trip on demand, when a passenger arrives at a PRT station (FiQuiehe network that connects
these stations is usually built by connecting msimyrt, one-way loops (as will be seen later in
Figure 2). Once the passenger is ready to depanehicle takes the quickest path to the chosen
destination station, and it does not stop at ingeliate stations to let other passengers on or off.
Hence, a PRT system is similar to a taxi systerogpixthat PRT vehicles are constrained to start
and end their journeys at stations.

Because the number of trips requested from a péatistation need not equal (on
average or instantaneously) the number of tripsngnat that station, a PRT system must be able
to move empty vehicles to balance the movementadfigied ones. The question of which
vehicles to move, and when and where to move tieekmown as thempty vehicle
redistribution (EVR) problem. The optimal solution of the EVR plem allows a given
passenger demand to be met with the minimum nufherhicles (important to the PRT system
designer) or, conversely, the maximum level of merto be provided with a given number of
vehicles (important to the PRT system operatorjeHevel of service refers to passenger
waiting time as measured at its mean or at soneepgle. Note that as passenger demand
increases, service levels can generally be maeddany using more vehicles, but this increases
cost, both directly through the provision of veaghlnd indirectly through the extra station and
guideway infrastructure required to accommodatenthe

While a PRT system is operating, an EVR algorithastmove individual empty
vehicles in real time to serve waiting passeng®rs) anticipation of future passenger arrivals. It
is important to emphasize that the particular pagsearrival times and locations are not known
in advance; historical demand averages may be knoutrthe actual arrivals are revealed as the
system operates. EVR algorithms often involve decisules (, ch. 5.7;2; 3; 4) to be executed
when a new passenger arrives or a vehicle finiseesce. For example, if a station is short of
empty vehicles, a vehicle is chosen accordingeatles and sent there; this may simply be the
nearest empty vehicle at a station that is nolf séert of vehicles?), or it may be determined
by solving an assignment probled).(Similar methods using repeated assignment pnebkdso
appear in the literature féull truckload motor carriers (5) and relatediynamic pickup and
delivery problems; see 6) for a recent survey. In the context of taxi opierss, (/) describes
algorithms based on dynamic programming, one otlvis detailed in section 5. An alternative
approach is to work in thiguid limit, at the level of long-run averages of vehicle $aather
than individual vehicle movements, ch. 5.6;8, pp. 67—76). The fluid limit problem is tractable,
but the resulting average flows do not prescribalgarithm for solving the real-time problem.
While several EVR algorithms have been proposeappears that little is known about their
merits, either relative to one another or in absotlarms.

In this paper, the fluid limit is used to analyhe tapacity region of a PRT system. This
analysis is motivated by queueing theory, wherectpacity region is also known as stability
region. The capacity region is defined to be the setaspnger demands that a system can serve
whilst keeping the long-run average number of wgipassengers (and their waiting times)
finite. When the passenger demand is outside ofdpeacity region, both the number of waiting
passengers and their waiting times grow indefipitethat is, passengers arrive more quickly
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than they can be served. Necessary conditionsden@and to be in the capacity region are
described in section 3, under the modeling assempin section 2; it is not yet known whether
these conditions are sufficient, however.

The main focus of this paper is on using the cdpaegion to benchmark EVR
algorithms. The capacity region describes the marirpossible demand (section 4) that a
particular system could serve with any EVR algoniti he algorithm to be benchmarked is first
implemented in simulation. For any fixed demane, ltting run average number of waiting
passengers in the simulation will either converga finite number or grow indefinitely; so, the
maximum demand that the system can serve is mebbynminning simulations with
progressively more intense demands, until the numbeaiting passengers begins to diverge.
An algorithm can thus be evaluated by the fractibthe theoretical maximum demand that it
can actually serve. To illustrate this approactn $imple heuristics (section 5) are simulated.
The results for two example systems (section 6jrae presented in section 7. In short, the key
innovation is that the capacity region is useddndhmark EVR heuristics; comparison to this
benchmark determines whether an EVR algorithm dediwptimal throughput, and, if not, it
guantifies the potential for improvement.

2. MODELLING ASSUMPTIONS

The focus of this paper is on capacity constraioes to the size of the vehicle fleet. In light of
this, other mechanisms that limit capacity are eetgid. The consequent simplifications come in
two distinct classes:

1. Neglect constraints due lioe capacity.

To clarify: in practice, a minimum headway (e.gegonds) must be maintained between
vehicles, thus limiting the vehicle flow on eaclets@n of guideway. Attention is restricted to
networks and demand patterns where these consteamnot active — that is, it is assumed that
as passenger demand increases, the vehicle fleatles limiting before line capacity does. (Of
course, it is possible to construct networks andatel patterns where the contrary is true, and
their analysis is the subject of ongoing reseamth.q consequence of this assumption, it is
assumed further that all vehicles may be routedhegaguickest possible paths.

2. Neglect processes at stations which result lsyde vehicles.

To clarify, the following delays are neglected: sgsger boarding and deboarding times;
delays at the start of journeys, when the centratroller (in synchronous control) books a
vehicle's path through the network; delays duémded station throughput; delays due to
interference between vehicles leaving or enteristgaion. Furthermore it is assumed that each
station has sufficient berths so that arriving ekds are never delayed or waved dff¢h. 3.2.3)
due to insufficient space in their destinationistatThe consequence of this second class of
approximations is that at the capacity limit, ahicles are continuously employed either in
passenger journeys or empty vehicle redistribution.

Because of these simplifications, there is a teagéor this analysis to over-estimate
capacity, but as a first step section 7 comparesryhwith more detailed simulations in which
line capacity is limited. Finally, it is assumedtipassenger demand at stations is given in terms
of pre-formed parties traveling together by choa®jride sharing is neglected — that is, it is
assumed for simplicity that parties are unwilliogcombine further and share a vehicle even
when a substantial queue has formed at a statiqgeraktice, ride sharing may increase the
capacity of a PRT system substantia8ly. (
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3. THEFLUID LIMIT AND THE CAPACITY REGION

This section reviews well-knowr(ch. 5.6;8, pp. 67—76) results that hold in the fluid limfat

is, when occupied and empty vehicle flows are esg@d as time-averaged continuous variables.
These results are then interpreted in a new waygesssary conditions for a given demand to be
in a system's capacity region. It is not yet knavirether they are also sufficient conditions, but
they are still useful approximations.

Under the assumptions in section 2, the particuddwork topology and station
characteristics are not important. The relevantesyparameters are the number of statibns,
(N> 2), the quickest path travel timd$,(1<i #j <N; T; > 0O; circular trips are not allowed),
between each pair of stationandj, and the vehicle fleet siz€max (Cmax> 1). It is assumed that
the demand is specified in an origin-destinatio®)@emand matrix with entrid3; (1<i #j <
N; D;j > 0) in parties per unit time. In order for all bEtarriving parties to be served (and
neglecting ride sharing), the occupied vehicle ffoemn i toj must be identical to the party flow,
Dij. These occupied vehicle flows must then be bathbgeempty vehicle flowsg; (1<i#j <
N; X;; > 0), such that the total (occupied and empty) \elflow is conserved at every station:

Z(Dij + Xij) :Z(Dji + xji)
1 T 1)
J#i J#i
for each station That is, the total flow into each station mustadhe total flow out. The
number of concurrently moving vehicl&3, required to serve the demand is then given by the
sum-product of total flows and journey times,
C=2(D; +X,)T, -
; ) ) ] (2)
i%]

Equations (1) and (2) can be written more sucgmntlector form by introducing the column
vectorst, d andx that respectively list the elemeriig D;; andX;; in order. (For example,
t=(T12 T13 ..., Inn1)'s Where' (prime) denotes the transpose.) They become

A(d+x)=0 and C=t'(d+x) (3)
whereA is a matrix withN rows andN % - N columns that encodes the constraints from (1)pfall
its entries are either +1 or O.

Because the system has o6y, vehicles in total, it can serve demahdnly if C <

Cmax This inequality and (3) give a necessary condita demandl to be in the system's
capacity region: there must exist empty vehiclavfiay for d such that

Ad+x,)=0 and t'(d+x,)<C_,. 4)
If any such empty vehicle flows; exist, it is clear from (4) that any flows, (not necessarily
unique) that solve the linear program

min t'x
st. A(d+x)=0 (5)
x=0

satisfy the conditions in (4). That i, is chosen to minimize the number of concurrent gmpt
vehicles, subject to flow conservation. The linpargram (5) can be solved with standard
technigues, such as the simplex method. In summary,

t'(d+x;)<C,__ (6)
is a necessary condition for the demdrd be in the capacity region. Geometrically, the
constraints onl due to (6) describe a convex polytopdifi- N dimensions.
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It is not known whether (6) is also a sufficienhddion; that is, there may be systems
and demands for whialio EVR algorithm can prevent the number of waitinggengers from
diverging, even though (6) is satisfied. This sulject of ongoing research. However,
simulation results indicate that for some netwode&nands and EVR algorithms, the bound (6)
is very nearly attained.

4. BENCHMARKING EVR ALGORITHMS

Once an EVR algorithm is implemented in simulatitw aim is to measure the "maximum
demand' that it can serve. However, the demanédssribed by th&l 2 - N entries of an OD
matrix, so the maximum is not well-defined. The raggh here is to choosalemand pattern, r,
that fixes the proportions of the demand. The "hevark’ for this demand pattern is set by the
largests such that demanst satisfies (6); thisis denotedax Geometricallyy defines the

direction of a ray ifN > - N dimensions, and, . /|| is the distance from the origin to the

boundary of the capacity region in the directiom.dh practical terms, is chosen to represent a
particular demand scenario, like an AM peak. Thaags varies the total demand without
changing its distribution between pairs of statiofs understand the performance of an EVR
algorithm over a variety of demand scenarios, séwrch demand patterns must be analyzed.
To find smax ONe can substitute for d in (6) and observe that the linear program in (5)

satisfiesx; = sx’; that is, the required empty vehicle flows scaledrly withs. The inequality
(6) may then be written as

t'(sr) +t'xy =s(t'r +t'x’)<C
and the larges occurs when this is satisfied at equality, so

Smax = _Cnax_ 7
max t!(r + XrD) ) ( )
It is now useful to define thatensity of the demandr ass/s,,; the intensity is 1.0

when the demanst reaches the boundary of the capacity region. AR Blgorithm is evaluated
by the actual intensity at which the number of imgippassengers begins to diverge, as
determined by simulation. Thesaturation intensities can be used to compare an EVR algorithm
across demand patterns and networks, as is deratusin section 7.

max!

5. STOCHASTIC SIMULATIONSFOR EVR HEURISTICS

The preceding analysis of the fluid limit does mmiude an explicit EVR algorithm, so it must
be combined with other tools if it is to be usdhr comparing EVR algorithms. In this paper,
these tools are stochastic simulations.

Several EVR algorithmsl( 2; 3; 4; 7) have been described in the literature. The mathod
developed in this paper are suitable for studylhgfahese, but for illustrative purposes, the
focus here is on comparing two fairly simple heticss Each heuristic requires its own
simulation structure. Both simulations have thesamputs, namely the demadgdthe travel
timest, and the fleet siz€mnax and both are implemented in discrete time, with second time
steps. For convenience, it is also assumed thatedimand®;; are in parties per second with all
Djj « 1, and that the travel tim&@g are rounded to the nearest second. In each tepé, sind
for each pair of stationsandj with i #j, a party is generated with probabiliDy; over many
time steps, this is a discrete-time approximatmthe Poisson process with mean @jeThe
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next action to take with this passenger party dép@m which of the EVR heuristics described
below is in use.

Bell and Wong Near est Neighbors (BWNN)

BWNN is the simplest of several heuristics expldogd7) in the context of taxi operations. It
assumes that each vehicle has a list of passethgeris must serve. The origins and destinations
of these passengers are known, so the heuristicatamlate when and where (at which station)
each vehicle will finish serving all of the passergin its list. When a new passenger arrives, the
heuristic immediately selects a vehicle to serve @and adds him to the end of that vehicle's list.
Precisely, it selects a vehidtethat minimizes the new passenger's waiting tiimet, is,

k” = argminmax(@, a, —t) +Ty,
k

wheret is the current timealx is vehiclek’s final destination (either the last in its listtbe

station at which it is idle), aral isk's arrival time aty. If there is a tie, the vehicle with lowest
kis selected. Once a passenger is added to a@eHist, the BWNN heuristic never moves him
to another list, even though this might reduce aWevaiting times.

L ongest-Waiting Passenger First (LWPF)
In contrast with BWNN, the LWPF heuristic requitbat each vehicle store only its next
destination; once it reaches its destination, yiséesn decides where it should go next. When a
vehicle becomes idle at its destination, it is disped to the longest-waiting passenger.
Precisely, the following steps are carried outaathetime step:
1. Each generated passenger (if there are an) floenqueue at his origin station.
2. For each station(in order of index, as order does not matter here)
2.1. All vehicles finishing their trips tioat timet become idle at
2.2. If there are both waiting passengers andvidlecles at, the first passenger
is removed from the queue and a vehicle becomesimbto his destinatiof, with arrival time
t + Tj;. This step repeats until there are either no mgipassengers or no idle vehicles. at

3. For each stationwith waiting passengers, letbe the arrival time of the longest-
waiting passenger.

4. For each stationwith more waiting passengers than parked plusuntorehicles, in
ascending order bly, consider the stationst i in ascending order bl; (breaking any ties
randomly); choose the first station (if any) thashmore parked empty vehicles than waiting
passengers, and send an empty vehicle from thisrsta station.

Compared to BWNN, LWPF tends to wait longer befassigning a vehicle to a
passenger. In the intervening time, more passemgaysarrive, in which case LWPF performs
its optimization with more information and so canprinciple, make better decisions. This
principle is further exploited irdj, which demonstrates improved service levels wdrapty
vehicles can be reassigned even later, while eie rédunother notable difference is that BWNN
allows a vehicle to leave waiting passengers #tgoa and proceed empty to serve the next
passenger on its list, whereas LWPF does not.i¥met an issue for taxis, because taxi drop-off
locations are not concentrated at stations, dutd be an issue when using BWNN for PRT,
because passengers may not like being left behind.

6. TEST STUDIES
Two representative scenarios are used in this seabh scenario consists of a network, OD
matrix and fleet size. The first network (Figur@@(is taken from the Corby case stud)(
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The network layout and demand used in this studyoath publicly available as part of the
ATSCityMobil PRT simulator11). The demand matrix represents the AM peak foseHaof

the proposed system. There are 15 stations. Teediee is set to 200 vehicles, as is estimated in
the case study.

The second network (Figure 2(b)) is a regular gfidne-directional guideways with 24
stations located at the line midpoints; this idesdi topology appears several times in the PRT
literature @, ch. 2, for example). Lines are spaced at 8006n{{).to provide 400m (0.25mi)
maximum walk distances. Assuming 10m/s (22mph)agyespeed, adjacent stations are 80s
apart, and the maximum station-to-station trawveétis 12 minutes (e.g. froBito G). The OD
matrix for the grid network is obtained from a stard gravity model with
D. ={ABjOiDj expEor;) 1# ]

Y10 i=j
whereQ, = Zi D, andD; = ziDij are the desired total origin and destination flofvs the

dispersion parameter afig is the travel time, in seconds, frarto j through the network (not
Euclidean distance). THe andD; are chosen to represent an AM peak, with the ddman
distribution given in Figure 3. Th& andB; coefficients are computed by fixed-point iteration
The 0 parameter is initially set to 0.01; other valué®,avhich generate different demand
patterns, are considered later. The fleet sizetiats200 vehicles.

(8)

7.RESULTS

For each scenarisyax is computed with (7) by settingaccording to the scenario’'s demand
matrix. Each simulation run uses a stationary (i demandr for a different value o$ (that
is, a different intensity for demand pattejnThe intensity at which the number of waiting
passengers begins to diverge is most easily mehbyrebserving the mean number of
concurrent moving vehicles; as suggested in (&,ghantitysaturates at the fleet sizeCmax
when the demand approaches the boundary of theitapagion.

Simulation results are presented in Figure 4. kitgns increased in increments of 0.01,
and each point is based on data from 10 indepernidelst Each trial consists of a 10 hour warm
up period, in which no statistics are collectedlpfeed by 80 hours of statistics collection.
Running the simulation for a long time makes thersaion intensity easier to identify, because
the observed queue length increases in propoidimet running time when the queue is
diverging.

Figure 4(a) shows that both EVR algorithms satuatg close to the predicted intensity
on the Corby network, because the number of coantiuehicles reaches the fleet size near
intensity 1.0. Figure 4(b) shows the same measurthé Grid network; in this case, the EVR
algorithms both saturate at intensities less th@r{LMWVPF at 0.85 and BWNN at 0.95). This is
also apparent in Figures 4(d) and 4(f), where teammumber of waiting passengers and their
waiting times diverge at roughly the same inteasitit appears that neither LWPF nor BWNN
attains the theoretical maximum throughput fomaliworks and demands; it is not yet known
whether there is any practical algorithm that does.

One notable feature of Figure 4(b) is that for LWIR& number of concurrent empty
vehicles increases suddenly at intensity 0.80. ifltisease in concurrent empty vehicles prevents
an increase in the number of concurrent occupiéities, since at intensities above 0.80, the
system is serving the same number of passengdrsiwite empty vehicle movement. The
reason is that, when a vehicle becomes idle, it Iserse the longest-waiting passenger,
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regardless of his location in the network. Whendhage standing queues at many of the stations,
the average empty vehicle trip may be significaldhger for LWPF than for BWNN.

Figures 4(c—f) show that, while BWNN may saturdthigher intensity, LWPF may give
lower queue lengths and waiting times at lowemisiies. So, it is not necessarily true that the
EVR algorithm with the highest saturation intensityo provides the best level of service at
lower intensity. There may be a trade-off betwdenughput at high intensities and waiting
times at low intensities, or there may be an atgorithat can perform well in both regards; this
is not yet known.

Figures 4(e) and 4(f) show long waiting times ewdren intensity is near zero, and they
increase only slowly with intensity. This is becatise EVR algorithms used here do not move
vehicles in anticipation of future passengers.&@mple, even if there is tidal flow from an
origini to a destinatiof, vehicles stay gtuntil a passenger arrivesiand requests a vehicle, so
all passengers wait at led$t regardless of the intensity. In this case, désr that the system
should move vehicles backitoHowever, it is not so simple when flow is notdicthere are
multiple origins and destinations, or the demarrdsuacertain.

The Effects of Line Congestion

The analysis and simulation done so far has asstima¢tine capacity is infinite. There are
certainly networks and demands for which this @ar assumption. So, it is prudent to check
these results against a more detailed simulatoirntbudes line congestion. Here, results are
from a proprietary simulator developed by Advan€eahsport Systems Ltd.. It is configured to
use simple synchronous contrt pp. 92—-94), and vehicles are restricted to thle wih the
smallest free-flow time; this gives a pessimisstiraate of the line throughput that is
realistically achievable. The proprietary EVR aijon has been configured to closely (but not
exactly) match the LWPF algorithm described here.

The curves in Figure 5(a) and 5(b) are very simdahose in Figures 4(c) and 4(d) when
the minimum headway is 1s; in particular, the s#tan intensities are roughly the same. When
the minimum headway is increased, the line capaitecreased, so delays due to line
congestion become more likely; these delays canttibo the overall trip times (effectively
increasing thd;), which causes the number of waiting passengeas/arge at lower intensity.

In this case, reducing line capacity by a facto? ¢or more, in the Grid network) produces only
small changes in Figure 5. Of course, this mightsothe case with larger fleet sizes or smaller
travel times.

The Effects of Different Demand Patterns

The proposed method works with only one demancpsatt, at a time. To evaluate the
performance of an EVR algorithm for a given systsaveral demand patterns must be
investigated. As a first step, Figure 6 shows ffeceof varying the dispersion parametérin

the gravity model (8). Faf = 0.01, Figure 6(a) shows that mean queue leragthshorter for
LWPF than for BWNN at intensities below 0.82. Howe\foré = 0.005, the two heuristics give
similar mean queue lengths until LWPF divergesFeg(c)), and, foé = 0.001, mean queue
lengths for LWPF are larger than for BWNN at atkinsities (Figure 6(e)). The corresponding
OD matrices in Figures 6(b, d and f) suggest aoreasst decreases, the demand is spread over
more origins (indicated by an increase in the nurobéark cells), and these are further from the
main destinations. This means that the longestivgptassenger is typically further away for
smallerd, which leads to longer empty vehicle trips. Thiaraple illustrates the importance of
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considering different demand patterns. It also shbaw the intensity measure defined here is
useful for comparing results for these differenthded patterns.

8. CONCLUSIONS

This paper demonstrates a new method for the eN@tuaf empty vehicle redistribution (EVR)
algorithms, providing an absolute measure of therformance according to a metric based on
the capacity region for a given network. The cayaegion is defined as the set of OD matrices
which are feasible in the sense that their demaad$e met without passenger queues growing
indefinitely. It describes the maximum possible deochthat a particular system could serve with
an ideal EVR algorithm, and hence acts as an atesb&nchmark against which different EVR
algorithms can be compared.

The ability to compare and evaluate EVR algorithsnsportant for the successful
operation of highly-connected PRT systems, likegtié network in Figure 2(b). In normal PRT
operation, the minimization of passenger waitimggtis usually the priority, and hence one
could expect an EVR heuristic which prioritizesstfe.g. LWPF) to be in operation. At times of
high demand, however, when the vehicle fleet stelred and there are passengers waiting at
numerous stations across the network, the LWPRigigo often moves vehicles too far. One
would instead prefer an algorithm which prioritizie efficient use of the vehicle fleet (e.g. the
BWNN heuristic). Thus the central controller shoatdsome point switch from one algorithm to
another (or indeed choose from a selection of nodingrs), and the methods described here
provide a rigorous basis for this decision. Funtihae, the absolute benchmark indicates when
an EVR algorithm is near-optimal in the sense giacity (such as the BWNN heuristic on both
networks studied here), so that no other algoriieed be considered.

This analysis also shows how both the network togphnd the spatial distribution of
the demand can affect EVR performance, even winenclbngestion is ignored. For the Corby
network, the LWPF heuristic consistently outperfsrtimie BWNN alternative (Figure 4(c, €)).
For the Grid network, BWNN consistently performgteein terms of throughput, but, in terms
of queue lengths and passenger waiting times ellaéive performance of these heuristics
depends on the spatial dispersion of the demand.

The proposed method allows for the absolute assgsshEVR algorithms in terms of
throughput, subject to the modeling assumptiorsection 2. For other performance measures,
such as those based on passenger waiting timgstedalive performance can be assessed. In
general, conclusions about the relative merits\éRElgorithms must be based on the analysis
of many networks, demands and fleet sizes, anuteaent, this requires detailed simulation. The
results presented here show that the capacityrrégimalism is essential for comparing and
interpreting these simulation results.

As mentioned earlier, there are a number of alteraeuristics already present in the
literature (; 2; 3; 4; 7), and an analysis of these algorithms using taduation tool is a natural
next step. It would also be desirable to includeptimiting effects (such as line congestion, see
section 7) in the capacity region calculationssMiould enable the EVR evaluation to be
confidently applied to all networks, not just thasevhich the vehicle fleet is the limiting factor.
This extension to the analysis presented hererigmtly ongoing.
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FIGURE 1 PRT vehicleand at-grade station at London Heathrow Airport. PRT vehicles,
stations and infrastructure are smaller than typical Automated People Mover and urban
rail systems. Vehiclelength, width and height are 3.7m, 1.4m and 1.8m (12ft, 4.6ft and
5.9ft), respectively. Photo courtesy of Advanced Transport SystemsLtd.

FIGURE 2 Network layoutsused for stochastic smulation of the Corby (a) and Grid (b)
networ ks. Guideways (black lines) are one-way in the direction indicated; circlesrepresent
stationsin (a), and lettersrepresent stationsin (b).

FIGURE 3 Total flowsfor thegrid network gravity model. Table layouts correspond to the
station layout in Figure 2(b). For example, thetop left station (labeled J) isthe origin of
5.0% of passenger partiesand the destination for 0.8%.

FIGURE 4 Simulation resultsfor the BWNN and LWPF EVR algorithms. Their
saturation intensities are similar for the Corby network but different for the Grid network;
L WPF shows higher empty vehicle use when ther e ar e passenger s waiting at many stations.
Until divergence, LWPF giveslower waiting times and queue lengths. Intensity 1.0
correspondsto 1414 parties’hr on Corby and 2035 parties’hr on Grid; normalizing using
theoretical capacity (section 4) helps comparison between different networks.

FIGURE 5 Effect of line congestion on mean queue length. Queues diverge at the same
intensitiesasin Figure 4, validating model assumptions. The Grid network is operating far
below maximum line capacity with 200 vehicles; more could be added. The Corby system is
closer to line capacity: if the minimum headway exceeds 2s, delays due to line congestion
reduce throughput.

FIGURE 6 Effect of dispersion, §, on mean queue length for the Grid Network. For larger
6, mean queue lengthsare shorter for LWPF than for BWNN at low intensity, but thisis
not truefor smaller . The OD matricesfrom the gravity model (8) are shown in (b), (d)
and (f); each cell representsone OD pair (onerow per origin), and darker cellsrepresent a
larger share of thetotal demand. Demand is more unifor mly distributed for smaller 6.



Lees-Miller, Hammersley, Wilson 14

FIGURE 1 PRT vehicleand at-grade station at London Heathrow Airport. PRT vehicles,
stations and infrastructure are smaller than typical Automated People Mover and urban
rail systems. Vehiclelength, width and height are 3.7m, 1.4m and 1.8m (12ft, 4.6ft and
5.9ft), respectively. Photo courtesy of Advanced Transport SystemsLtd.
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FIGURE 2 Network layouts used for stochastic simulation of the Corby (a) and Grid (b)
networ ks. Guideways (black lines) are one-way in the direction indicated; circlesrepresent
stationsin (a), and lettersrepresent stationsin (b).
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FIGURE 3 Total flowsfor thegrid network gravity model. Table layouts correspond to the
station layout in Figure 2(b). For example, thetop left station (labeled J) isthe origin of
5.0% of passenger partiesand the destination for 0.8%.
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FIGURE 4 Simulation resultsfor the BWNN and LWPF EVR algorithms. Their
saturation intensities are similar for the Corby network but different for the Grid network;
L WPF shows higher empty vehicle use when ther e ar e passenger s waiting at many stations.
Until divergence, LWPF giveslower waiting times and queue lengths. Intensity 1.0
correspondsto 1414 parties’hr on Corby and 2035 parties’hr on Grid; normalizing using
theoretical capacity (section 4) helps comparison between different networks.



Lees-Miller, Hammersley, Wilson 18

o o
o o -
N N
2 3 - 3 _
=S i —
x 8 _| S _|
g = S
c
@
o o _| o _|
e Ty) Tp)
o - o (b)
| | | | | | | | | |
00 02 04 06 08 10 00 02 04 06 08 10
intensity intensity
— 1s --- 2s -+ 4s ---- 6s

FIGURE 5 Effect of line congestion on mean queue length. Queues diverge at the same
intensitiesasin Figure 4, validating model assumptions. The Grid network isoperating far
below maximum line capacity with 200 vehicles; more could be added. The Corby system is
closer to line capacity: if the minimum headway exceeds 2s, delays due to line congestion
reduce throughput.
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FIGURE 6 Effect of dispersion, §, on mean queue length for the Grid Network. For larger
0, mean queue lengths are shorter for LWPF than for BWNN at low intensity, but thisis
not truefor smaller #. The OD matrices from the gravity model (8) are shown in (b), (d)
and (f); each cell representsone OD pair (onerow per origin), and darker cellsrepresent a
larger share of thetotal demand. Demand is more unifor mly distributed for smaller 6.



