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ABSTRACT 
A Personal Rapid Transit (PRT) system uses compact, computer-guided vehicles running on 
dedicated guideways to carry individuals or small groups directly between pairs of stations. 
Vehicles move on demand when a passenger requests service at his/her origin station. Because 
the number of trips requested from a station need not equal the number of trips ending there, 
some vehicles must run empty to balance the flows. The empty vehicle redistribution (EVR) 
problem is to decide which empty vehicles to move, and when and where to move them; an EVR 
algorithm makes these decisions in real time, as passengers arrive and request service. This paper 
describes a method for finding the theoretical maximum demand (with a given spatial 
distribution) that a given system could serve with any EVR algorithm, which provides a 
benchmark against which particular EVR algorithms can be compared. The maximum passenger 
demand that a particular EVR algorithm can serve can be determined by simulation and then 
compared to the benchmark. The method is applied to two simple EVR heuristics on two 
example systems, and the results suggest that this is a useful method for determining the 
strengths and weaknesses of a variety of EVR heuristics across a range of networks, passenger 
demands and fleet sizes. 



Lees-Miller, Hammersley, Wilson  3 

 
1. INTRODUCTION 
A Personal Rapid Transit (PRT) system provides on-demand, non-stop travel with compact, 
computer-guided vehicles running on a dedicated network of guideways. Each PRT vehicle 
carries either an individual or a small party traveling together by choice. The vehicle begins its 
trip on demand, when a passenger arrives at a PRT station (Figure 1). The network that connects 
these stations is usually built by connecting many short, one-way loops (as will be seen later in 
Figure 2). Once the passenger is ready to depart, his vehicle takes the quickest path to the chosen 
destination station, and it does not stop at intermediate stations to let other passengers on or off. 
Hence, a PRT system is similar to a taxi system, except that PRT vehicles are constrained to start 
and end their journeys at stations. 

Because the number of trips requested from a particular station need not equal (on 
average or instantaneously) the number of trips ending at that station, a PRT system must be able 
to move empty vehicles to balance the movement of occupied ones. The question of which 
vehicles to move, and when and where to move them, is known as the empty vehicle 
redistribution (EVR) problem. The optimal solution of the EVR problem allows a given 
passenger demand to be met with the minimum number of vehicles (important to the PRT system 
designer) or, conversely, the maximum level of service to be provided with a given number of 
vehicles (important to the PRT system operator). Here, level of service refers to passenger 
waiting time as measured at its mean or at some percentile. Note that as passenger demand 
increases, service levels can generally be maintained by using more vehicles, but this increases 
cost, both directly through the provision of vehicles and indirectly through the extra station and 
guideway infrastructure required to accommodate them. 

While a PRT system is operating, an EVR algorithm must move individual empty 
vehicles in real time to serve waiting passengers, or in anticipation of future passenger arrivals. It 
is important to emphasize that the particular passenger arrival times and locations are not known 
in advance; historical demand averages may be known, but the actual arrivals are revealed as the 
system operates. EVR algorithms often involve decision rules (1, ch. 5.7; 2; 3; 4) to be executed 
when a new passenger arrives or a vehicle finishes service. For example, if a station is short of 
empty vehicles, a vehicle is chosen according to the rules and sent there; this may simply be the 
nearest empty vehicle at a station that is not itself short of vehicles (2), or it may be determined 
by solving an assignment problem (4). Similar methods using repeated assignment problems also 
appear in the literature for full truckload motor carriers (5) and related dynamic pickup and 
delivery problems; see (6) for a recent survey. In the context of taxi operations, (7) describes 
algorithms based on dynamic programming, one of which is detailed in section 5. An alternative 
approach is to work in the fluid limit, at the level of long-run averages of vehicle flows rather 
than individual vehicle movements (1, ch. 5.6; 8, pp. 67–76). The fluid limit problem is tractable, 
but the resulting average flows do not prescribe an algorithm for solving the real-time problem. 
While several EVR algorithms have been proposed, it appears that little is known about their 
merits, either relative to one another or in absolute terms. 

In this paper, the fluid limit is used to analyze the capacity region of a PRT system. This 
analysis is motivated by queueing theory, where the capacity region is also known as the stability 
region. The capacity region is defined to be the set of passenger demands that a system can serve 
whilst keeping the long-run average number of waiting passengers (and their waiting times) 
finite. When the passenger demand is outside of the capacity region, both the number of waiting 
passengers and their waiting times grow indefinitely – that is, passengers arrive more quickly 
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than they can be served. Necessary conditions for a demand to be in the capacity region are 
described in section 3, under the modeling assumptions in section 2; it is not yet known whether 
these conditions are sufficient, however. 

The main focus of this paper is on using the capacity region to benchmark EVR 
algorithms. The capacity region describes the maximum possible demand (section 4) that a 
particular system could serve with any EVR algorithm. The algorithm to be benchmarked is first 
implemented in simulation. For any fixed demand, the long run average number of waiting 
passengers in the simulation will either converge to a finite number or grow indefinitely; so, the 
maximum demand that the system can serve is measured by running simulations with 
progressively more intense demands, until the number of waiting passengers begins to diverge. 
An algorithm can thus be evaluated by the fraction of the theoretical maximum demand that it 
can actually serve. To illustrate this approach, two simple heuristics (section 5) are simulated. 
The results for two example systems (section 6) are then presented in section 7. In short, the key 
innovation is that the capacity region is used to benchmark EVR heuristics; comparison to this 
benchmark determines whether an EVR algorithm delivers optimal throughput, and, if not, it 
quantifies the potential for improvement. 
 
2. MODELLING ASSUMPTIONS 
The focus of this paper is on capacity constraints due to the size of the vehicle fleet. In light of 
this, other mechanisms that limit capacity are neglected. The consequent simplifications come in 
two distinct classes: 

1. Neglect constraints due to line capacity. 
To clarify: in practice, a minimum headway (e.g. 3 seconds) must be maintained between 

vehicles, thus limiting the vehicle flow on each section of guideway.  Attention is restricted to 
networks and demand patterns where these constraints are not active – that is, it is assumed that 
as passenger demand increases, the vehicle fleet becomes limiting before line capacity does. (Of 
course, it is possible to construct networks and demand patterns where the contrary is true, and 
their analysis is the subject of ongoing research.) As a consequence of this assumption, it is 
assumed further that all vehicles may be routed via the quickest possible paths. 

2. Neglect processes at stations which result in delay to vehicles. 
To clarify, the following delays are neglected: passenger boarding and deboarding times; 

delays at the start of journeys, when the central controller (in synchronous control) books a 
vehicle's path through the network; delays due to limited station throughput; delays due to 
interference between vehicles leaving or entering a station. Furthermore it is assumed that each 
station has sufficient berths so that arriving vehicles are never delayed or waved off (1, ch. 3.2.3) 
due to insufficient space in their destination station. The consequence of this second class of 
approximations is that at the capacity limit, all vehicles are continuously employed either in 
passenger journeys or empty vehicle redistribution. 

Because of these simplifications, there is a tendency for this analysis to over-estimate 
capacity, but as a first step section 7 compares theory with more detailed simulations in which 
line capacity is limited. Finally, it is assumed that passenger demand at stations is given in terms 
of pre-formed parties traveling together by choice, and ride sharing is neglected – that is, it is 
assumed for simplicity that parties are unwilling to combine further and share a vehicle even 
when a substantial queue has formed at a station. In practice, ride sharing may increase the 
capacity of a PRT system substantially (9). 
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3. THE FLUID LIMIT AND THE CAPACITY REGION 
This section reviews well-known (1, ch. 5.6; 8, pp. 67–76) results that hold in the fluid limit; that 
is, when occupied and empty vehicle flows are expressed as time-averaged continuous variables. 
These results are then interpreted in a new way, as necessary conditions for a given demand to be 
in a system's capacity region. It is not yet known whether they are also sufficient conditions, but 
they are still useful approximations. 

Under the assumptions in section 2, the particular network topology and station 
characteristics are not important. The relevant system parameters are the number of stations, N 
(N ≥ 2), the quickest path travel times, Tij (1 ≤ i ≠ j ≤ N; Tij > 0; circular trips are not allowed), 
between each pair of stations i and j, and the vehicle fleet size, Cmax (Cmax ≥ 1). It is assumed that 
the demand is specified in an origin-destination (OD) demand matrix with entries Dij (1 ≤ i ≠ j ≤ 
N; Dij ≥ 0) in parties per unit time. In order for all of the arriving parties to be served (and 
neglecting ride sharing), the occupied vehicle flow from i to j must be identical to the party flow, 
Dij. These occupied vehicle flows must then be balanced by empty vehicle flows, Xij (1 ≤ i ≠ j ≤ 
N; Xij ≥ 0), such that the total (occupied and empty) vehicle flow is conserved at every station: 
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for each station i. That is, the total flow into each station must equal the total flow out. The 
number of concurrently moving vehicles, C, required to serve the demand is then given by the 
sum-product of total flows and journey times, 
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Equations (1) and (2) can be written more succinctly in vector form by introducing the column 
vectors t, d and x that respectively list the elements Tij, Dij and Xij in order. (For example, 
t = (T1,2, T1,3, …, TN,N-1)′, where ′ (prime) denotes the transpose.) They become 
 )(and)( xdt0xdA +′==+ C  (3) 
where A is a matrix with N rows and N 2 - N columns that encodes the constraints from (1); all of 
its entries are either ±1 or 0.  

Because the system has only Cmax vehicles in total, it can serve demand d only if C ≤ 
Cmax. This inequality and (3) give a necessary condition for demand d to be in the system's 
capacity region: there must exist empty vehicle flows xd for d such that 
 

max)(and)( C≤+′=+ dd xdt0xdA . (4) 

If any such empty vehicle flows xd exist, it is clear from (4) that any flows ∗dx  (not necessarily 

unique) that solve the linear program 
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satisfy the conditions in (4). That is, ∗
dx  is chosen to minimize the number of concurrent empty 

vehicles, subject to flow conservation. The linear program (5) can be solved with standard 
techniques, such as the simplex method. In summary, 
 

max)( C≤+′ ∗
dxdt  (6) 

is a necessary condition for the demand d to be in the capacity region. Geometrically, the 
constraints on d due to (6) describe a convex polytope in N 2 - N dimensions. 
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It is not known whether (6) is also a sufficient condition; that is, there may be systems 
and demands for which no EVR algorithm can prevent the number of waiting passengers from 
diverging, even though (6) is satisfied. This is a subject of ongoing research. However, 
simulation results indicate that for some networks, demands and EVR algorithms, the bound (6) 
is very nearly attained. 
 
4. BENCHMARKING EVR ALGORITHMS 
Once an EVR algorithm is implemented in simulation, the aim is to measure the `maximum 
demand' that it can serve. However, the demand is described by the N 2 - N entries of an OD 
matrix, so the maximum is not well-defined. The approach here is to choose a demand pattern, r, 
that fixes the proportions of the demand. The `benchmark' for this demand pattern is set by the 
largest s such that demand sr satisfies (6); this s is denoted smax. Geometrically, r defines the 
direction of a ray in N 2 - N dimensions, and r/maxs  is the distance from the origin to the 

boundary of the capacity region in the direction of r. In practical terms, r is chosen to represent a 
particular demand scenario, like an AM peak. The scalar s varies the total demand without 
changing its distribution between pairs of stations. To understand the performance of an EVR 
algorithm over a variety of demand scenarios, several such demand patterns must be analyzed. 

To find smax, one can substitute sr for d in (6) and observe that the linear program in (5) 
satisfies ∗∗ = rr xx ss ; that is, the required empty vehicle flows scale linearly with s. The inequality 

(6) may then be written as 
,)()( maxCss s ≤′+′=′+′ ∗∗

rr xtrtxtrt  

and the largest s occurs when this is satisfied at equality, so 
 

.
)(

max
max ∗+′

=
rxrt

C
s  (7) 

It is now useful to define the intensity of the demand sr as max/ ss ; the intensity is 1.0 

when the demand sr reaches the boundary of the capacity region. An EVR algorithm is evaluated 
by the actual intensity at which the number of waiting passengers begins to diverge, as 
determined by simulation. These saturation intensities can be used to compare an EVR algorithm 
across demand patterns and networks, as is demonstrated in section 7. 
 
5. STOCHASTIC SIMULATIONS FOR EVR HEURISTICS 
The preceding analysis of the fluid limit does not include an explicit EVR algorithm, so it must 
be combined with other tools if it is to be useful for comparing EVR algorithms. In this paper, 
these tools are stochastic simulations. 

Several EVR algorithms (1; 2; 3; 4; 7) have been described in the literature. The methods 
developed in this paper are suitable for studying all of these, but for illustrative purposes, the 
focus here is on comparing two fairly simple heuristics. Each heuristic requires its own 
simulation structure. Both simulations have the same inputs, namely the demand d, the travel 
times t, and the fleet size Cmax, and both are implemented in discrete time, with one second time 
steps. For convenience, it is also assumed that the demands Dij are in parties per second with all 
Dij ≪ 1, and that the travel times Tij are rounded to the nearest second. In each time step t, and 
for each pair of stations i and j with i ≠ j, a party is generated with probability Dij; over many 
time steps, this is a discrete-time approximation to the Poisson process with mean rate Dij. The 
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next action to take with this passenger party depends on which of the EVR heuristics described 
below is in use. 
 
Bell and Wong Nearest Neighbors (BWNN) 
BWNN is the simplest of several heuristics explored by (7) in the context of taxi operations. It 
assumes that each vehicle has a list of passengers that it must serve. The origins and destinations 
of these passengers are known, so the heuristic can calculate when and where (at which station) 
each vehicle will finish serving all of the passengers in its list. When a new passenger arrives, the 
heuristic immediately selects a vehicle to serve him and adds him to the end of that vehicle's list. 
Precisely, it selects a vehicle k* that minimizes the new passenger's waiting time; that is, 

,),0max(argmin idk
k

k
Ttak +−=∗  

where t is the current time, dk is vehicle k’s final destination (either the last in its list or the 
station at which it is idle), and ak is k’s arrival time at dk. If there is a tie, the vehicle with lowest 
k is selected. Once a passenger is added to a vehicle's list, the BWNN heuristic never moves him 
to another list, even though this might reduce overall waiting times. 
 
Longest-Waiting Passenger First (LWPF) 
In contrast with BWNN, the LWPF heuristic requires that each vehicle store only its next 
destination; once it reaches its destination, the system decides where it should go next. When a 
vehicle becomes idle at its destination, it is dispatched to the longest-waiting passenger. 
Precisely, the following steps are carried out at each time step t: 

1. Each generated passenger (if there are any) joins the queue at his origin station. 
2. For each station i (in order of index, as order does not matter here): 

2.1. All vehicles finishing their trips to i at time t become idle at i. 
2.2. If there are both waiting passengers and idle vehicles at i, the first passenger 

is removed from the queue and a vehicle becomes inbound to his destination, j, with arrival time 
t + Tij. This step repeats until there are either no waiting passengers or no idle vehicles at i. 

3. For each station i with waiting passengers, let hi be the arrival time of the longest-
waiting passenger. 

4. For each station i with more waiting passengers than parked plus inbound vehicles, in 
ascending order by hi, consider the stations j ≠ i in ascending order by Tji (breaking any ties 
randomly); choose the first station (if any) that has more parked empty vehicles than waiting 
passengers, and send an empty vehicle from this station to station i. 

Compared to BWNN, LWPF tends to wait longer before assigning a vehicle to a 
passenger. In the intervening time, more passengers may arrive, in which case LWPF performs 
its optimization with more information and so can, in principle, make better decisions. This 
principle is further exploited in (4), which demonstrates improved service levels when empty 
vehicles can be reassigned even later, while en route. Another notable difference is that BWNN 
allows a vehicle to leave waiting passengers at a station and proceed empty to serve the next 
passenger on its list, whereas LWPF does not. This is not an issue for taxis, because taxi drop-off 
locations are not concentrated at stations, but it could be an issue when using BWNN for PRT, 
because passengers may not like being left behind. 
 
6. TEST STUDIES 
Two representative scenarios are used in this study; each scenario consists of a network, OD 
matrix and fleet size. The first network (Figure 2(a)) is taken from the Corby case study (10). 
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The network layout and demand used in this study are both publicly available as part of the 
ATS/CityMobil PRT simulator (11). The demand matrix represents the AM peak for phase 1 of 
the proposed system. There are 15 stations. The fleet size is set to 200 vehicles, as is estimated in 
the case study. 

The second network (Figure 2(b)) is a regular grid of one-directional guideways with 24 
stations located at the line midpoints; this idealized topology appears several times in the PRT 
literature (1, ch. 2, for example). Lines are spaced at 800m (0.5mi) to provide 400m (0.25mi) 
maximum walk distances. Assuming 10m/s (22mph) average speed, adjacent stations are 80s 
apart, and the maximum station-to-station travel time is 12 minutes (e.g. from B to G). The OD 
matrix for the grid network is obtained from a standard gravity model with  
 





=
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where ∑=
j iji DO  and ∑=

i ijj DD  are the desired total origin and destination flows, θ is the 

dispersion parameter and Tij is the travel time, in seconds, from i to j through the network (not 
Euclidean distance). The Oi and Dj are chosen to represent an AM peak, with the demand 
distribution given in Figure 3. The Ai and Bj coefficients are computed by fixed-point iteration. 
The θ parameter is initially set to 0.01; other values of θ, which generate different demand 
patterns, are considered later. The fleet size is set at 200 vehicles.  
 
7. RESULTS 
For each scenario, smax is computed with (7) by setting r according to the scenario's demand 
matrix. Each simulation run uses a stationary (constant) demand sr for a different value of s (that 
is, a different intensity for demand pattern r). The intensity at which the number of waiting 
passengers begins to diverge is most easily measured by observing the mean number of 
concurrent moving vehicles; as suggested in (6), this quantity saturates at the fleet size, Cmax, 
when the demand approaches the boundary of the capacity region. 

Simulation results are presented in Figure 4. Intensity is increased in increments of 0.01, 
and each point is based on data from 10 independent trials. Each trial consists of a 10 hour warm 
up period, in which no statistics are collected, followed by 80 hours of statistics collection. 
Running the simulation for a long time makes the saturation intensity easier to identify, because 
the observed queue length increases in proportion to the running time when the queue is 
diverging. 

Figure 4(a) shows that both EVR algorithms saturate very close to the predicted intensity 
on the Corby network, because the number of concurrent vehicles reaches the fleet size near 
intensity 1.0. Figure 4(b) shows the same measure for the Grid network; in this case, the EVR 
algorithms both saturate at intensities less than 1.0 (LWPF at 0.85 and BWNN at 0.95). This is 
also apparent in Figures 4(d) and 4(f), where the mean number of waiting passengers and their 
waiting times diverge at roughly the same intensities. It appears that neither LWPF nor BWNN 
attains the theoretical maximum throughput for all networks and demands; it is not yet known 
whether there is any practical algorithm that does. 

One notable feature of Figure 4(b) is that for LWPF the number of concurrent empty 
vehicles increases suddenly at intensity 0.80. This increase in concurrent empty vehicles prevents 
an increase in the number of concurrent occupied vehicles, since at intensities above 0.80, the 
system is serving the same number of passengers with more empty vehicle movement. The 
reason is that, when a vehicle becomes idle, it must serve the longest-waiting passenger, 
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regardless of his location in the network. When there are standing queues at many of the stations, 
the average empty vehicle trip may be significantly longer for LWPF than for BWNN. 

Figures 4(c–f) show that, while BWNN may saturate at higher intensity, LWPF may give 
lower queue lengths and waiting times at lower intensities. So, it is not necessarily true that the 
EVR algorithm with the highest saturation intensity also provides the best level of service at 
lower intensity. There may be a trade-off between throughput at high intensities and waiting 
times at low intensities, or there may be an algorithm that can perform well in both regards; this 
is not yet known. 

Figures 4(e) and 4(f) show long waiting times even when intensity is near zero, and they 
increase only slowly with intensity. This is because the EVR algorithms used here do not move 
vehicles in anticipation of future passengers. For example, even if there is tidal flow from an 
origin i to a destination j, vehicles stay at j until a passenger arrives at i and requests a vehicle, so 
all passengers wait at least Tji, regardless of the intensity. In this case, it is clear that the system 
should move vehicles back to i. However, it is not so simple when flow is not tidal, there are 
multiple origins and destinations, or the demands are uncertain. 
 
The Effects of Line Congestion 
The analysis and simulation done so far has assumed that line capacity is infinite. There are 
certainly networks and demands for which this is a poor assumption. So, it is prudent to check 
these results against a more detailed simulator that includes line congestion. Here, results are 
from a proprietary simulator developed by Advanced Transport Systems Ltd.. It is configured to 
use simple synchronous control (1, pp. 92–94), and vehicles are restricted to the path with the 
smallest free-flow time; this gives a pessimistic estimate of the line throughput that is 
realistically achievable. The proprietary EVR algorithm has been configured to closely (but not 
exactly) match the LWPF algorithm described here. 

The curves in Figure 5(a) and 5(b) are very similar to those in Figures 4(c) and 4(d) when 
the minimum headway is 1s; in particular, the saturation intensities are roughly the same. When 
the minimum headway is increased, the line capacity is decreased, so delays due to line 
congestion become more likely; these delays contribute to the overall trip times (effectively 
increasing the Tij), which causes the number of waiting passengers to diverge at lower intensity. 
In this case, reducing line capacity by a factor of 2 (or more, in the Grid network) produces only 
small changes in Figure 5. Of course, this might not be the case with larger fleet sizes or smaller 
travel times. 
 
The Effects of Different Demand Patterns 
The proposed method works with only one demand pattern, r, at a time. To evaluate the 
performance of an EVR algorithm for a given system, several demand patterns must be 
investigated. As a first step, Figure 6 shows the effect of varying the dispersion parameter, θ, in 
the gravity model (8). For θ = 0.01, Figure 6(a) shows that mean queue lengths are shorter for 
LWPF than for BWNN at intensities below 0.82. However, for θ = 0.005, the two heuristics give 
similar mean queue lengths until LWPF diverges (Figure 6(c)), and, for θ = 0.001, mean queue 
lengths for LWPF are larger than for BWNN at all intensities (Figure 6(e)). The corresponding 
OD matrices in Figures 6(b, d and f) suggest a reason: as θ decreases, the demand is spread over 
more origins (indicated by an increase in the number of dark cells), and these are further from the 
main destinations. This means that the longest-waiting passenger is typically further away for 
smaller θ, which leads to longer empty vehicle trips. This example illustrates the importance of 
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considering different demand patterns. It also shows how the intensity measure defined here is 
useful for comparing results for these different demand patterns. 
 
8.  CONCLUSIONS 
This paper demonstrates a new method for the evaluation of empty vehicle redistribution (EVR) 
algorithms, providing an absolute measure of their performance according to a metric based on 
the capacity region for a given network. The capacity region is defined as the set of OD matrices 
which are feasible in the sense that their demands can be met without passenger queues growing 
indefinitely. It describes the maximum possible demand that a particular system could serve with 
an ideal EVR algorithm, and hence acts as an absolute benchmark against which different EVR 
algorithms can be compared.  

The ability to compare and evaluate EVR algorithms is important for the successful 
operation of highly-connected PRT systems, like the grid network in Figure 2(b). In normal PRT 
operation, the minimization of passenger waiting time is usually the priority, and hence one 
could expect an EVR heuristic which prioritizes this (e.g. LWPF) to be in operation. At times of 
high demand, however, when the vehicle fleet is stretched and there are passengers waiting at 
numerous stations across the network, the LWPF algorithm often moves vehicles too far. One 
would instead prefer an algorithm which prioritizes the efficient use of the vehicle fleet (e.g. the 
BWNN heuristic). Thus the central controller should at some point switch from one algorithm to 
another (or indeed choose from a selection of many others), and the methods described here 
provide a rigorous basis for this decision. Furthermore, the absolute benchmark indicates when 
an EVR algorithm is near-optimal in the sense of capacity (such as the BWNN heuristic on both 
networks studied here), so that no other algorithm need be considered. 

This analysis also shows how both the network topology and the spatial distribution of 
the demand can affect EVR performance, even when line congestion is ignored. For the Corby 
network, the LWPF heuristic consistently outperforms the BWNN alternative (Figure 4(c, e)). 
For the Grid network, BWNN consistently performs better in terms of throughput, but, in terms 
of queue lengths and passenger waiting times, the relative performance of these heuristics 
depends on the spatial dispersion of the demand. 

The proposed method allows for the absolute assessment of EVR algorithms in terms of 
throughput, subject to the modeling assumptions in section 2. For other performance measures, 
such as those based on passenger waiting times, only relative performance can be assessed. In 
general, conclusions about the relative merits of EVR algorithms must be based on the analysis 
of many networks, demands and fleet sizes, and, at present, this requires detailed simulation. The 
results presented here show that the capacity region formalism is essential for comparing and 
interpreting these simulation results. 

As mentioned earlier, there are a number of alternative heuristics already present in the 
literature (1; 2; 3; 4; 7), and an analysis of these algorithms using this evaluation tool is a natural 
next step. It would also be desirable to include other limiting effects (such as line congestion, see 
section 7) in the capacity region calculations. This would enable the EVR evaluation to be 
confidently applied to all networks, not just those in which the vehicle fleet is the limiting factor. 
This extension to the analysis presented here is currently ongoing. 
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FIGURE 1  PRT vehicle and at-grade station at London Heathrow Airport. PRT vehicles, 
stations and infrastructure are smaller than typical Automated People Mover and urban 
rail systems. Vehicle length, width and height are 3.7m, 1.4m and 1.8m (12ft, 4.6ft and 
5.9ft), respectively. Photo courtesy of Advanced Transport Systems Ltd. 
 
FIGURE 2  Network layouts used for stochastic simulation of the Corby (a) and Grid (b) 
networks. Guideways (black lines) are one-way in the direction indicated; circles represent 
stations in (a), and letters represent stations in (b). 
 
FIGURE 3  Total flows for the grid network gravity model. Table layouts correspond to the 
station layout in Figure 2(b). For example, the top left station (labeled J) is the origin of 
5.0% of passenger parties and the destination for 0.8%. 
 
FIGURE 4  Simulation results for the BWNN and LWPF EVR algorithms. Their 
saturation intensities are similar for the Corby network but different for the Grid network; 
LWPF shows higher empty vehicle use when there are passengers waiting at many stations. 
Until divergence, LWPF gives lower waiting times and queue lengths. Intensity 1.0 
corresponds to 1414 parties/hr on Corby and 2035 parties/hr on Grid; normalizing using 
theoretical capacity (section 4) helps comparison between different networks. 
 
FIGURE 5  Effect of line congestion on mean queue length. Queues diverge at the same 
intensities as in Figure 4, validating model assumptions. The Grid network is operating far 
below maximum line capacity with 200 vehicles; more could be added. The Corby system is 
closer to line capacity: if the minimum headway exceeds 2s, delays due to line congestion 
reduce throughput. 
 
FIGURE 6  Effect of dispersion, θ, on mean queue length for the Grid Network. For larger 
θ, mean queue lengths are shorter for LWPF than for BWNN at low intensity, but this is 
not true for smaller θ. The OD matrices from the gravity model (8) are shown in (b), (d) 
and (f); each cell represents one OD pair (one row per origin), and darker cells represent a 
larger share of the total demand. Demand is more uniformly distributed for smaller θ.
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FIGURE 3  Total flows for the grid network gravity model. Table layouts correspond to the 
station layout in Figure 2(b). For example, the top left station (labeled J) is the origin of 
5.0% of passenger parties and the destination for 0.8%. 
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FIGURE 4  Simulation results for the BWNN and LWPF EVR algorithms. Their 
saturation intensities are similar for the Corby network but different for the Grid network; 
LWPF shows higher empty vehicle use when there are passengers waiting at many stations. 
Until divergence, LWPF gives lower waiting times and queue lengths. Intensity 1.0 
corresponds to 1414 parties/hr on Corby and 2035 parties/hr on Grid; normalizing using 
theoretical capacity (section 4) helps comparison between different networks. 
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FIGURE 5  Effect of line congestion on mean queue length. Queues diverge at the same 
intensities as in Figure 4, validating model assumptions. The Grid network is operating far 
below maximum line capacity with 200 vehicles; more could be added. The Corby system is 
closer to line capacity: if the minimum headway exceeds 2s, delays due to line congestion 
reduce throughput.
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FIGURE 6  Effect of dispersion, θ, on mean queue length for the Grid Network. For larger 
θ, mean queue lengths are shorter for LWPF than for BWNN at low intensity, but this is 
not true for smaller θ. The OD matrices from the gravity model (8) are shown in (b), (d) 
and (f); each cell represents one OD pair (one row per origin), and darker cells represent a 
larger share of the total demand. Demand is more uniformly distributed for smaller θ. 


