Energy-aware multi-threaded software systems
Measuring and modelling software energy consumption on a multi-threaded embedded processor architecture

Steve Kerrison, steve.kerrison@bristol.ac.uk; Supervisor: Dr. Kerstin Eder, kerstin.eder@bristol.ac.uk

DATE 2013 PhD Forum

Implementing the model: Analysis

Combination of XMOS hardware

Research question
What additional challenges do multi-threaded architectures pose?

Solution
Examine multi-threaded software and architectures vs. existing techniques.

Our contribution

Measurement HW/SW framework: XMProfile
Combination of XMOS hardware6, current sense hardware and a custom software framework.

- 1V power supply
- BKPSF current sense
- INA 219
- Power samples
- Control and Sync
- Vcore supply
- XMProfile control SW
- 219 driver
- Test info, power data
- Test processor
- XProcessor 3600 test processor
- INA 219
- Test run
- Test kernels
- Host PC datastore
- Data collection: Test construction

Data collection: Test construction
Tiwari method4:

\[E_p = \sum_i (B_i \times N_i) + \sum_{i,j} (O_{i,j} \times N_{i,j}) + \sum_k E_k \]

Considerations for XS1-L7:
- Thread count
- Idle periods (event waiting).
- Instruction overhead is between threads.
- Trace simulation is slow.

Solution:
- Tightly-coupled threads.
- Odd/even threads used to measure instruction overheads.
- Thread count (0 – 8) used to establish thread and idle costs.

XS1-L multi-threaded pipeline

Step	1 thread	2 threads	3 threads	4 threads	5+ threads
1 | T0 | T1 | T0 | T1 | T1 |
2 | - | T1 | T2 | T1 | T1 |
3 | - | T1 | T2 | T1 | T1 |
4 | - | - | T3 | T3 | T3 |
5 | T0 | T0 | T0 | T0 | T4 |

Additional XMProfile features:
- Constrained random number generation.
- Auto-generate large sets of test loops (ALU).
- Minimise loop head/thead overlapped.

Testing and evaluation

A set of benchmarks – traditional and custom – were used to test model performance with various levels of concurrency.

Benchmarks were run through the XMProfile framework to acquire real device energy measurements.

- Worst case error: 16% standard model, 26% grouped model.
- Average error: 7% standard model, 15% grouped model.
- ISA simulation6 runs ~100x slower than real time, statistics processing time is negligible.

Continuing and future work

- Complete ISA model based on established base facts and more complex test kernels to improve accuracy.
- Swallow project: Many-core XS1 system grid (100s of cores).

Incorporate comms costs into model.
- Contributing to ENTRA (EEnergy TRANsparency) EU FP7 project.
- Static analysis of compiled code rather than simulation.
- Use model for design space exploration & guided optimisation (tool assisted & fully automated).

References

8. XS1-LSA-TQ288 protocol
9. Steve Kerrison, steve.kerrison@bristol.ac.uk

Software energy modelling: ISA level1,2, device blocks3, library level3.

Steve Kerrison, steve.kerrison@bristol.ac.uk; Supervisor: Dr. Kerstin Eder, kerstin.eder@bristol.ac.uk

DATE 2013 PhD Forum

Solution

Software energy modelling: ISA level1,2, device blocks3, library level3.

Multi-threaded model using simulation statistics:

\[E_p = P_{\text{idle}} N_{\text{idle}} T_{\text{idle}} + \sum_{i=1}^{N} \left(P_{\text{inst}} N_{\text{inst}} T_{\text{inst}} \right) + \sum_{i,j} \left(P_{\text{com}} O_{i,j} N_{i,j} T_{i,j} \right) \]

- Instruction overhead smaller than data overhead.
- Use instruction execution statistics, rather than trace, for speed: ~16x faster.
- Implement model per-instruction (standard) and by operand count (grouped).
- Consider concurrency levels (number of active threads).

Implementation of the model: Analysis

- Instruction overhead is smaller than data overhead.
- Use instruction execution statistics, rather than trace, for speed: ~16x faster.
- Implement model per-instruction (standard) and by operand count (grouped).
- Consider concurrency levels (number of active threads).

Multi-threaded model using simulation statistics:

- Instruction overhead smaller than data overhead.
- Use instruction execution statistics, rather than trace, for speed: ~16x faster.
- Implement model per-instruction (standard) and by operand count (grouped).
- Consider concurrency levels (number of active threads).

References

8. XS1-LSA-TQ288 protocol
9. Steve Kerrison, steve.kerrison@bristol.ac.uk

Software energy modelling: ISA level1,2, device blocks3, library level3.

Multi-threaded model using simulation statistics:

\[E_p = P_{\text{idle}} N_{\text{idle}} T_{\text{idle}} + \sum_{i=1}^{N} \left(P_{\text{inst}} N_{\text{inst}} T_{\text{inst}} \right) + \sum_{i,j} \left(P_{\text{com}} O_{i,j} N_{i,j} T_{i,j} \right) \]

- Instruction overhead smaller than data overhead.
- Use instruction execution statistics, rather than trace, for speed: ~16x faster.
- Implement model per-instruction (standard) and by operand count (grouped).
- Consider concurrency levels (number of active threads).

Multi-threaded model using simulation statistics:

\[E_p = P_{\text{idle}} N_{\text{idle}} T_{\text{idle}} + \sum_{i=1}^{N} \left(P_{\text{inst}} N_{\text{inst}} T_{\text{inst}} \right) + \sum_{i,j} \left(P_{\text{com}} O_{i,j} N_{i,j} T_{i,j} \right) \]

- Instruction overhead smaller than data overhead.
- Use instruction execution statistics, rather than trace, for speed: ~16x faster.
- Implement model per-instruction (standard) and by operand count (grouped).
- Consider concurrency levels (number of active threads).