
 Peer reviewed version

 Link to published version (if available):
 10.1515/forum-2013-0109

 Link to publication record in Explore Bristol Research
 PDF-document

 University of Bristol - Explore Bristol Research

 General rights

 This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
 http://www.bristol.ac.uk/pure/about/ebr-terms.html
ARTIN’S CONJECTURE AND SYSTEMS
OF DIAGONAL EQUATIONS

TREVOR D. WOOLEY

Abstract. We show that Artin’s conjecture concerning p-adic solubility
of Diophantine equations fails for infinitely many systems of r homogenous
diagonal equations whenever $r \geq 2$.

1. INTRODUCTION

A modern formulation of Artin’s Conjecture (AC) asserts that in the p-
adic field \mathbb{Q}_p, any collection of forms $F_1, \ldots, F_r \in \mathbb{Q}_p[x_1, \ldots, x_s]$ of respective
degrees d_1, \ldots, d_r must possess a common non-trivial zero provided only that
$s > d_1^2 + \ldots + d_r^2$. This is in fact a variant of a special case of the conjecture
made by E. Artin (see [2, Preface page x] and [16] for more on the subtext
to this statement). The history of this conjecture is remarkably rich. For
the purpose at hand, it suffices to note that AC is known to hold whenever p
is sufficiently large in terms of the degrees of the forms at hand (see [3, 4]),
yet fails spectacularly for each prime p (see [1, 5, 18, 19]). The conjecture
is known to hold, however, for systems consisting of a single quadratic or
cubic form, a pair of quadratic forms, and also in the case of a single diagonal
form of any degree (see [8, 9, 10, 17]). The latter conclusion has prompted
speculation that AC might be salvaged for systems of diagonal forms. Workers
intimately familiar with the argument underlying [18] have long been aware
that AC cannot hold for certain systems of diagonal forms in which sufficiently
many distinct degrees of suitable size occur, although this observation does
not seem to be particularly well-documented in the literature. However, for
larger degrees such counter-examples to AC necessarily contain very many
forms. Our goal in this note is to show that counter-examples to AC exist in
abundance for systems of two or more diagonal forms of differing degrees.

Theorem 1.1. Let p be a prime number. Then whenever $r \geq 2$, there are
infinitely many r-tuples (d_1, \ldots, d_r) having the property that Artin’s Conjecture
fails over \mathbb{Q}_p for a system of diagonal forms of respective degrees d_1, \ldots, d_r.

There has been much work in the recent literature concerning systems of
diagonal equations and their relation to AC (see [6, 7, 11, 12, 13, 14, 15]).
In particular, it is known that AC holds for pairs of diagonal forms of equal
degree k, except possibly when k takes the form $p^r(p - 1)$ or $3 \cdot 2^r$ ($p = 2$),
and that AC holds also for pairs of diagonal forms of distinct odd degrees.

2010 Mathematics Subject Classification. 11D88, 11D72, 11E76.
Key words and phrases. Local solubility, diagonal equations, Artin’s Conjecture.
While our theorem rules out the validity of AC in general for systems of two or more diagonal forms, it remains conceivable that AC holds for systems of odd degree.

In order to establish our theorem, we adapt the strategy of Lewis and Montgomery [18] to obtain a strengthened p-adic interpolation lemma. Let p be a prime number and h a natural number, and write $\phi(p^k) = p^{h-1}(p - 1)$. When $N \geq 1$, define $S_{h,m}(x)$ by putting

$$S_{h,m}(x_1, \ldots, x_N) = \sum_{i=1}^{N} x_i^{\phi(p^h)m}.$$

Then by enhancing the argument of [18, Lemma 2], we are able to establish the following conclusion.

Theorem 1.2. Let p be a prime number and $h \in \mathbb{N}$. When $p = 2$, suppose in addition that $h \geq 3$. Let M be a positive integer, and consider a set \mathcal{M} of r integers in the interval $[M, 2M)$. Write $W = \lceil \phi(p^h)/(h + 1) \rceil$. Finally, suppose that there is a non-zero solution $x \in \mathbb{Q}_{p}^{W_s}$ to the system of equations

$$\sum_{l=0}^{W-1} p^{(h+1)M} S_{h,m}(x_{1l}, \ldots, x_{sl}) = 0 \quad (m \in \mathcal{M}).$$

Then one has $s \geq p^rh$.

Note that the number of variables in the system (1.1) is Ws. Also, when $h \geq 5$, the integer W occurring in the statement of Theorem 1.2 satisfies

$$W \geq (p^{h-1} - h - 1)/(h + 1) \geq p^{h-2}/(h + 1).$$

The validity of AC for the system (1.1) would imply that a non-zero solution $x \in \mathbb{Q}_{p}^{W_s}$ exists whenever

$$Ws \geq 4M^3p^{2h} > \sum_{m \in \mathcal{M}} (p^{h-1}(p - 1)m)^2.$$

However, the conclusion of Theorem 1.2 implies that no solution exists when $s < p^rh$. Consequently, whenever

$$p^rh > \frac{4M^3p^{2h}}{p^{h-2}/(h + 1)} = 4(h + 1)M^3p^{h+2},$$

one finds that AC fails for the system (1.1), and such is the case whenever $r > 1$ and h is sufficiently large in terms of M. The conclusion of Theorem 1.1 follows at once.

Throughout this note, we write $[\theta]$ for the greatest integer not exceeding θ.

2. The proof of Theorem 1.2.

We begin by describing a variant of a result on p-adic interpolation provided by Lewis and Montgomery (see [18, Lemma 1]). The latter authors established the case $h = 1$ of the following conclusion. Here, as usual, when $\alpha = p^k a/b \in \mathbb{Q}$, with $(a, p) = (b, p) = 1$ and $k \in \mathbb{Z}$, we write $\text{ord}_p \alpha$ for k.

Lemma 2.1. Let \(p \) be a prime number, and let \(R \) be a natural number. Also, let \(a \) be an integer and let \(n_1, \ldots, n_K \) be distinct integers with \(n_k \equiv a \pmod{p^h} \) \((1 \leq k \leq K)\), for some \(h \in \mathbb{N} \). Finally, let \(f \in \mathbb{Z}[z] \), and suppose that
\[
f(n_k) \equiv 0 \pmod{p^R} \quad (1 \leq k \leq K).
\]
Then one has
\[
\text{ord } f(a) \geq \min \{ Kh, (K - 1)h - L + R \},
\]
where
\[
L = \max_{1 \leq k \leq K} \left\{ \text{ord} \left(\prod_{j=1, j \neq k}^{K} (n_j - n_k) \right) \right\}.
\]

Proof. One may follow the argument of the proof of [18, Lemma 1] without serious modification to accommodate arbitrary values of \(h \) in place of the special case \(h = 1 \).

We apply this conclusion to deduce a generalisation of [18, Lemma 2]. The argument of our proof is very similar to that of the latter, but differs in enough detail that a complete account seems warranted.

Lemma 2.2. Suppose that \(p \) is a prime number and \(h \in \mathbb{N} \). When \(p = 2 \), suppose in addition that \(h \geq 3 \). Let \(M \) be a positive integer, and let \(M \) be a set of \(K \) integers in the interval \([M, 2M)\). Finally, suppose that there are \(N \) integers \(x_1, \ldots, x_N \), not all divisible by \(p \), such that
\[
S_{h,m}(x_1, \ldots, x_N) \equiv 0 \pmod{p^{(h+1)M}} \quad (m \in M).
\]
Then one has \(N \geq p^{Kh} \).

Proof. Write \(q = \phi(p^h) \) and suppose that \(\mathcal{M} = \{m_1, \ldots, m_K\} \). We begin by considering the situation in which \(p \) is an odd prime. Since \(x_n \) plays no role in the congruences (2.1) when \(p | x_n \), we may suppose without loss that \((x_n, p) = 1 \) for \(1 \leq n \leq N \). Let \(g \) be a primitive root modulo \(p^2 \), whence \(g \) is primitive for all powers of \(p \). For each index \(n \), there exists an integer \(a_n \) with \(0 \leq a_n < \phi(p^{(h+1)M}) \) having the property that \(x_n \equiv g^{a_n} \pmod{p^{(h+1)M}} \). Put \(f(z) = \sum_{n=1}^{N} z^{a_n} \), and note that \(f(1) = N \). By the primitivity of \(g \), one sees that for \(1 \leq k \leq K \) the integers \(n_k \) are distinct and satisfy the congruence \(n_k \equiv 1 \pmod{p^h} \). Furthermore, by hypothesis, one finds that \(f(g^{qm}) \equiv 0 \pmod{p^{(h+1)M}} \) for \(m \in \mathcal{M} \). We therefore deduce from Lemma 2.1 that
\[
\text{ord } N = \text{ord } f(1) \geq \min \{ Kh, (K - 1)h - L + (h + 1)M \},
\]
where
\[
L = \max_{m \in \mathcal{M}} \text{ord} \left(\prod_{r \in \mathcal{M}, r \neq m} (g^r - g^{qm}) \right).
\]

Next we observe that since \(q = \phi(p^h) \), one has \(\text{ord}(g^s - 1) = h + \text{ord } s \) for every natural number \(s \), whence \(\text{ord}(g^r - g^{qm}) = h + \text{ord}(r - m) \). But when
\(m \in \mathcal{M}\), just as in the argument of the proof of [18, Lemma 2], a consideration of binomial coefficients reveals that
\[
\text{ord}\left(\prod_{r \in \mathcal{M}, \; r \neq m} (r - m)\right) \leq \text{ord}\left((m - M)! (2M - m - 1)!\right) \leq \text{ord}\left((M - 1)!\right).
\]

Hence we obtain
\[
L \leq (K - 1)h + \sum_{j=1}^{\infty} \left\lfloor \frac{M - 1}{p^j} \right\rfloor \leq (K - 1)h + \frac{M - 1}{p - 1}.
\]

One therefore has
\[
(K - 1)h - L + (h + 1)M \geq (h + 1 - 1/(p - 1)) M \geq hM \geq hK.
\]

Thus we conclude from (2.2) that \(\text{ord} \geq hK\), so that \(p^{hK}|N\).

When \(p = 2\), we modify the above argument by using the fact that the reduced residues are generated by \(-1\) and \(5\) modulo any power of 2. Thus, for each index \(n\), there exists an integer \(a_n\) with \(0 \leq a_n < \frac{1}{2}\phi(2^{(h+1)M})\) having the property that \(x_n^2 \equiv 5^{a_n} \pmod{2^{(h+1)M}}\). Put \(f(z) = \sum_{n=1}^{N} z^{a_n}\) and note once more that \(f(1) = N\). For \(1 \leq k \leq K\), the integers \(n_k = 5^{m_kq/2}\) are distinct and satisfy the congruence \(n_k \equiv 1 \pmod{2^{(h+1)M}}\). Further, by hypothesis, for \(1 \leq k \leq K\) one has
\[
f(5^{m_kq/2}) = \sum_{n=1}^{N} x_n^{m_kn} \equiv 0 \pmod{2^{(h+1)M}}.
\]

It therefore follows that \(f(n_k) \equiv 0 \pmod{2^{(h+1)M}}\) for \(1 \leq k \leq K\). As before, we find from Lemma 2.1 that the lower bound (2.2) holds, though in the present circumstances in which \(p = 2\), one has \(L \leq (K - 1)h + M - 1\). Consequently, we deduce on this occasion that since \(h \geq 3\), one has
\[
(K - 1)h - L + (h + 1)M \geq hM \geq hK.
\]

Thus we conclude that \(2^{hK}|N\), thereby completing the proof of the lemma. \(\square\)

We are now equipped to prove Theorem 1.2. Suppose if possible that \(s < p^{h}\) and that the equations (1.1) have a non-zero simultaneous solution \(x \in \mathbb{Q}^W_s\).

By homogeneity, we may suppose that \(x \in \mathbb{Z}^W_p\), and further that \(p \nmid x_{ju}\) for some indices \(j\) and \(u\) with \(1 \leq j \leq s\) and \(0 \leq u < W\). For some index \(l\) with \(0 \leq l < W\), one has \(p|x_{lu}\) for \(u < l\) and \(1 \leq i \leq s\), and further \(p \nmid x_{jl}\) for some index \(j\) with \(1 \leq j \leq s\). For each \(m \in \mathcal{M}\), we thus have
\[
S_{h,m}(x_{1u}, \ldots, x_{su}) \equiv 0 \pmod{p^{\phi(p^h)M}} \quad (u < l).
\]

On the other hand, since
\[
\phi(p^h) - (h + 1)l \geq \phi(p^h) - (h + 1)(W - 1) \geq h + 1,
\]
we find from (1.1) that there is a solution \(x_l \in \mathbb{Z}^s_p\) of the simultaneous congruences
\[
S_{h,m}(x_{1l}, \ldots, x_{sl}) \equiv 0 \pmod{p^{(h+1)M}} \quad (m \in \mathcal{M})
\]
in which $p \nmid x_j$ for some index j with $1 \leq j \leq s$. In particular, there is a non-zero s-tuple $y \in \mathbb{Z}^s$ with $y \equiv x_j \pmod{p^{(h+1)M}}$ such that

$$S_{h,m}(y) \equiv 0 \pmod{p^{(h+1)M}} \quad (m \in \mathcal{M}).$$

Since $s < p^h$, it follows from Lemma 2.2 that one must have $p|y_i$, and hence also $p|x_i$, for $1 \leq i \leq s$. This contradicts our earlier assumption, and so we reach a contradiction. We are therefore forced to conclude that $s \geq p^h$, and this completes the proof of Theorem 1.2.

References