Probing the Ultrafast Energy Dissipation Mechanism of the Sunscreen Oxybenzone after UVA Irradiation

Lewis A. Baker,1‡ Michael D. Horbury,1‡ Simon E. Greenough,1 Philip M. Coulter,2 Tolga N. V. Karsili,2 Gareth M. Roberts,2 Andrew J. Orr-Ewing,2 Michael N. R. Ashfold2* and Vasilios G. Stavros1*

1Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
2School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK

ABSTRACT: Oxybenzone is a common constituent of many commercially available sunscreens providing photoprotection from ultraviolet light incident on the skin. Femtosecond transient electronic and vibrational absorption spectroscopies have been used to investigate the non-radiative relaxation pathways of oxybenzone in cyclohexane and methanol after excitation in the UVA region. The present data suggest that the photoprotective properties of oxybenzone can be understood in terms of an initial ultrafast excited state enol → keto tautomerization, followed by efficient internal conversion and subsequent vibrational relaxation to the ground state (enol) tautomer.

Keywords: Oxybenzone, sunscreens, transient absorption spectroscopy, ultrafast photochemistry

Sunscreens are used to act preemptively against an over exposure to ultraviolet (UV) radiation, which is known, for instance, to be responsible for the development of malignant melanomas.1–3 Applied sunscreens work in addition to the body’s delayed natural photoprotective mechanism: tanning.4,5 Oxybenzone, termed OB hereon and shown in Figure 1 (labelled chelated enol), is an active ingredient present in many commercially available sunscreens, and has been the subject of many prior studies.3,6–10 It displays broadband UV absorption (spanning the UVA and UVB regions; see Supporting Information (SI), Figure S1) and remains photostable after several hours,11 but the mechanism by which it provides these beneficial properties remains to be established. There is also some controversy in observed adverse dermatological effects from skin-OB contact.8,12–14 Elucidating the energy dissipation mechanism within OB could aid the selection and design of better sunscreens,7 or suggest improvements in the use of OB itself. For example, recent studies have suggested that the adverse effects of skin-OB contact might be reduced through the use of zeolite encapsulation.6,15

Recent ab initio electronic structure studies suggested that

Figure 1. Overall proposed scheme of the energy dissipation mechanism of UVA excited OB. Key atoms involved in this mechanism are highlighted for clarity.
ultrafast dynamics may be key to understanding the efficiency of OB as a sunscreen.10 These studies identified internal conversion (IC) via an electron-driven excited state hydrogen atom transfer (ESHT) mechanism as a plausible energy relaxation pathway, in concordance with studies in similar species containing hydrogen donor (OH)-acceptor (CO) sites in close proximity.16,17 Recent studies have also revealed some probability of excited state OB molecules undergoing intersystem crossing (ISC) to long lived triplet states9 and homolytic O–H bond fission to yield phenoxyl radicals.18 The current evidence thus suggests that OB is photostable under UV irradiation (notwithstanding the undesirable minor ISC and O–H bond fission channels), but this cannot be confirmed whilst the OB excited state decay mechanism remains in question.

In this letter we use femtosecond pump-probe transient electronic (UV-visible) absorption spectroscopy (TEAS) and transient vibrational absorption spectroscopy (TVAS) methods to probe the ultrafast energy dissipation of OB following photoexcitation near the UVA absorption maximum, \textit{ca.} 325 nm (3.81 eV). The dominant mechanism by which OB dissipates this energy is found to involve ultrafast excited state enol \textrightarrow{} keto tautomerization, followed by IC to reform the original chelated enol tautomer. A minor channel is also identified, attributed to formation of a longer lived trans keto product.

The Warwick TEAS setup,19,20 employing 325 nm, 1–2 mJ cm-2 pump pulses and broadband white light continuum (340 to 675 nm) probe pulses was used to record the transient electronic absorption (TEA) spectra of OB in cyclohexane and methanol (10 mM), for a range of pump-probe time delays. These spectra are shown in Figures 2a and 2c, respectively. We start by considering the OB in cyclohexane data at very early pump-probe time delays (< 500 fs). The TEA spectra are dominated by two features: an intense, narrow peak centred at \textsim{}366 nm and a flat, broad absorption (425-575 nm) which tails off into the baseline by 650 nm. Based on the subsequent analysis (\textit{vide infra}), we attribute this latter signal to OB excited state absorption (ESA). By 2 ps, most of the broad ESA feature in the TEA spectra has decayed away leaving the positive peak at 366 nm (indicated by the dashed line in Figure 2a), the identity of which we discuss below. A negative feature between 340 and 350 nm is also present which, by comparison with the static UV absorption spectrum of OB (see SI, Figure S1), we assign as a ground state bleach (GSB). By 50 ps, the 366 nm feature has decayed to the baseline, but the GSB does not fully recover and persists out to the maximum available pump-probe time delay (2 ns). Similar dynamics are found for OB in methanol with only a slight blue shifting of the observed features.

Quantitative insight into the dynamical processes involved in the TEA spectra can be gained by employing a global fitting procedure.21,22 Two exponential functions are required in the global fit between 355 and 415 nm, which encompasses the absorption feature at 366 nm, to recover the data. For OB in cyclohexane, the lifetimes of the spectral features are \(\tau_1 = 375 \pm 13\) fs and \(\tau_2 = 7.8 \pm 2.8\) ps, see Figure 2b (red line). In methanol the corresponding lifetimes are \(\tau_1 = 368 \pm 13\) fs and \(\tau_2 = 4.9 \pm 1.9\) ps, see Figure 2d (red line). Further information on the global fits can be found in the SI (Figures S2–S4). The dynamics of the ESA feature beyond 415 nm are well described by a single exponential decay with a lifetime that closely mirrors the \(\tau_1\) value for OB in the corresponding solvent (see SI, Figure S4 for further information).

![Figure 2](image-url)
Figure 3. (A) Raw TVA spectra following 325 nm excitation of OB in cyclohexane. (B) Transient signal for the GSB recovery (open circles) calculated from the normalized numerical integration of the 1621 cm\(^{-1}\) GSB signal. Fitting this integrated signal with a single exponential function returns a lifetime for GSB recovery \(\tau = 8.0 \pm 0.2\) ps (red line). (C) Raw TVA spectra for OB in methanol-\(d_4\) with corresponding transient signal for GSB recovery (D), yielding a lifetime \(\tau = 5.2 \pm 0.2\) ps. Quoted errors correspond to \(2\sigma\). The static FTIR spectra of OB in cyclohexane and in methanol-\(d_4\) are shown as black lines in (A) and (C).

The Bristol TVAS setup,\(^{23}\) employing 325 nm, 2 mJ cm\(^{-2}\) pump pulses with mid-IR probe pulses centred on 1580 cm\(^{-1}\) and pump-probe time delays up to 50 ps, was used to record TVA spectra of OB in cyclohexane (Figure 3a) and deuterated methanol (methanol-\(d_4\), Figure 3c) at a concentration of 10 mM. We consider cyclohexane first. Several negative GSB features are observed at the earliest time delay (1 ps), the strongest of which is located at \(~1620\) cm\(^{-1}\) and matches well the static FTIR spectrum (Figure 3a, black line). A positive feature is also evident on the lower wavenumber edge of the strongest GSB; this feature decays and shifts to higher wavenumber within the first 10 ps (see SI, Figure S5 for further details). This temporal behaviour is characteristic of ultrafast formation of vibrationally hot ground state (S\(_0\)) OB molecules, which then relax through interaction with the solvent.\(^{23}\) Returning to the \(~1620\) cm\(^{-1}\) GSB, numerical integration over the range of time delays yields the kinetic trace in Figure 3b, which is well described using a single exponential function (red line) with a lifetime of \(\tau = 8.0 \pm 0.2\) ps. As was also seen in TEAS, the GSB does not recover fully on the timescale of the experiment, suggesting formation of a photoproduct with a quantum yield of \(\geq 9\%\). TVA spectra obtained following 325 nm photoexcitation of OB in methanol-\(d_4\) reveal an analogous GSB at \(~1610\) cm\(^{-1}\), with a lifetime of \(\tau = 5.2 \pm 0.2\) ps (Figure 3d) that, again, recovers incompletely – implying a photoproduct quantum yield of \(\geq 8\%\). We note the good agreement between these \(\tau\) values and the \(\tau_2\) time-constants from the TEAS data and return to discuss this correspondence later.

Recent \textit{ab initio} electronic structure calculations on OB\(^{10}\) assist our interpretation of the dynamical processes revealed in the TEAS and TVAS data, which we discuss with reference to the structures and mechanism in Figure 1. The calculations produce cuts through the potential energy surfaces (PESs) for the S\(_0\), S\(_1\)(1\(^{1}n\pi*\)), S\(_1\)(1\(^{2}\pi\pi*\)) and S\(_2\)(2\(^{2}\pi\pi*\)) states of OB and reveal the availability of conical intersections by which population in the optically ‘bright’ S\(_2\) state (formed as a result of 325 nm photoexcitation of the chelated enol) can be funnelled to the S\(_1\) state (which is optically ‘dark’). Following radiationless transfer to S\(_1\), the calculations identify a barrierless ESHT pathway (along O\(_{23}\)-H\(_{34}\), see Figure 1), involving necessary rotation about the central aliphatic C–C bond, that links the S\(_1\) state to a conical intersection with the S\(_0\) state. However, the resultant twisted chelated keto isomer (Figure 1) is not a stable species on S\(_0\), and the local topography of the S\(_0\) PES likely provides a driving force to regenerate the original stable chelated enol isomer through ground state hydrogen atom transfer (GSHT), which is cooled \textit{via} vibrational energy transfer (VET) to the solvent bath.\(^{24-26}\)

The TEAS measurements identify three dynamical features. The TEA spectra highlight two of these, which, from the fitting of the 366 nm absorption maximum, reveal a short (\(\tau_1\)) and a longer-time (\(\tau_2\)) process. The third feature is an apparent flat maximum close to time-zero in the transients shown in Figures 2b and 2d, which persists for \(~100\) fs (see SI, Figure S3). Guided by the \textit{ab initio} calculations,\(^{10}\) we try to rationalise these features. The signal plateau around time-zero, which we are unable to resolve within our instrument response (\(~100\) fs), is attributed to a combination of ultrafast IC from the photoexcited S\(_2\) state to S\(_1\), and ballistic ESHT on the S\(_1\) state. After ESHT to form the chelated keto species, slower rotation about the central C–C bond can occur, enabling IC back to the S\(_0\) state through an S\(_0\)/S\(_0\) conical intersection at the twisted chelated keto structure (see Figure 1). We associate \(\tau_1\) with this subsequent twisting and IC process (the timescale is sensibly consistent with that derived for enol \(\rightarrow\) keto tautomerism in similar systems that require a twisted ESHT\(^{27-29}\)). We note however that: (i) \(\tau_1\) could involve a simultaneous (or concerted) process involving H-atom transfer and C–C twisting followed by IC from S\(_1\) to S\(_0\), in which case the flat absorption feature is likely attributed to IC from S\(_2\) to S\(_1\); and (ii) given the low frequency of the torsional mode, a fraction of the molecular ensemble will already be in the correct geometry to pass straight through the S\(_0\)/S\(_0\) conical intersection. \(\tau_1\) reflects the dynamics of the overall molecular ensemble. After IC to form hot S\(_0\) molecules, GSHT can regenerate the original che-
lated enol structure, which is then quenched by VET to the solvent. We associate τ_2 with this final VET mediated cooling process. Support for this assignment comes from the evident small red-shift of the UVA absorption maximum of OB to ~366 nm (cf. the static UV absorption of OB, SI Figure S1) – the expected characteristic of vibrationally hot S_0 OB molecules.30 The TVAS measurements support this conclusion: given the ultrashort (τ_1) lifetime of photoexcited OB molecules in both solvents, the recovery of the GSB features in TVAS will report the rate of vibrational cooling of hot S_0 OB molecules, as described for other systems.23 Importantly, the GSB recovery timescales from TVAS (τ) mirror closely the τ_2 values assigned to VET driven cooling in TEAS. Further, both τ and τ_2 are solvent dependent; the extracted lifetimes for methanol are consistently shorter than in cyclohexane, implying higher VET efficiencies in methanol-OB than in cyclohexane-OB, which is to be expected given that the interaction of oxybenzone with the more polar solvent, methanol, will promote a higher rate of VET.26

As noted above, a small fraction (\approx 10 \%) of the GSB does not recover in either solvent, which is a tell-tale sign of some form of extended dynamics or photoproduct formation. Such a conclusion is reinforced by the appearance of a new absorption feature centred at 1640 cm$^{-1}$ in cyclohexane (1630 cm$^{-1}$ in methanol-d_4) in the TVA spectra recorded at extended time-delays. Both the residual GSB and this new absorption feature are evident in the TVA spectra shown in Figure 4a for the case of OB in cyclohexane at two pump-probe delays, 50 and 200 ps (see Figure S7 in SI for the corresponding TVA spectra following excitation of OB in methanol-d_4). Possible carriers of this new feature have been explored using density functional theory at the B3LYP/6-311+G** level within the Gaussian03 computational package31 to determine gas-phase harmonic vibrational wavenumbers for the chelated enol and a number of possible product structures/triplet states (see SI, Figures S6-S8 for further details). We specifically focus on vibrations that fall within the probe window of interest. The calculations for the chelated enol return a number of vibrations in the relevant wavenumber range, the strongest of which is not the C=O stretch but a ring stretch mode of the methoxyphenol moiety (1668 cm$^{-1}$), which is responsible for the GSB observed in the TVA spectra in both solvents (Figures 3a and 3c). Given previous condensed phase observations,8 triplet state formation must be one possible assignment for the emerging positive feature in the TVA spectra, but comparison with calculated triplet state spectra for several different OB structures/isomers tends to rule out this suggestion (see SI, Figure S8). Based on the recent \textit{ab initio} electronic structure calculations32 and findings from experimental studies of twisted ESHT mechanisms in related systems,27-29 we propose an alternative assignment for the signal carrier of this new feature at ~1640 cm$^{-1}$. As discussed above, rotation about the central aliphatic C–C bond is essential for enabling access to the S$_1$/S$_0$ conical intersection at the twisted chelated keto geometry (Figure 1). As with similar model systems,27-29 momentum in this torsional motion may in principle enable further rotation about the C–C bond, after formation of the hot chelated keto species on S_0 to yield a trans keto photoproduct (Figure 1), rather than GSHT back to the chelated enol. Once formed, the trans keto species may then undergo vibrational cooling. To confirm the above mechanism, we have calculated harmonic vibrational wavenumbers for the two possible (OH group) rotamers of the trans keto species and a number of other theoretically possible photoproduct structures (see SI),30 and conclude that the emergent absorption feature is most likely attributable to a C=O stretch of the trans keto tautomer rather than any other photoproduct. Figure 4b shows the predicted difference absorption spectrum assuming formation of this trans keto product. This spectrum was generated as a sum of the calculated bleach and absorption spectra of the chelated enol-OB and ‘trans’ keto-OB tautomer. See text and SI for further details.

We close by revisiting the possible importance of excited state O–H bond fission and phenoxyl radical formation, which Ignasiak \textit{et al.}18 suggested a possible explanation for the incomplete signal recovery in their TEA spectra. The present study corroborates other aspects of their recent study, but careful inspection of the present TEA data (e.g. Figure 2) at wavelengths \approx 400 nm, where such phenoxyl radicals show a well-documented absorption,32,33 reveals no such signature. The present measurements thus suggest that O–H bond fission is an insignificant photoproduct channel (at least within our signal-to-noise) and that the incomplete signal recovery18 might more likely be attributable to a trans keto photoproduct. However, we also note differences in the pulse energy and photoexcitation wavelengths used in the two studies (10 \mu J/pulse, Figure 4. (A) TVA spectra measured following 325 nm excitation of OB in cyclohexane at pump-probe time delays of 50 ps and 200 ps. (B) Difference spectrum derived from the harmonic wavenumbers and IR transition strengths for the chelated enol-OB and ‘trans’ keto-OB tautomer. See text and SI for further details.
To conclude, we have determined two ultrafast relaxation processes by which photoexcited OB molecules revert to (predominantly) the ground state, where they are available to continue to absorb UV radiation. We suggest that the mechanism by which OB dissipates energy following UV excitation involves ultrafast excited state enol -> keto tautomerization, followed by two (IC) relaxation processes to reform the original chelated enol tautomer.

We conclude by briefly discussing the role of OB in a real sunscreen environment and relate this to the present findings. Sunscreens are multicomponent systems, which include both organic and inorganic components in both polar and non-polar solvents. Trying to elucidate the energy dissipation mechanisms within the entire mixture is intractable. The bottom-up approach utilized here, where we study the energy dissipation mechanism of OB in a polar and non-polar solvent is more tractable, and may serve as a stimulus for future investigations. For instance, what happens when we increase the complexity of the system through the addition of a second sunscreen constituent? Are the photoprotection properties afforded by the mix greater than the sum of the individual parts? Both experiment and theory hold the answers to these, and many other questions in the exciting field of sunscreen science.

ASSOCIATED CONTENT
Supporting Information
UV-visible spectrum of OB in cyclohexane and methanol. Global fits to the TEA spectra. Vibrational cooling dynamics from the TVA spectra. Calculated triplet/photoproduct TVA difference spectra. Further experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION
Corresponding Author
*Email: v.stavros@warwick.ac.uk, mike.ashfold@bris.ac.uk

Author Contributions
†These authors contributed equally.

ACKNOWLEDGMENTS
The authors are grateful to Prof. Philipp Kukura (Oxford) and Dr Adam Chatterley (UC Berkeley) for helpful discussions. L.A.B. thanks the Engineering and Physical Sciences Research Council for providing a studentship under grant EP/F500378/1, through the Molecular Organisation and Assembly in Cells DTC. M.D.H. thanks the University of Warwick for an EPSRC studentship. S.E.G. thanks the Warwick Institute of Advanced Study for postdoctoral funding. The Bristol work was supported by the European Research Council through ERC Advanced Grant 290966 CAPRI and EPSRC via Programme Grant EP/L005913. G.M.R. thanks the Ramsay Memorial Trust for a Fellowship and Prof. Martin Paterson (Heriot-Watt) for use of his computational facilities. V.G.S. thanks the EPSRC for an equipment grant (EP/J007153) and the Royal Society for a University Research Fellowship.

REFERENCES