
Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms.html
The Self-relevance System?

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Cognitive Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>Draft</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Commentary</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Conway, Martin; City University London, Psychology
Pothos, Emmanuel; City University London, Psychology
Turk, David; University of Bristol, School of Psychology |
| Keywords: | core network, self, attentional bias |
RUNNING HEAD: Self-relevance

The Self-Relevance System?

Martin A. Conway, Emmanuel M. Pothos,
Centre for Memory & Law, Department of Psychology
City University London

&

David J. Turk
School of Experimental Psychology
University of Bristol

Cognitive Neuroscience, submitted.

Corresponding author:

Martin A. Conway,
Centre for Memory & Law,
Department of Psychology,
City University London,
Northampton Square,
London, EC1V 0HB
U.K.

Emails:

Martin.Conway.1@city.ac.uk
e.m.pothos@gmail.com
David.Turk@bristol.ac.uk

Sunday, June 7, 2015
Abstract

We suggest that the Self Attention Network (SAN) maybe part of a larger self-regulatory system, which we term the *Self-Relevance System* (SRS) of which the ‘core’ or default network is a major part. It is within the core network that memories are generated and the future imagined. Such memories and imaginings are the basis of preoccupations. Within the SRS then preoccupations drive the emergence of attentional biases (ABs). ABs in turn are modulated by the SAN activating and inhibiting circuits that shape behaviour. We consider briefly how this might function in dysfunctional appetitive behaviours, e.g. substance abuse.
It has long been known that the self plays a central role in many forms of
cognition, from attention and perception to memory and emotion. Indeed, it may be
critical in giving rise to memories that can later trigger recollective experience,
(Dewhurst & Conway, 1995). The link between self-relevance and attention has also
been demonstrated in previous studies. For example, the relationship between
automatic and controlled attentional processing in self-referential encoding tasks can
be seen in the studies reported by Turk, van Bussel, Brebner, Toma, Krigolson and
Handy (2011). They used a temporary ownership task in which items were assigned
to self or other on the basis of a colour cue. Responses to self-relevant cues were
associated with a narrowing of spatial attention (occipital P1 component) to the
location of the owned object. This early, automatic response to the detection of self-
relevance was followed by a later increase in the P300 component associated with
higher-order, top-down modulation of attention and executive processing. Indeed,
Turk, van Bussel, Waiter, and Macrae (2011) proposed a temporal model in which
activity in attentional and reward circuits in frontal cortex associated with object
ownership was followed by activity in lateral posterior regions associated with
attention for action. Interestingly, activity in this network was suppressed during the
processing of items belonging to others.

The main contribution of Humphreys and Sui (2015) is in identifying a potential
self-attention network (SAN) in the temporal lobes and ventromedial prefrontal cortex
that is modulated by an inhibitory network in intra-parietal sulcus and dorsolateral
prefrontal cortex. It seems to us that the inhibitory control is essential as not all events
are high in self-relevance and those that are may attenuate other processes, for
example the encoding of memory details. It is interesting that experiences of intense
self-relevance, such as trauma, often lead to memories low in detail with amnesic
self-relevance gaps (Conway, Meares, & Standart, 2004). Thus, controlling attentional biases (ABs) created by high self-relevance is perhaps critical to optimum cognitive functioning.

The SAN, however, may be part of a larger and more complicated self-relevance system (SRS) encompassing a wide range of cortical networks collectively known as the core or default network (Buckner, Andrews-Hanna, & Schacter, 2008). When attention is unfocussed the core system is characterized by activation in anterior and posterior networks, the same networks that become active during remembering and imagining (Conway & Loveday, 2015). But when attention is unfocussed remembering and imagining are probably the main activities of the cognitive system and their outputs are the representations that the SAN attends to. Inhibiting or facilitating such outputs shapes ABs and behavior.

In this regard an interesting and important role for the SAN may lie in generating ABs in, for instance, appetitive behaviours both functional and dysfunction, e.g. substance abuse. Alcohol abuse can lead to an AB for alcohol-related information (Cox, et al., 2006), just as hunger is associated with ABs for food-related information (Tapper, et al., 2010). Preoccupation may explain how SAN ABs arise, i.e., an alcohol abuser is preoccupied with consuming alcohol and so alcohol-related information becomes salient (Klinger & Cox, 2011). Could self-biases arise analogously? Plausibly, we are preoccupied with ourselves, what we own, or perhaps by how others perceive us. Additionally, some key characteristics of decision-making, such as loss aversion, make sense only in relation to the self. Perhaps self-preoccupation in the SRS could result in an AB for the self, overall.
References

Authors’ Note

Names are listed alphabetically and each made an equal contribution. Conway was supported by a Wellcome Trust Large Arts Award, 102010/Z/13/Z, EMP was supported by a Leverhulme Trust grant RPG-2013-004 and by an Air Force Office of Scientific Research (AFOSR), Air Force Material Command, USAF, grant FA 8655-13-1-3044. and Turk by a European Research Council Starting Grant, 202893. We thank all three organizations for their support.