How to estimate isotropic distributions and mean values in crystalline solids

G. Kontrym-Sznajd and S. B. Dugdale

1W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw 2, Poland

2H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK

Abstract: The concept of special directions in the Brillouin zone and the applicability of Houston’s formula (or its extended versions) to both theoretical and experimental investigations are discussed. We propose some expressions to describe the isotropic component in systems having both cubic and non-cubic symmetry. This results presented have implications for both experimentalists who want to obtain average properties from a small number of measurements on single crystals, and for theoretical calculations which are to be compared with isotropic experimental measurements, for example coming from investigations of polycrystalline or powder samples.

Keywords: isotropic average, Debye temperature, specific heat, Compton scattering

Corresponding author: g.sznajd@int.pan.wroc.pl

1. Introduction

Many of the physical properties of crystalline solids have the full symmetry of the Brillouin zone (BZ), i.e. they are invariant under all symmetry operations of the point group. Examples include the Fermi surface, effective mass, the electron momentum density (and associated quantities such as Compton scattering spectra [1-3]) and frequency distribution [4]. Such anisotropic quantities, denoted here as \(f(p) \), which describe many electronic and thermodynamic properties of crystals, could be expressed as a series of lattice harmonics \(F_{l,v}(\Theta, \phi) \) of an appropriate symmetry [4]:

\[
 f(p) = \sum_{l,\nu} f_{l,v}(p) F_{l,v}(\Theta, \phi). \tag{1}
\]

The index \(\nu \) distinguishes harmonics of the same order, \((\Theta, \phi) \) are the azimuthal and polar angles of the direction \(p \) with respect to the reciprocal lattice coordinate system and \(f_{l,v}(p) \) are the radial coefficients of the investigated function \(f(p) \).

Such an expansion was proposed by Houston, for determining the frequency distribution \(f(\nu) \) in order to obtain the total distribution...
\[N(v) = \int \int f(v, \Theta, \phi) \sin \Theta d\Theta d\phi = 4\pi f_0(v), \quad (2) \]

and subsequently the Debye temperature [4]. As an illustration of the applicability of this formula, Houston checked if it were possible (for cubic structures), using only the three first cubic harmonics in Eq. (1) and a knowledge of \(f(p) \) along three high symmetry directions (HSD), to get similar results to those obtained by a more laborious method [5]. In order to determine the radial functions \(f_0(p) \) he solved the set of three algebraic equations (Eq. (1)) instead of performing integration over solid angle (Eq. (2)). Such a method, known as Houston’s method, can be applied when the number of terms in Eq. (1) equals to the number of sampling directions \(f(p) \).

After allowing for a numerical error in Houston’s calculations, the formula

\[f_0^a(p) = \left[10 f_{[100]}(p) + 16 f_{[110]}(p) + 9 f_{[111]}(p) \right] / 35 \quad (3) \]

was published in Refs. [6, 7]. Note that superscript “a” emphasises that the use of a finite number of harmonics in Eq. (1) always leads to an approximate value.

Eq. (3) has been used extensively in the theory of thermodynamic properties of crystals with cubic symmetry [8-10], the sum of plane waves over the BZ [11] as well as in studies of electronic properties via one-dimensional angular correlation of annihilation radiation [12-15], Compton scattering [16-25] or positron Doppler broadening spectra [26]. In the latter case Eq. (3) was used either to compare some isotropic theoretical quantity with an average computed from several experimental spectra or to compare experimental spectra measured on polycrystalline samples or powders with an average computed from theoretical spectra.

In spite of being able to determine \(f_0(p) \) much more precisely, Houston’s formula (Eq. 3), which leads to a very approximate description of \(f_0(p) \), is still used, even in the case of theoretical calculations. For example, in Refs. [17-20, 25] Compton profiles along three high symmetry directions (HSDs) were calculated and then Houston’s formula was applied to compare the theory with a measurement made on a polycrystalline sample. For inexplicable reasons, in almost all papers the formula expressed in (3) or its extended versions (including also 3-HSD) [9-11] is applied instead of using special directions (SDs) which essentially increases the accuracy to which \(f_0(p) \) can be estimated. We emphasize that, for example, for cubic crystals, 1-SD is as good as 3-HSDs, and 6-SDs or 10-SDs are as good as 16 or 27 arbitrarily chosen directions, respectively.
In this paper we show how to estimate $f_0(p)$ for objects having cubic, tetragonal and hexagonal symmetries, and compare the results of the commonly used formulae with corresponding results which come from applying the idea of SDs.

The idea of SDs was introduced by Bansil [28] to reduce three-dimensional (3D) integration over the BZ to a one-dimensional (1D) integral. Bansil proposed sets of SDs, which would optimize calculations of the isotropic component, $f_0(p)$. In subsequent papers [29-37], in which (except for [32,33,36]) cubic structures were considered, the authors estimated such sets of SDs which also enabled the determination of anisotropic $f_{i,v}(p)$. To the best of our knowledge, SDs were utilised in theoretical calculations only in a few papers [38-48].

From the many possible sets of SDs for the cubic structure, we select those which should be the most convenient for experimentalists who want to obtain average properties from a small number of measurements on single crystals, and for theoretical calculations which are to be compared with isotropic experimental measurements. Moreover, because the authors of Refs. [28-31, 34] proposed equations for the isotropic average $f_0(p)$ (based on SDs) only for cubic symmetries, here we propose such expressions also for non cubic structures.

Our considerations are also valid in the real space, with the exception of the hcp structures in which the point symmetry group is non-symmorphic (in real space, some elements contain non-primitive translations, i.e. the point group, so also lattice harmonics, are different).

2. Cubic structures

Analysing results for $f_0(v)$ determined from Eq.(3), Houston concluded [4]: “the use of additional terms in the expansion (1) will reduce the overemphasis and the spurious peaks, and will tend to approach the correct distribution”. Therefore, Betts et al. [7] studied the effect of applying more (4, 5 and 6) terms in Eq.(1) stating that „the number of terms retained in the expansion (1) corresponds to a certain degree of approximation.” Directions proposed by Betts et. al [36] (3-HSD and [210], [221] and [211], denoted as A, B, C, D, E and F, respectively) are displayed in Fig. 1 ((such directions were also proposed by Miasek [11] and the 6 directional set was applied in Refs [49-52]).

While there is no doubt that the number of terms used in Eq. (1) is important, the choice of sampling directions (orientation (Θ, φ)), which are used to determine functions $f_{i,v}(p)$, is
extremely important. As shown in Fig. 6 in Ref. [34], even a single direction, but a very particular single direction, could be better than three HSDs.

The quality of each solution can be estimated via \(d \) coefficients, which define a deviation of \(f_0^a(p) \) from its true value \(f_0(p) \):

\[
\Delta f_0 = f_0^a - f_0 = \sum_{n,\mu} d_{n,\mu} f_{n,\mu}(p) \tag{4}
\]

The coefficients are calculated in the following manner. Using the expression which defines the isotropic \(f_0^0(p) \), the functions \(f(p) \) (in the case of Eq. (3), \(f_{[100]}(p) \), \(f_{[110]}(p) \) and \(f_{[111]}(p) \)), are expanded into infinite lattice harmonics series according to Eq. (1). After inserting these expansions into Eq. (3) we obtain:

\[
f_0^a = f_0 + 1.833 f_8 - 0.254 f_{10} + 0.771 f_{12,1} - 1.869 f_{12,2} + \ldots
\]

As can be seen, in the case of the formula expressed in Eq. (3), the first \(d \) coefficient, which distorts \(f_0^0(p) \) from its true value \(f_0(p) \), is \(d_8 = 1.833 \), highlighting the very poor quality of this approach (more details can be found in Ref. [27]).

In Fig. 2 the \(d \) coefficients are presented for two sets of sampling directions proposed in Refs [7, 11] and compared with corresponding \(d \) for \(n \)-SDs with \(n = 2, 4, 5 \) and 6.

Amongst the five-direction sets proposed by Betts et. al [7], the best choice is ABCDE, although the same quality isotropic component can be obtained from only 2-SDs. ABCDF and particularly the ABCEF set, for which \(d_{n,\mu} \) have the highest values (\(d_{12,1} = 2.68 \), \(d_{12,2} = -4.87 \)), are unacceptable, which is also evidenced by the negative weights describing corresponding \(f_0(p) \) – see Eqs. (2.4.6) and (2.4.7) in Ref. [7]. In view of Eq. (2) negative weights do not make sense. Betts also obtained negative weights for the 9 and 15 sampling directions proposed in Ref. [8]. Furthermore, for 15 directions he obtained weights which were greater than 1; there
is no justification for such a solution (weights must be positive, and their sum must be equal to one).

![Diagram](image1)

Fig. 2 (a) Comparison of the values of $d_{n,\mu}$ coefficients, defined in Eq. (4), describing deviations of f_0^μ from their true values for four sets of sampling directions displayed in Fig. 1.

(b). The same comparison for the three sets of SDs proposed by Fehlner et al. [29]. Note that for these SDs in all cases $d_{n,\mu} = 0$ for $n < 12$. The highest values of $d_{n,\mu}$ are for ABCF set ($d_{12,2} = -4.87$), which is not shown in the figure.

When D and E are changed to D' and E' (Fig. 2 (a)), the results radically change, despite the presence of three HSD in the ABCD'E' set. One obvious question is whether this is connected with values of cubic harmonics omitted in the expansion of Eq. (1) (in this case with $l \geq 10$), which influence the values of $d_{n,\mu}$? It seems that it is not the only reason, and if one compares the results for $D=|210|$ and D' in Fig. 3, it can be seen that the division of space and the number of equivalent sampling directions (see the right-hand part of Fig. 1) are also crucial.

![Diagram](image2)

Fig. 3. Values of 15 cubic harmonics for two HSD ([100] and [111]) and directions $D=|210|$ and D' defined in Fig. 1.

Taking into account how unfavourable HSDs are, the ABCD'E' set thus presented is surprisingly good, however it is worse than 4-SDs [29]. Outstandingly good are sets of 6-SDs shown in Fig. 2(b), or 10-SDs, both proposed by Fehlner et al. [29].

6-SDs (denoted, respectively, as 1, 2, ..., 6) have the following coordinates (Θ, ϕ):
The approximation for the isotropic $f_0(p)$ is

$$f_0^a(p) = 0.0722 f_1(p) + 0.2170 f_2(p) + 0.2367 f_3(p) + 0.1154 f_4(p) + 0.2276 f_5(p) + 0.1312 f_6(p)$$

(5)

For this set the first non-zero d coefficients are $d_{22,1}=0.0267$ and $d_{22,1}=-0.2365$ (this last one just visible on the scale of Fig. 2b). This means that even when anisotropy is so large that in the Eq. (1) one should apply 15 harmonics, the 6-SD set describes the isotropic $f_0(p)$ perfectly. In an analogous manner one can write an equation for $f_0(p)$ using 10-SDs (see Table 1 in Ref. [29] where their weights, together with those for 4- and 6-SDs, are given with high accuracy). According to our calculations, for 10-SDs [29] all coefficients d up to $n=30$ (not 22 as written in [29]) are equal to zero. It means that for very high anisotropy (where there is the necessity of applying 27 harmonic), 10-SDs again reproduce the isotropic component perfectly.

3. Hexagonal, tetragonal and trigonal structures

For structures with unique R-fold axes ($R = 6, 4$ and 3 for hcp, tetragonal and trigonal symmetry, respectively) the lattice harmonics with the full symmetry of the BZ have a very simple form [36]:

$$F_{l,m} = \begin{cases}
 a_l P_l (cos \Theta) & l=2 \cdot i \text{ and } i=0,1,2,.... \\
 a_{l,m} P_{l+m} (cos \Theta) cos(m \phi) & l= R+2 \cdot i \text{ and } m=R+Ri \text{ where } m \leq l
\end{cases}$$

(6)

where P_{l+m} are associated, and a are the normalization constants. As is the case for cubic lattices, for these structures harmonics have the highest values along HSDs, particularly along [0001] and $m=0$ (see Fig. 4).

Fig. 4. Values of 12 harmonics for three HSD and a low symmetry direction (LSD). Harmonics with $m=6$ correspond to the hcp lattice.
For these structures, the SDs are defined by the positive zeros of the first harmonic $P_l(\cos \Theta)$ omitted in the expansion expressed in Eq. (1), which is analogous to 1D Gauss-Legendre quadrature. Other lattice harmonics containing $\cos(m\phi)$ are eliminated by the 1D quadrature for trigonometric polynomials $\cos(m\phi)$ [32, 36]. Below we demonstrate this with the example when the first harmonic, omitted in Eq. (1), is $P_8(\cos \Theta)$.

Each Legendre polynomial $P_l(\cos \Theta)$ has $l/2$ positive zeros, which in the case of $l=8$ are the following: $\Theta_1=16.2008$, $\Theta_2=37.1871$, $\Theta_3=58.2959$ and $\Theta_4=79.4301$ [in degrees]. Because the number of harmonics with $l < 8$ is different (5, 6 and 7 for hcp, tetragonal and trigonal symmetry, respectively), the number of SDs will also be different, as displayed in Fig.5 (compare it with Fig. 5 in Ref. [35]).

![Fig. 5. Three sets of SDs for the hcp (hexagon), tetragonal (squares) and trigonal (triangles) symmetries (with $\varphi_{\max} = 30^0, 45^0$ and 60^0, respectively), determined by zeros of $P_8(\cos \Theta)$.](image)

For such chosen SDs, the equations defining the functions $f_{l,\nu}(p)$ can be obtained from the solution of the set of algebraic equations (the orthogonality relation of the lattice harmonics [Eq. (2) in the case of $f_0(p)$] leads to the same solutions).

Because in Refs [28-31, 34], which are devoted to SDs, the authors proposed equations for the isotropic average $f_0(p)$ only for cubic structures, here we propose such expressions for non cubic lattices, showing also a very simple way to construct them. Our proposals are diametrically different from those in Ref. [10] (compare Fig. 5 with Fig. 1 in [10]) leading to much better results, – similar to those shown in the previous Section (Fig. 2) for the cubic structures. This will be demonstrated with the example of 4-SDs for tetragonal lattices while for the hcp symmetry we compare our proposals with those given in Refs [24] and [26].

3.1. Hexagonal structures

In the hcp lattice, the first harmonic, which distinguishes directions [10\overline{1}0] and [11\overline{2}0] is the 5th harmonic, $F_{6,6}$. For this reason it is unclear how the isotropic components $f_0(p)$ for the hcp
Co and Gd were estimated in Ref. [26] based on 3-HSDs. When \(F_{6,6} \) is taken into account, two expressions for the average,

\[
f_0^a(p) = \frac{[f_{[10\overline{T}0]}(p) + f_{[1\overline{1}\overline{1}0]}(p) + f_{[0001]}(p)]}{3}
\]

(7)

\[
or \quad f_0^a(p) = 0.380952f_{[10\overline{T}0]}(p) + 0.380952f_{[1\overline{1}\overline{1}0]}(p) + 0.238095f_{[0001]}(p),
\]

(8)

result from the use in Eq. (1) of 1\(^{\text{st}}\), 2\(^{\text{nd}}\) and 5\(^{\text{th}}\) (Eq.(7)) or 1\(^{\text{st}}\), 4\(^{\text{th}}\) and 5\(^{\text{th}}\) (Eq. (8)) harmonics. It is possible that Kawasuso et al. [26] (for Doppler broadening of annihilation radiation in Be) used a similar equation to Aguiar et al. [24]

\[
f_0^a(p) = \frac{[3f_{[10\overline{T}0]}(p) + 3f_{[1\overline{1}\overline{1}0]}(p) + f_{[0001]}(p)]}{7}
\]

(9)

where the weights follow from the number of equivalent directions. This last approach reduces the contribution of \(f_{[0001]}(p) \) which seems to be very advantageous due to the fact that [0001] direction is the most anisotropic. The corresponding coefficients \(d_{n,\mu} \) when using 3-HSDs (Fig. 6 left) and 1-, 2- and 3-SDs (Fig. 6 right), demonstrate that in all cases the application of HSDs is significantly worse than the use of SDs.

In analogy with the results for the cubic structures (Figs. 1 and 2), the \(d_{n,\mu} \) coefficients were determined for sets of four and five sampling directions, including both high and low symmetry directions (see Fig. 7).

![Fig. 6 Coefficients \(d_{n,\mu} \) for \(f_0(p) \) estimated from 3-HSDs using Eqs. (7 - 9) (left) and 1-, 2- and 3-SDs (right), determined, respectively, by \(\phi = 15^\circ \) and by positive zeros of \(P_2(\cos\Theta) \), \(P_4(\cos\Theta) \) and \(P_6(\cos\Theta) \) with \(\Theta \) equals, respectively: 54.7356\(^\circ\); (30.5556\(^\circ\) & 70.1243\(^\circ\)) and (21.1769\(^\circ\), 48.6078\(^\circ\) & 76.1949\(^\circ\)).](image)

It can be seen that when two low symmetry directions ((30\(^\circ\), 15\(^\circ\)) & (60\(^\circ\), 15\(^\circ\))) were added to 3-HSD (black squares in Fig. 7), facilitating the inclusion of the first five harmonics in Eq. 1 (without omitting any with \(l < 6 \) as in the case of using 3-HSD), the results change radically,
although not as much as for the cubic ABCD’E’ set presented in Figs 1 and 2. Of course, it
does not mean that sets containing HSD are recommended, and once again we emphasise that
employing SDs is incomparably better.

Fig. 7 Values of $d_{n,\mu}$ for f_0^a estimated from
sets of four and five sampling directions
shown in the stereogram of hcp lattice. For 4-
and 5-SDs the angles Θ are defined by the
positive zeros of $P_8(\cos \Theta)$ [36]. The
notations 5-SDs(Θ, ϕ^S) and 5-SDs(Θ, ϕ^H)
mean that $\phi= 7.5^0 \ & 22.5^0$ (zeros of
$\cos(12\phi)$) and $\phi= 0^0 \ & 30^0$, respectively.

Below we give a formula for $f_0(p)$, when the sampling directions are based on 3-SDs
(numbered by 1, 2, 3), with the coordinates given in the description of Fig. 6.

$$f_0^a(p) = \sum_i w_i f_i(p) = 0.1713245 f_1(p) + 0.3607607 f_2(p) + 0.4679147 f_3(p) \quad (10)$$

Weights w_i for sets of 5-, 7- and 12-SDs and their coordinates are presented in Table 1 with
illustrating accuracy of proposed sampling directions in Fig. 8.

<table>
<thead>
<tr>
<th>i</th>
<th>((\Theta_i, \phi_i))</th>
<th>w_i</th>
<th>((\Theta_i, \phi_i))</th>
<th>w_i</th>
<th>((\Theta_i, \phi_i))</th>
<th>w_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.201 15.0</td>
<td>.1012232</td>
<td>13.118 15.0</td>
<td>.0666747</td>
<td>9.500 15.0</td>
<td>.0351174</td>
</tr>
<tr>
<td>2</td>
<td>37.187 15.0</td>
<td>.2223898</td>
<td>30.110 15.0</td>
<td>.1494406</td>
<td>21.808 15.0</td>
<td>.0801636</td>
</tr>
<tr>
<td>3</td>
<td>58.296 15.0</td>
<td>.3237013</td>
<td>47.202 15.0</td>
<td>.2190949</td>
<td>34.188 15.0</td>
<td>.1215177</td>
</tr>
<tr>
<td>4</td>
<td>79.430 7.5</td>
<td>.1813429</td>
<td>64.317 7.5</td>
<td>.1346318</td>
<td>46.584 7.5</td>
<td>.0786013</td>
</tr>
<tr>
<td>5</td>
<td>79.430 22.5</td>
<td>.1813429</td>
<td>64.317 22.5</td>
<td>.1346318</td>
<td>46.584 22.5</td>
<td>.0786013</td>
</tr>
<tr>
<td>6</td>
<td>81.438 7.5</td>
<td>.1477632</td>
<td>81.438 22.5</td>
<td>.1477632</td>
<td>58.986 7.5</td>
<td>.0927691</td>
</tr>
<tr>
<td>7</td>
<td>81.438 22.5</td>
<td>.1477632</td>
<td>81.438 22.5</td>
<td>.1477632</td>
<td>85.818 22.5</td>
<td>.0927691</td>
</tr>
<tr>
<td>8</td>
<td>71.391 7.5</td>
<td>.1026012</td>
<td>71.391 22.5</td>
<td>.1026012</td>
<td>83.797 7.5</td>
<td>.0717960</td>
</tr>
<tr>
<td>9</td>
<td>71.391 22.5</td>
<td>.1026012</td>
<td>83.797 5.0</td>
<td>.0717960</td>
<td>83.797 15.0</td>
<td>.0716662</td>
</tr>
<tr>
<td>10</td>
<td>83.797 25.0</td>
<td>.0716662</td>
<td>83.797 25.0</td>
<td>.0716662</td>
<td>83.797 25.0</td>
<td>.0717960</td>
</tr>
</tbody>
</table>
The weights w defining $f_0(p)$ depend on the choice of angles Θ_i, not on φ. However, the choice of φ strongly influences the quality of $f_0^S(p)$ – there is no doubt that here the best choices are angles φ^S corresponding to positive zeros of $\cos(12\varphi)$ or $\cos(18\varphi)$ in the case of two or three φ for a given Θ_i, respectively, which is equivalent to applying Gaussian quadrature in Eq. (2).

The choice of SDs set, of course, depends on the anisotropy. Let us take, for example, the anisotropy of the momentum distribution in Gd, considered in Ref. [26]. Radial functions $f_{l_i}(p)$ for Gd, for one-dimensional angular correlation of annihilation radiation spectra, are displayed in Fig. 1 in Ref. [36]. Functions $f_{12,12}(p)$ is not presented because its absolute values are lower than 0.1% of $f_0(p=0)$, i.e. it is very small. In such a case even 5-SDs may describe isotropic average with good accuracy.

3.2. Tetragonal and trigonal structures

For the tetragonal structure the nonequivalent part of the BZ is 1/16, being 3 and 1.5 times larger than for the cubic and hcp structures, respectively. So, it is understandable that to estimate $f_0(p)$ with similar accuracy, here one needs more SDs.

As an illustrative example, let us take 3-SDs in the hcp structure, defined by angles $\varphi=15^0$ and $\Theta_1=21.1760^0$, $\Theta_2=48.6079^0$ and $\Theta_3=76.1949^0$. They describe the isotropic component to a particular accuracy:

$$f_0^S(p) = f_0(p) - 1.22 f_{12,0} - 0.97 f_{12,12} + 0.68 f_{14,0} - 0.64 f_{14,12} + \ldots$$ \hspace{1cm} (11)$$

The same angles Θ in the tetragonal lattice define 4-SDs with $\varphi=22.5^0$ for Θ_1 and Θ_2 and two angles $\varphi_1=11.25^0$ and $\varphi_2=33.75^0$ for Θ_3. In this case

$$f_0^S(p) = 0.1713245 f_1(p) + 0.3607607 f_2(p) + 0.2339574 [f_3(p) + f_4(p)]$$ \hspace{1cm} (12)$$

(compare this equation with Eq. (10)) and

![Fig. 8 Coefficients $d_{n,\mu}$ for four sets of SDs in the Brillouin zone of the hcp lattice. φ^S denotes angles as given in Table 1, while φ^H means that 7.5 and 22.5 are replaced by 0 and 300, respectively. i denotes the sequence of harmonic in Eq.(1), i.e. i.e. the order in which they appear.](image-url)
\[f_0^a(p) = f_0(p) - 0.09 f_{8,8} - 0.52 f_{10,8} - 1.22 f_{12,0} - 0.89 f_{12,8} + 0.68 \cdot f_{14,0} - 0.39 f_{14,8} + \ldots \] (13)

which is somewhat less accurate than in the case of 3-SDs for the hcp lattice.

Now let us check proposals of Betts and co-authors for the four direction set: 3-HSD and 1-LSD, marked by C in Fig. 1 and described by Eq. (8.1) \[10\]. In this case

\[f_0^a(p) = f_0(p) - 0.50 f_{6,0} + 1.31 f_{6,4} + 1.38 f_{8,0} + 0.73 f_{8,4} + 1.12 f_{8,8} + 0.14 f_{10,0} - 0.19 f_{10,4} + \ldots \]

which gives a much worse approximation than 4-SDs described by Eq. (13). However, if the direction C(\(\Theta=45^0, \phi=0^0\)) is replaced by C'(\(\Theta=45^0, \phi=22.5^0\)), all coefficients \(d_{n,4}\) are equal to zero. Such a choice (illustrated in Fig. 9 by full squares) is better, although it is nevertheless much worse than for 4-SDs.

Weighs \(w_i\) for sets of 6-, 9- and 12-SDs defining function \(f_0(p)\) in the tetragonal lattice and their coordinates are presented in Table 2 and the accuracy of \(f_0(p)\) determined by these SDs are show in Fig. 10.

![Fig. 9. Values of \(d_{n,\mu}\) for tetragonal structures for 2- and 4-SDs with \(\Theta\) defined by the positive zeros of \(P_4(\cos\Theta)\) and \(P_6(\cos\Theta)\), respectively. In the case of 4-SDs and for \(\Theta=76.1949^0, \phi=11.25^0\) and 33.75\(^0\) (zeros of \(\cos(8\phi)\)). One low symmetry direction (1-LSD) added to 3-HSD is defined by angles \(\Theta=54.7356^0\) and \(\phi=22.5^0\).](image)

Table 2. Three sets of SDs in the tetragonal Brillouin zone. The notations are the same as for Table 1.

<table>
<thead>
<tr>
<th>(i)</th>
<th>((\Theta_i, \phi_i))</th>
<th>(w_i)</th>
<th>((\Theta_i, \phi_i))</th>
<th>(w_i)</th>
<th>((\Theta_i, \phi_i))</th>
<th>(w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.201 22.5</td>
<td>.1012232</td>
<td>13.118 22.5</td>
<td>.0666713</td>
<td>11.02 22.5</td>
<td>.0471754</td>
</tr>
<tr>
<td>2</td>
<td>37.187 22.5</td>
<td>.2223898</td>
<td>30.110 22.5</td>
<td>.1494518</td>
<td>25.295 22.5</td>
<td>.1069394</td>
</tr>
<tr>
<td>3</td>
<td>58.296 11.25</td>
<td>.1568529</td>
<td>47.202 11.25</td>
<td>.1095431</td>
<td>39.655 11.25</td>
<td>.0800395</td>
</tr>
<tr>
<td>4</td>
<td>58.296 33.75</td>
<td>.1568529</td>
<td>47.202 33.75</td>
<td>.1095431</td>
<td>39.655 33.75</td>
<td>.0800395</td>
</tr>
<tr>
<td>5</td>
<td>79.430 11.25</td>
<td>.1813429</td>
<td>64.317 11.25</td>
<td>.1346334</td>
<td>54.033 11.25</td>
<td>.1015835</td>
</tr>
<tr>
<td>6</td>
<td>79.430 33.75</td>
<td>.1813429</td>
<td>64.317 33.75</td>
<td>.1346334</td>
<td>54.033 33.75</td>
<td>.1015835</td>
</tr>
<tr>
<td>7</td>
<td>81.438 7.5</td>
<td>.0987267</td>
<td>68.418 7.5</td>
<td>.0783064</td>
<td>68.418 22.5</td>
<td>.0768808</td>
</tr>
<tr>
<td>8</td>
<td>81.438 22.5</td>
<td>.0987267</td>
<td>68.418 22.5</td>
<td>.0783064</td>
<td>68.418 37.5</td>
<td>.0783064</td>
</tr>
<tr>
<td>9</td>
<td>81.438 37.5</td>
<td>.0987267</td>
<td>68.418 37.5</td>
<td>.0783064</td>
<td>82.806 7.5</td>
<td>.0828078</td>
</tr>
<tr>
<td>10</td>
<td>82.806 22.5</td>
<td>.0835302</td>
<td>82.806 22.5</td>
<td>.0835302</td>
<td>82.806 37.5</td>
<td>.0828078</td>
</tr>
</tbody>
</table>
Comparing the first five columns of Table 1 with corresponding columns of Table 2 (the same for Eq. (10) with (12)) it is clear that by having equations for the isotropic $f_0(p)$ in the hcp structure, based on SDs, determined by the positive zeros of harmonics $P_l(\cos \Theta)$, one can write (without any further calculation) an equivalent equation for $f_0(p)$ in the tetragonal (or trigonal) lattice. Here a useful diagram is displayed in Fig. 5 in Ref. [36]. As an example, 12-SDs in the hcp Brillouin zone (described in Table 1) are defined by 7 positive zeros of $P_{12}(\cos \Theta)$. The same angles Θ define 16-SDs in the tetragonal lattice (see Fig. 5 in [36]) where, for example, for $l=12$ there are 4, instead of 3, harmonics with $m=0, 4, 8, 12$. So, for 7th angle $\Theta=83.797$ in the tetragonal lattice there will be four sampling directions defined by four angles φ, each with weights $w=0.053847 (3*0.07179604/4)$. Conversely, by having results for 12-SDs in the tetragonal lattice (Table 2), it is possible to construct a corresponding equation for 9-SDs in the hcp Brillouin zone. The proposed sets of SDs for the hcp and tetragonal structures allow the creation of corresponding sets of n-SDs for the trigonal lattice for $n=4, 7, 10, 14$ and 19. For example, four zeros of $P_8(\cos \Theta)$, which define 5-SDs for the hcp Brillouin zone and 6-SDs for the tetragonal structure, define 7-SDs for the trigonal lattice (see Fig. 5 in [36]). These directions with (Θ, φ) [in degrees] are: (16.201, 30.0); (37.187, 30.0); (58.296, 15.0) & (58.296, 45.0); (79.43, 7.5), (79.43, 30) & (79.43, 52.5) with the same weights w for the first four directions as shown in the second column of Table 2 except those for $\Theta=79.43$, which are equal to 0.1208953 (for $\Theta=79.43$ the “total” weight $w=0.3626858$, is distributed between the three angles φ).
4. Conclusions

There are a few papers [28-37] devoted to determining the isotropic and anisotropic components of some quantities with applying SDs. Unfortunately, they are identified with some particular theoretical calculations and the standard way of determining the isotropic component is still based on papers [4] and [6], and usually employing Eq. (3). However, this equation may be justified only in very particular cases.

Bansil pointed out: “Traditionally, directions of high symmetry have been emphasized in the physics of solids. Our considerations suggest that calculations as well as measurements along special directions are probably more useful, because these directions represent more accurately the average properties of the solids” [28]. Furthermore, Fehlner, Nickerson and Vosko added “Our results go even further and show that information gathered along a set of SDs can reproduce its anisotropic behaviour to any desired degree of accuracy” [29].

Previous considerations [33, 35-37] and those presented in this paper for various symmetries led to similar conclusions, emphasising additionally that HSD are highly unprofitable and the traditional manner of calculating the isotropic average yields incomparably worse results than the use of SDs. Generally, of course, the quality of $f_0^a(p)$ depends on the anisotropy as well as, in the case of experimental investigations, on the statistical precision of the data and the experimental resolution. Owing to this reason in some particular cases (e.g. measuring Doppler broadening spectra) an application of HSDs may be justified. Moreover, they could be justified if one already had experimental results for HSDs (as long as there was some awareness of the approximations and inherent errors). But the use of HSDs is most certainly not defendable in the case of theoretical calculations, where one should use SDs.

Given the large number of papers which have used HSDs to determine average properties, further investigation of this subject is worthy of further attention. The application of the ideas and formulae presented here extend far beyond momentum density spectroscopy (Compton profiles and positron annihilation) and are likely to find much broader application in solid state physics. For example, in a quantum oscillations (e.g. de Haas-van Alphen) experiment the extremal area of the Fermi surface in a plane perpendicular to the direction of an applied magnetic field can be determined, and the cyclotron mass averaged over that orbit obtained from a fit to the temperature-dependence of the oscillations using the Lifshitz-Kosevich formula [53]. The expressions presented here would allow the average cyclotron mass over the whole Fermi surface to be approximated from a limited set of temperature-dependencies.
measured with the applied magnetic field along some small number of SDs. We also note some recent experimental work on the melting of the crystalline state, and point out that the averaging process would be applicable to liquid metals [54, 55].

Acknowledgements. We are very grateful to Professor M. Samsel-Czekała for making available her numerical programs for calculating lattice harmonics and her helpful remarks.

References

[34] H. Bross, phys. stat. sol. (b) 243, 653-665 (2006)

[48] B.L. Ahuja, M. Sharma and H. Bross, phys. stat. sol. (b) 244, 642-649 (2007)
