On the number of Courant-sharp Dirichlet eigenvalues

M. van den Berg, K. Gittins

School of Mathematics, University of Bristol
University Walk, Bristol BS8 1TW, UK
mamvdb@bristol.ac.uk
kg13951@bristol.ac.uk
26 June 2016

In memory of Yuri Safarov

Abstract

We consider arbitrary open sets Ω in Euclidean space with finite Lebesgue measure, and obtain upper bounds for (i) the largest Courant-sharp Dirichlet eigenvalue of Ω, (ii) the number of Courant-sharp Dirichlet eigenvalues of Ω. This extends recent results of P. Bérard and B. Helffer.

Subject classification: 35P15; 35P20; 49R05; 49R05

Key words and phrases. Weyl’s theorem, Pleijel’s theorem, Dirichlet Laplacian, Nodal domains

1 Introduction

Let Ω be an open set in Euclidean space \mathbb{R}^m with finite Lebesgue measure $|\Omega|$ and boundary $\partial \Omega$. We denote the spectrum of the Dirichlet Laplacian acting in $L^2(\Omega)$ by $\lambda_1(\Omega) \leq \lambda_2(\Omega) \leq \lambda_3(\Omega) \leq \ldots$ taking the multiplicities of these eigenvalues into account. We define the counting function for Ω by

$$N_\Omega(\lambda) = \sharp \{ n \in \mathbb{N} : \lambda_n(\Omega) < \lambda \}.$$

Weyl’s law asserts that

$$N_\Omega(\lambda) = \frac{\omega_m}{(2\pi)^m} |\Omega| \lambda^{m/2} + o(\lambda^{m/2}), \quad \lambda \rightarrow \infty,$$ \hfill (1)

*MedB acknowledges support by The Leverhulme Trust through International Network Grant Laplacians, Random Walks, Bose Gas, Quantum Spin Systems. KG was supported by an EPSRC DTA. Both authors wish to thank Asma Hassannezhad for enjoyable discussions, and the referee for her/his helpful comments.
where ω_m is the measure of a ball B_m with radius 1 in \mathbb{R}^m. We refer to Theorem 2 in [16] for a proof of (1) in this generality. For a proof of Weyl’s law with a non-trivial remainder estimate for Ω open, bounded and connected we refer to Theorem 1.8 in [12].

Let $\{\varphi_1, \varphi_2, \ldots\}$ be an orthonormal basis in the Sobolev space $H^1_0(\Omega)$ of eigenfunctions corresponding to the Dirichlet eigenvalues. These eigenfunctions satisfy the Dirichlet boundary conditions in the usual trace sense. Let $\nu(\varphi_n, \Omega)$ denote the number of nodal domains of φ_n, Ω. Then Pleijel’s theorem ([13]) states that

$$\limsup_{n \to \infty} \frac{\nu(\varphi_n, \Omega)}{n} \leq \gamma_m,$$

where

$$\gamma_m = \frac{(2\pi)^m}{\omega_m^2} \left(\lambda_1(B_m) \right)^{-m/2} < 1.$$

(2)

It is known that Pleijel’s bound is not sharp. See [7], [18] and [14].

We say that $\lambda_n(\Omega)$ is Courant-sharp if $\nu(\varphi_n, \Omega) = n$. Courant’s nodal domain theorem asserts that $\nu(\varphi_n, \Omega) \leq n$. Courant’s original proof in [8] was for the planar case. This has been subsequently stated and proved in a Riemannian manifold setting in [3]. See also [13]. Pleijel’s theorem implies that for a given Ω the number of Courant-sharp Dirichlet eigenvalues is finite. Using results of [5] and [17], Bérad and Helffer, [1], obtained an upper bound for the largest Courant-sharp Dirichlet eigenvalue if Ω is bounded and has smooth boundary $\partial\Omega$.

This paper concerns arbitrary open sets in \mathbb{R}^m with finite Lebesgue measure. The proofs of Courant’s theorem in [8], [13] and [3] all use the fact that a restriction of an eigenfunction to a nodal domain U is the first Dirichlet eigenfunction on U. This has been subsequently stated and proved in a Riemannian manifold setting in [3]. See also [13]. Pleijel’s theorem implies that for a given Ω the number of Courant-sharp Dirichlet eigenvalues is finite. Using results of [5] and [17], Bérad and Helffer, [1], obtained an upper bound for the largest Courant-sharp Dirichlet eigenvalue if Ω is bounded and has smooth boundary $\partial\Omega$.

Our main result, Theorem 1 below is for open sets Ω in \mathbb{R}^m with finite Lebesgue measure. We obtain (i) an upper bound for the largest Dirichlet eigenvalue of Ω which is Courant-sharp, and (ii) an upper bound for the number of Courant-sharp eigenvalues of Ω. For $A \subset \mathbb{R}^m, A \neq \emptyset$ let

$$d(x, A) = \inf \{|x - y| : y \in A\}.$$

For $\epsilon \geq 0$ and $|\Omega| < \infty$ we define

$$\mu_\Omega(\epsilon) = |\{x \in \Omega : d(x, \partial\Omega) < \epsilon\}|,$$

and

$$\epsilon(\Omega) = \inf \{\epsilon : \mu_\Omega(\epsilon) \geq 2^{-1}(1 - \gamma_m)|\Omega|\}.$$

(3)

We denote the number of Courant-sharp eigenvalues of Ω by $C(\Omega)$.

Theorem 1. Let Ω be an open set in \mathbb{R}^m with finite Lebesgue measure. We have the following.

(i) If $\lambda_n(\Omega)$ is Courant-sharp then

$$\lambda_n(\Omega) \leq \left(\frac{2\pi m^2}{(1 - \gamma_m)\epsilon(\Omega)} \right)^2.$$

(4)
\[\mathcal{C}(\Omega) \leq \frac{\omega_m}{(1 - \gamma_m)^m} \left(m^3(m + 2) \right)^{m/2} \frac{|\Omega|}{\epsilon(\Omega)^m}. \]

(iii) If \(n \in \mathbb{N}, n > \frac{\omega_m}{(1 - \gamma_m)^m} \left(m^3(m + 2) \right)^{m/2} \frac{|\Omega|}{\epsilon(\Omega)^m} \), then \(\lambda_n(\Omega) \) is not Courant-sharp.

In Section 2 below we prove Theorem 1. In Section 3 we analyse some examples including the von Koch snowflake.

2 Proof of Theorem 1

Suppose \(\lambda_n(\Omega) \) is Courant-sharp with eigenfunction \(\varphi_{n,\Omega} \). Let \(U_1, \ldots, U_n \) be the nodal domains of \(\varphi_{n,\Omega} \) so that \(\lambda_n(\Omega) = \lambda_1(U_1) = \cdots = \lambda_1(U_n) \). Without loss of generality we may assume that \(|U_1| \leq |U_2| \leq \cdots \leq |U_n| \). Hence \(|U_1| \leq |\Omega|/n \).

By Faber-Krahn we have that
\[\lambda_n(\Omega) = \lambda_1(U_1) \geq \lambda_1(B_m) \left(\frac{n\omega_m}{|\Omega|} \right)^{2/m}. \]

It follows that, since \(\lambda_{n-1}(\Omega) < \lambda_n(\Omega) \),
\[(\lambda_n(\Omega))^{m/2} \geq (\lambda_1(B_m))^{m/2} \frac{n\omega_m}{|\Omega|} \]
\[\geq (\lambda_1(B_m))^{m/2} \frac{\omega_m}{|\Omega|} (n - 1) \]
\[= (\lambda_1(B_m))^{m/2} \frac{\omega_m}{|\Omega|} N_\Omega(\lambda_n(\Omega)). \]

This gives that
\[\frac{\omega_m}{(2\pi)^m} (1 - \gamma_m)|\Omega| (\lambda_n(\Omega))^{m/2} \leq R_\Omega(\lambda_n(\Omega)), \]
where \(R_\Omega : \mathbb{R}^+ \rightarrow \mathbb{R} \) is defined by
\[R_\Omega(\lambda) = \frac{\omega_m}{(2\pi)^m} |\Omega| \lambda^{m/2} - N_\Omega(\lambda). \]

See (15) and (16) in [1]. Below we obtain an upper bound for \(R_\Omega(\lambda) \). Let \(\epsilon > 0 \) be arbitrary. Consider the collection \(\mathfrak{M}_\epsilon \) of open cubes of measure \(\epsilon^m \) with vertices in the set of \(m \)-tuples \(\{Z\epsilon, \ldots, Z\epsilon\} \). Let \(M_\Omega(\epsilon) \) be the number of open cubes of side-length \(\epsilon \) in \(\mathfrak{M}_\epsilon \) which are contained in \(\Omega \),
\[M_\Omega(\epsilon) = \sharp \{ N \in \mathfrak{M}_\epsilon : N \subset \Omega \}. \]

We have that
\[|\Omega| - M_\Omega(\epsilon) \epsilon^m \geq 0. \]

In order to obtain an upper bound for the left hand-side of (8) we let \(x \in \Omega \). If \(d(x, \partial \Omega) > m^{1/2} \epsilon \), then \(x \) belongs to an open \(\epsilon \)-cube in \(\mathfrak{M}_\epsilon \) contained in \(\Omega \).
Hence the measure of the set which is not covered by the ε-cubes in \mathcal{M}_ε that are entirely contained in Ω is bounded from above by $\mu_\Omega(m^{1/2}\varepsilon)$. So
\[
|\Omega| - M_\Omega(\varepsilon)\varepsilon^m \leq \mu_\Omega(m^{1/2}\varepsilon). \tag{9}
\]
By Dirichlet bracketing (see [15]) we have that
\[
N_\Omega(\lambda) \geq M_\Omega(\varepsilon)N_{C_\varepsilon}(\lambda), \tag{10}
\]
where C_ε is an open cube in \mathbb{R}^m with side-length ε. The following standard estimate is attributed to Gauss:
\[
N_{C_\varepsilon}(\lambda) = \{ (k_1, \ldots, k_m) \in \mathbb{N}^m : \sum_{i=1}^m k_i^2 < \pi^{-2}\varepsilon^2 \lambda \}
\geq \frac{\omega_m}{2\pi} m \left(\pi^{-1}\varepsilon^{1/2} - m^{1/2} \right) +
\geq \frac{\omega_m}{2\pi} \varepsilon^m \lambda^{m/2} \left(1 - \frac{\pi m^{3/2}}{\varepsilon \lambda^{1/2}} \right), \tag{11}
\]
where $+$ denotes the positive part. By (10) and (11),
\[
N_\Omega(\lambda) \geq M_\Omega(\varepsilon)N_{C_\varepsilon}(\lambda)
\geq M_\Omega(\varepsilon) \frac{\omega_m}{(2\pi)^m} \varepsilon^m \lambda^{m/2} - M_\Omega(\varepsilon) \frac{\omega_m}{(2\pi)^m} \pi m^{3/2} \varepsilon^{-1} \lambda^{(m-1)/2}
= \frac{\omega_m}{(2\pi)^m} |\Omega| \lambda^{m/2} - (|\Omega| - M_\Omega(\varepsilon)\varepsilon^m) \frac{\omega_m}{(2\pi)^m} m^{3/2} \varepsilon^{-1} \lambda^{(m-1)/2}
- M_\Omega(\varepsilon) \frac{\omega_m}{(2\pi)^m} \pi m^{3/2} \varepsilon^{-1} \lambda^{(m-1)/2}. \tag{12}
\]
We bound the second and third terms in the right hand-side of (12) using (9) and (8) respectively. This then gives, by (7), that
\[
R_\Omega(\lambda) \leq \frac{\omega_m}{(2\pi)^m} \mu_\Omega(m^{1/2}\varepsilon) \lambda^{m/2} + \frac{\pi m^{3/2} \omega_m |\Omega| \lambda^{(m-1)/2}}{(2\pi)^m} \frac{\varepsilon}{\lambda}. \tag{13}
\]
By (6) and (13) we have that if $\lambda_\Omega(\Omega)$ is Courant-sharp then
\[
\frac{\omega_m}{(2\pi)^m} (1 - \gamma_m) |\Omega| (\lambda_\Omega(\Omega))^{m/2} \leq \frac{\omega_m}{(2\pi)^m} \mu_\Omega(m^{1/2}\varepsilon) (\lambda_\Omega(\Omega))^{m/2}
+ \frac{\pi m^{3/2} \omega_m |\Omega| (\lambda_\Omega(\Omega))^{(m-1)/2}}{(2\pi)^m} \frac{\varepsilon}{\lambda}. \tag{14}
\]
We now choose ε such that the second term in the right hand-side of (14) equals half of the left hand-side of (14). That is
\[
\varepsilon = 2\pi m^{3/2} (1 - \gamma_m)^{-1} (\lambda_\Omega(\Omega))^{-1/2}. \tag{15}
\]
By (14) and the choice of ε in (15) we have that if $\lambda_\Omega(\Omega)$ is Courant-sharp then
\[
2^{-1} (1 - \gamma_m) |\Omega| \leq \mu_\Omega(2\pi m^2 (1 - \gamma_m)^{-1} (\lambda_\Omega(\Omega))^{-1/2}). \tag{16}
\]
Since $\varepsilon \mapsto \mu_\Omega(\varepsilon)$ is continuous and onto $[0, |\Omega|]$ the infimum in (3) is over a non-empty set which is bounded from below, and therefore exists. So if $\lambda_\Omega(\Omega)$
is Courant-sharp then, by (3) and (16),
\[\frac{2\pi m^2}{(1-\gamma_m)(\lambda_n(\Omega))^{1/2}} \geq \epsilon(\Omega). \]
This proves Theorem 1(i).

By [11] we also have that
\[\lambda_n(\Omega) \geq \frac{m}{m+2} \frac{(2\pi)^2}{\omega_m^2} \left(\frac{n}{|\Omega|} \right)^{2/m}, \]
This, together with (4), implies (5) and proves Theorem 1(ii).

To prove Theorem 1(iii) we just note that by (17),
\[
\max \left\{ n \in \mathbb{N} : \lambda_n(\Omega) \leq \left(\frac{2\pi m^2}{(1-\gamma_m)\epsilon(\Omega)} \right)^2 \right\} \leq \frac{\omega_m}{(1-\gamma_m)m} \left(\frac{m^3(m+2)}{\epsilon(\Omega)m} \right)^{m/2} \frac{|\Omega|}{|\Omega|^{m-1}}. \]

We note that if we were to use the lower bounds for the counting function from Section 2 in [5] then we would have to assume a weak integrability condition on μ_1 of the form $\int \epsilon^{-1} d\mu_1(\epsilon) < \infty$. Such an integrability condition may fail if the interior Minkowski dimension of $\partial \Omega$ is equal to m. The procedure above avoids this integrability condition.

3 Examples

In this section we analyse three examples where explicit computations seem out of reach.

Example 1. Let Ω be an open, bounded, convex set in \mathbb{R}^m. Let $\mathcal{H}^{m-1}(\partial \Omega)$ denote the $(m-1)$-dimensional Hausdorff measure of $\partial \Omega$. Then

\[\mathcal{C}(\Omega) \leq \frac{\omega_m}{(1-\gamma_m)^{2m}} \left(\frac{4m^3(m+2)}{\epsilon(\Omega)} \right)^{m/2} \frac{\mathcal{H}^{m-1}(\partial \Omega)^m}{|\Omega|^{m-1}}. \]

Proof. By convexity of Ω we have that
\[\mu_1(\epsilon) \leq \mathcal{H}^{m-1}(\partial \Omega) \epsilon. \]

By (3),
\[\epsilon(\Omega) \geq 2^{-1}(1-\gamma_m) \frac{|\Omega|}{\mathcal{H}^{m-1}(\partial \Omega)}, \]
and (18) follows from Theorem 1 and (19). \hfill \Box

It was shown in [10] that only the first, second and fourth Dirichlet eigenvalues for \mathcal{B}_2 are Courant-sharp. Hence $\mathcal{C}(\mathcal{B}_2) = 3$, and the largest Courant-sharp eigenvalue for \mathcal{B}_2 is equal to $j_{3,2}^2$. Here $j_{3,2} \approx 5.520$ is the second positive zero of the Bessel function J_0. A straightforward computation using (4) and (19) shows that the largest Courant-sharp eigenvalue of \mathcal{B}_2 is strictly less than $1.2 \cdot 10^6$. This compares well with the bound $7.1 \cdot 10^6$ obtained in [1]. For the unit square \mathcal{C}_2 it is known ([13], [2]) that only the first, second and fourth Dirichlet eigenvalues are Courant-sharp. Hence $\mathcal{C}(\mathcal{C}_2) = 3$, and the largest Courant-sharp eigenvalue for \mathcal{C}_2 is equal to $8\pi^2$. Using (4) and (19) we have that the largest Courant-sharp eigenvalue of the unit square is strictly less than $4.5 \cdot 10^6$, whereas
[1] gives a bound $5.9 \cdot 10^6$. These examples illustrate that the bounds obtained in Theorem 1 are very crude.

The second example is a von Koch snowflake K with similarity ratio $\frac{1}{3}$. We recall its construction. Let the basic square (generation 0) in K have side-length 1. The first generation consists of 4 squares with side-length $\frac{1}{3}$ each attached symmetrically to the basic square. Proceeding inductively we have that the j'th generation in K, $j \in \mathbb{N}$ consists of $4 \cdot 5^{j-1}$ squares with side-length 3^{-j}. We let K be the interior of its closure. Then K is connected, has Lebesgue measure $|K| = 2$, and both the Hausdorff dimension of ∂K and the interior Minkowski dimension of ∂K are equal to $\log 5 / \log 3$. See Figure 1, and [4] for further details.

![Figure 1: The first two generations of K](image)

Example 2. Let K be the von Koch snowflake generated by the unit square and similarity ratio $\frac{1}{3}$. Then

$$\mathcal{C}(K) \leq 15 \cdot 10^7.$$ \hspace{1cm} (20)

Proof. By Theorem 1, (2), and $|K| = 2$ we find that

$$\mathcal{C}(K) \leq \frac{64\pi j_0^2}{(j_0^2 - 4)^2} \epsilon(K)^{-2},$$ \hspace{1cm} (21)

where we have used that

$$\lambda_1(B_2) = j_0^2,$$

where $j_0 = 2.405...$ is the first positive zero of the Bessel function J_0. It remains to find a lower bound for $\epsilon(K)$. We obtain an upper bound for $\mu_1(\epsilon)$ by adding all edges between squares of different generations. This gives a disjoint union of 1 unit square and $4 \cdot 5^{j-1}$ squares with side-lengths $3^{-j}, j \in \mathbb{N}$. Let $\epsilon < \frac{1}{18}$.

and let \(J \in \mathbb{N} \) be such that
\[
J < \frac{\log \left(\frac{1}{2} \right)}{\log 3} \leq J + 1.
\]
Then \(J \geq 2 \). The contribution to the upper bound for \(\mu_{\Omega}(\epsilon) \) from the squares in generations 1, \ldots, \(J - 1 \) is bounded from above by
\[
\left(4 + 16 \sum_{j=1}^{J-1} 5^{j-1} 3^{-j} \right) \epsilon \leq \frac{24 \epsilon}{5} \left(\frac{5}{3} \right)^{J} \leq \frac{48}{5} 2^{-\frac{\log 5}{\log 3}} \epsilon 2^{-\frac{\log 5}{\log 3}}. \quad (22)
\]
The first term in the left-hand side above is the contribution from the unit square. The contribution to the upper bound for \(\mu_{\Omega}(\epsilon) \) from the squares in generations \(J, J + 1, \ldots \) is bounded from above by
\[
\sum_{j \geq J} 4 \cdot 5^{j-1} 9^{-j} = \left(\frac{5}{9} \right)^{J-1} \leq \frac{36}{5} 2^{-\frac{\log 5}{\log 3}} \epsilon 2^{-\frac{\log 5}{\log 3}}. \quad (23)
\]
We recognise the interior Minkowski dimension \(\frac{\log 5}{\log 3} \) of \(\partial K \). By (22) and (23) we have that
\[
\mu_{\Omega}(\epsilon) \leq \frac{84}{5} 2^{-\frac{\log 5}{\log 3}} \epsilon 2^{-\frac{\log 5}{\log 3}} , \quad 0 < \epsilon < \frac{1}{18}.
\]
Solving the equation
\[
\frac{84}{5} 2^{-\frac{\log 5}{\log 3}} \epsilon 2^{-\frac{\log 5}{\log 3}} = 1 - \frac{4}{J_{0}}
\]
gives that
\[
\epsilon(K) \geq 0.00379. \quad (24)
\]
The bound of (20) follows by (21) and (24).

Below we construct an open set \(D_s \subset \mathbb{R}^3 \). Let \(Q_0 \subset \mathbb{R}^3 \) be an open cube of side-length 1. Let \(0 < s \leq \sqrt{2} - 1 \). Attach a regular open cube \(Q_{1,i} \) of side-length \(s \) to the centre \(c_{1,i}, i = 1, \ldots, 6 \), of each face of \(\partial Q_0 \), and such that all the faces are pairwise-parallel. Now proceed by induction. For \(j = 2, 3, \ldots \), attach \(N(j) = 6 \cdot 5^{j-1} \) open cubes \(Q_{j,1}, \ldots, Q_{j,N(j)} \), of side-length \(s^j \) to the centres of the boundary faces of the cubes \(Q_{j-1,1}, \ldots, Q_{j-1,N(j-1)} \), again with pairwise-parallel faces. We define the polyhedron \(D_s \) as
\[
D_s = \text{interior} \left(Q_0 \cup \bigcup_{j \geq 1} \bigcup_{1 \leq i \leq N(j)} Q_{j,i} \right).
\]
See Figure 2. We note that for \(0 < s \leq \sqrt{2} - 1 \) no cubes in the construction of \(D_s \) overlap.

The asymptotic behaviour of the heat content of \(D_s \) in \(\mathbb{R}^3 \) for small time was analysed in [6]. Here we have the following.

\textbf{Example 3.} Let \(s \in (0, \sqrt{2} - 1] \), and let \(D_s \) be the polyhedron in \(\mathbb{R}^3 \) defined above. Then
\[
\mathcal{C}(D_s) \leq 25 \cdot 10^{10}. \quad (25)
\]
Figure 2: The first two generations of D_s with $s = \frac{1}{3}$.

Proof. We have that
\[|D_s| = \frac{1 + s^3}{1 - 5s^2}, \]
and that the two-dimensional Hausdorff measure of the boundary is given by
\[H^2(\partial D_s) = 6 \left(\frac{1 - s^2}{1 - 5s^2} \right). \]

By Theorem 1 we have that
\[C(D_s) \leq \frac{36(15)^{3/2}}{\pi^2} \frac{|D_s|}{\epsilon(D_s)^3}, \quad (26) \]
where we have used that
\[\lambda_1(B_3) = j_{1/2}^2 = \frac{\pi^2}{12}, \]
where $j_{1/2} = \pi$ is the first positive zero of the Bessel function $J_{1/2}$. We obtain an upper bound for $\mu_1(\epsilon)$ by adding all faces between cubes of different generations. This gives a disjoint union of 1 unit cube and $6 \cdot 5^{j-1}$ cubes of side-length s^j, $j \in \mathbb{N}$. Hence
\[\mu_1(\epsilon) \leq \left(6 + 36 \sum_{j=1}^{\infty} 5^{j-1} s^{2j} \right) \epsilon = \frac{6(1 + s^2)}{1 - 5s^2} \epsilon. \quad (27) \]

By (3) and (27) we have that
\[\epsilon(D_s) \geq \frac{1}{12} \left(1 - \frac{9}{2\pi^2} \right) \frac{1 - 5s^2}{1 + s^2} |D_s|. \quad (28) \]

Finally by (26), (28), the fact that $0 < s \leq \sqrt{2} - 1$, and $|D_s| \geq 1$ we obtain that
\[\mathcal{C}(D_s) \leq 6(12)^4 (15)^{3/2} (140 + 99\sqrt{2}) \pi \left(1 - \frac{9}{2\pi^2} \right)^{-6}. \]
This implies (25). \qed
References

