Skip to content

Assessing the Airborne Survival of Bacteria in Populations of Aerosol Droplets with a Novel Technology

Research output: Contribution to journalArticle

Original languageEnglish
Article number20180779
Number of pages11
JournalJournal of the Royal Society Interface
Volume16
Issue number150
Early online date23 Jan 2019
DOIs
DateAccepted/In press - 17 Dec 2018
DateE-pub ahead of print - 23 Jan 2019
DatePublished (current) - Jan 2019

Abstract

The airborne transmission of infection relies on the ability of pathogens to survive aerosol transport as they transit between hosts. Understanding the parameters that determine the survival of airborne microorganisms is critical to mitigating the impact of disease outbreaks. Conventional techniques for investigating bioaerosol longevity in vitro have systemic limitations that prevent the accurate representation of conditions that these particles would experience in the natural environment. Here, we report a new approach that enables the robust study of bioaerosol survival as a function of relevant environmental conditions. The methodology utilizes droplet-on-demand technology for the generation of bioaerosol droplets (1 to >100 per trial) with tailored chemical and biological composition. These arrays of droplets are captured in an electrodynamic trap and levitated within a controlled environmental chamber. Droplets are then deposited on a substrate after a desired levitation period (<5 seconds to >24 hours). The response of bacteria to aerosolisation can subsequently be determined by counting colony forming units, 24 hours after deposition. In a first study, droplets formed from a suspension of Escherichia coli MRE162 cells (108 mL-1) with initial radii of 27.8 ±0.08 µm were created and levitated for extended periods of time at 30% relative humidity. The time-dependence of the survival rate was measured over a time period extending to 1 hour. We demonstrate that this approach can enable direct studies at the interface between aerobiology, atmospheric chemistry and aerosol physics to identify the factors that may affect the survival of airborne pathogens with the aim of developing infection control strategies for public health and biodefence applications.

    Research areas

  • airborne transmission, aerosol transport., infection, bioaerosol, survival

Download statistics

No data available

Documents

Documents

  • Full-text PDF (accepted author manuscript)

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via The Royal Society Publishing at https://royalsocietypublishing.org/doi/10.1098/rsif.2018.0779. Please refer to any applicable terms of use of the publisher.

    Accepted author manuscript, 984 KB, PDF document

DOI

View research connections

Related faculties, schools or groups