Skip to content

Cell Sources for Tissue Engineering Strategies to Treat Calcific Valve Disease

Research output: Contribution to journalArticle

Original languageEnglish
Article number155
Number of pages27
JournalFrontiers in Cardiovascular Medicine
Volume5
DOIs
DateAccepted/In press - 10 Oct 2018
DatePublished (current) - 6 Nov 2018

Abstract

Cardiovascular calcification is an independent risk factor and an established predictor of adverse cardiovascular events. Despite concomitant factors leading to atherosclerosis and heart valve disease (VHD), the latter has been identified as an independent pathological entity. Calcific aortic valve stenosis is the most common form of VDH resulting of either congenital malformations or senile “degeneration.” About 2% of the population over 65 years is affected by aortic valve stenosis which represents a major cause of morbidity and mortality in the elderly. A multifactorial, complex and active heterotopic bone-like formation process, including extracellular matrix remodeling, osteogenesis and angiogenesis, drives heart valve “degeneration” and calcification, finally causing left ventricle outflow obstruction. Surgical heart valve replacement is the current therapeutic option for those patients diagnosed with severe VHD representing more than 20% of all cardiac surgeries nowadays. Tissue Engineering of Heart Valves (TEHV) is emerging as a valuable alternative for definitive treatment of VHD and promises to overcome either the chronic oral anticoagulation or the time-dependent deterioration and reintervention of current mechanical or biological prosthesis, respectively. Among the plethora of approaches and stablished techniques for TEHV, utilization of different cell sources may confer of additional properties, desirable and not, which need to be considered before moving from the bench to the bedside. This review aims to provide a critical appraisal of current knowledge about calcific VHD and to discuss the pros and cons of the main cell sources tested in studies addressing in vitro TEHV.

    Research areas

  • valve heart disease, calcification, tissue engineering heart valves, in vitro, heterotopic bone formation

Download statistics

No data available

Documents

Documents

  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via Frontiers Media at https://www.frontiersin.org/articles/10.3389/fcvm.2018.00155/full . Please refer to any applicable terms of use of the publisher.

    Final published version, 2 MB, PDF-document

    Licence: CC BY

DOI

View research connections

Related faculties, schools or groups