Skip to content

Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities

Research output: Contribution to journalArticle

Standard

Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities. / Bates, Simon R.G.; Farrow, Ian R.; Trask, Richard S.

In: Materials and Design, Vol. 162, 15.01.2019, p. 130-142.

Research output: Contribution to journalArticle

Harvard

APA

Vancouver

Author

Bibtex

@article{f3a1cc82a75a4eea9394e7a01af7c222,
title = "Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities",
abstract = "Fused filament fabrication of thermoplastic polyurethanes (TPUs) offers a capability to manufacture tailorable, flexible honeycomb structures which can be optimised for energy absorbing applications. This work explores the effect of a range of grading methodologies on the energy absorbing and damping behaviour of flexible TPU honeycomb structures. By applying density grading, the energy absorbing and damping profiles are significantly modified from the uniform density equivalent. A 3D-printing procedure was developed which allowed the manufacture of high-quality structures, which underwent cyclic loading to densification without failure. Graded honeycomb architectures had an average relative density of 0.375 ± 0.05. After quasi-static testing, arrays were subjected to sinusoidal compression over a range of amplitudes at 0.5 Hz. By grading the structural density in different ways, mechanical damping was modified. Cyclic compressive testing also showed how strain-softening of the TPU parent material could lead to reduced damping over the course of 50 cycles. Samples were subjected to impact loading at strain-rates of up to 51 s-1 and specific impact energies of up to 270 mJ/cm3. Lower peak loads were transferred for graded samples for the most severe impact cases. This behaviour reveals the potential of density grading of TPU structures to provide superior impact protection in extreme environmental conditions.",
keywords = "Additive manufacturing, Cellular structures, Functional grading, Thermoplastic polyurethane",
author = "Bates, {Simon R.G.} and Farrow, {Ian R.} and Trask, {Richard S.}",
year = "2019",
month = "1",
day = "15",
doi = "10.1016/j.matdes.2018.11.019",
language = "English",
volume = "162",
pages = "130--142",
journal = "Materials and Design",
issn = "0261-3069",
publisher = "Elsevier Limited",

}

RIS - suitable for import to EndNote

TY - JOUR

T1 - Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities

AU - Bates, Simon R.G.

AU - Farrow, Ian R.

AU - Trask, Richard S.

PY - 2019/1/15

Y1 - 2019/1/15

N2 - Fused filament fabrication of thermoplastic polyurethanes (TPUs) offers a capability to manufacture tailorable, flexible honeycomb structures which can be optimised for energy absorbing applications. This work explores the effect of a range of grading methodologies on the energy absorbing and damping behaviour of flexible TPU honeycomb structures. By applying density grading, the energy absorbing and damping profiles are significantly modified from the uniform density equivalent. A 3D-printing procedure was developed which allowed the manufacture of high-quality structures, which underwent cyclic loading to densification without failure. Graded honeycomb architectures had an average relative density of 0.375 ± 0.05. After quasi-static testing, arrays were subjected to sinusoidal compression over a range of amplitudes at 0.5 Hz. By grading the structural density in different ways, mechanical damping was modified. Cyclic compressive testing also showed how strain-softening of the TPU parent material could lead to reduced damping over the course of 50 cycles. Samples were subjected to impact loading at strain-rates of up to 51 s-1 and specific impact energies of up to 270 mJ/cm3. Lower peak loads were transferred for graded samples for the most severe impact cases. This behaviour reveals the potential of density grading of TPU structures to provide superior impact protection in extreme environmental conditions.

AB - Fused filament fabrication of thermoplastic polyurethanes (TPUs) offers a capability to manufacture tailorable, flexible honeycomb structures which can be optimised for energy absorbing applications. This work explores the effect of a range of grading methodologies on the energy absorbing and damping behaviour of flexible TPU honeycomb structures. By applying density grading, the energy absorbing and damping profiles are significantly modified from the uniform density equivalent. A 3D-printing procedure was developed which allowed the manufacture of high-quality structures, which underwent cyclic loading to densification without failure. Graded honeycomb architectures had an average relative density of 0.375 ± 0.05. After quasi-static testing, arrays were subjected to sinusoidal compression over a range of amplitudes at 0.5 Hz. By grading the structural density in different ways, mechanical damping was modified. Cyclic compressive testing also showed how strain-softening of the TPU parent material could lead to reduced damping over the course of 50 cycles. Samples were subjected to impact loading at strain-rates of up to 51 s-1 and specific impact energies of up to 270 mJ/cm3. Lower peak loads were transferred for graded samples for the most severe impact cases. This behaviour reveals the potential of density grading of TPU structures to provide superior impact protection in extreme environmental conditions.

KW - Additive manufacturing

KW - Cellular structures

KW - Functional grading

KW - Thermoplastic polyurethane

UR - http://www.scopus.com/inward/record.url?scp=85057093260&partnerID=8YFLogxK

U2 - 10.1016/j.matdes.2018.11.019

DO - 10.1016/j.matdes.2018.11.019

M3 - Article

VL - 162

SP - 130

EP - 142

JO - Materials and Design

T2 - Materials and Design

JF - Materials and Design

SN - 0261-3069

ER -