Skip to content

Constraining lowermost mantle anisotropy with body waves: A synthetic modeling study

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)766-783
Number of pages18
JournalGeophysical Journal International
Volume217
Issue number2
Early online date28 Jan 2019
DOIs
DateAccepted/In press - 25 Jan 2019
DateE-pub ahead of print - 28 Jan 2019
DatePublished (current) - May 2019

Abstract

Different mechanisms have been proposed as explanations for seismic anisotropy at the base of the mantle, including crystallographic preferred orientation of various minerals (bridgmanite, post-perovskite, and ferropericlase) and shape preferred orientation of elastically distinct materials such as partial melt. Investigations of the mechanism for D" anisotropy usually yield ambiguous results, as seismic observations rarely (if ever) uniquely constrain a mechanism or orientation and usually rely on significant assumptions to infer flow patterns in the deep mantle. Observations of shear wave splitting and polarities of SdS and PdP reflections off the D" discontinuity are among our best tools for probing D" anisotropy; however, currently available datasets cannot constrain one unique scenario among those suggested by the mineral physics literature. In this work, we determine via a forward modeling approach what combinations of body wave phases (e.g. SKS, SKKS, and ScS) are required to uniquely constrain a mechanism for D" anisotropy. We test nine models based on single-crystal and polycrystalline elastic tensors provided by mineral physics studies. Our modeling predicts fast shear wave splitting directions for SKS, SKKS, and ScS phases, as well as polarities of P and S wave reflections off the D" interface, for a range of propagation directions, via solution of the Christoffel equation. We run tests using randomly selected synthetic datasets based on a given starting model, controlling the total number of measurements, the azimuthal distribution, and the type of seismic phases. For each synthetic dataset, we search over all possible elastic tensors and orientations to determine which are consistent with the synthetic data. Overall, we find it difficult to uniquely constrain the mechanism for anisotropy with a typical number of seismic anisotropy measurements (based on currently available studies) with only one measurement technique (SKS, SKKS, ScS, or reflection polarities). However, datasets that include SKS, SKKS, and ScS measurements, or a combination of shear wave splitting an reflection polarity measurements, increase the probability of uniquely constraining the starting model and its orientation. Based on these findings, we identify specific regions (i.e., North America, northwestern Pacific, and Australia) of the lowermost mantle with sufficient raypath coverage for a combination of measurement techniques.

    Research areas

  • Composition and structure of the mantle, Mantle processes, Seismic anisotropy, Statistical seismology

Download statistics

No data available

Documents

Documents

  • Full-text PDF (accepted author manuscript)

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Oxford University Press at https://academic.oup.com/gji/article/217/2/766/5303728. Please refer to any applicable terms of use of the publisher.

    Accepted author manuscript, 9 MB, PDF document

DOI

View research connections

Related faculties, schools or groups