Skip to content

EcoGEnIE 1.0: plankton ecology in the cGEnIE Earth system model

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)4241-4267
Number of pages27
JournalGeoscientific Model Development
Volume11
Issue number10
Early online date18 Oct 2018
DOIs
DateAccepted/In press - 28 Aug 2018
DateE-pub ahead of print - 18 Oct 2018
DatePublished (current) - Oct 2018

Abstract

We present an extension to the carbon-centric Grid Enabled Integrated Earth system model (cGEnIE) that explicitly accounts for the growth and interaction of an arbitrary number of plankton species. The new package (ECOGEM) replaces the implicit, flux-based parameterisation of the plankton community currently employed, with explicitly resolved plankton populations and ecological dynamics. In ECOGEM, any number of plankton species, with ecophysiological traits (e.g. growth and grazing rates) assigned according to organism size and functional group (e.g. phytoplankton and zooplankton) can be incorporated at runtime. We illustrate the capability of the marine ecology enabled Earth system model (EcoGEnIE) by comparing results from one configuration of ECOGEM (with eight generic phytoplankton and zooplankton size classes) to climatological and seasonal observations. We find that the new ecological components of the model show reasonable agreement with both global-scale climatological and local-scale seasonal data. We also compare EcoGEnIE results to the existing biogeochemical incarnation of cGEnIE. We find that the resulting globalscale distributions of phosphate, iron, dissolved inorganic carbon, alkalinity, and oxygen are similar for both iterations of the model. A slight deterioration in some fields in EcoGEnIE (relative to the data) is observed, although we make no attempt to re-tune the overall marine cycling of carbon and nutrients here. The increased capabilities of EcoGEnIE in this regard will enable future exploration of the ecological community on much longer timescales than have previously been examined in global ocean ecosystem models and particularly for past climates and global biogeochemical cycles.

Documents

Documents

  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via EGU at https://doi.org/10.5194/gmd-11-4241-2018 . Please refer to any applicable terms of use of the publisher.

    Final published version, 7 MB, PDF-document

    Licence: CC BY

DOI

View research connections

Related faculties, schools or groups