Skip to content

Global Carbon Budget 2017

Research output: Contribution to journalArticle

  • Corinne Le Quéré
  • Robbie Andrew
  • Pierre Friedlingstein
  • Stephen Sitch
  • Julia Pongratz
  • Andrew Manning
  • Jan Korsbakken
  • Glen Peters
  • Josep Canadell
  • Robert Jackson
  • Thomas Boden
  • Pieter Tans
  • Oliver Andrewshttp://orcid.org/0000-0002-1921-475X
  • Vivek Arora
  • Dorothee Bakker
  • Leticia Barbero
  • Meike Becker
  • Richard Betts
  • Laurent Bopp
  • Frédéric Chevallier
  • Louise Chini
  • Philippe Ciais
  • Catherine Cosca
  • Jessica Cross
  • Kim Currie
  • Thomas Gasser
  • Ian Harris
  • Judith Hauck
  • Vanessa Haverd
  • Richard Houghton
  • Christopher Hunt
  • George Hurtt
  • Tatiana Ilyina
  • Atul Jain
  • Etsushi Kato
  • Markus Kautz
  • Ralph Keeling
  • Kees Klein Goldewijk
  • Arne Körtzinger
  • Peter Landschützer
  • Nathalie Lefèvre
  • Andrew Lenton
  • Sebastian Lienert
  • Ivan Lima
  • Danica Lombardozzi
  • Nicolas Metzl
  • Frank Millero
  • Pedro Monteiro
  • David Munro
  • Julia Nabel
  • Shin-ichiro Nakaoka
  • Yukihiro Nojiri
  • Antonio Padin
  • Anna Peregon
  • Benjamin Pfeil
  • Denis Pierrot
  • Benjamin Poulter
  • Gregor Rehder
  • Janet Reimer
  • Christian Rödenbeck
  • Jörg Schwinger
  • Roland Séférian
  • Ingunn Skjelvan
  • Benjamin Stocker
  • Hanqin Tian
  • Bronte Tilbrook
  • Francesco Tubiello
  • Ingrid van der Laan-Luijkx
  • Guido van der Werf
  • Steven van Heuven
  • Nicolas Viovy
  • Nicolas Vuichard
  • Anthony Walker
  • Andrew Watson
  • Andrew Wiltshire
  • Sönke Zaehle
  • Dan Zhu
Original languageEnglish
JournalEarth System Science Data
DOIs
DateAccepted/In press - 19 Feb 2018
DatePublished (current) - 12 Mar 2018

Abstract

Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the global carbon budget – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).

Download statistics

No data available

Documents

Documents

  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via Copernicus Publications at https://www.earth-syst-sci-data.net/10/405/2018/ . Please refer to any applicable terms of use of the publisher.

    Final published version, 7 MB, PDF document

    Licence: CC BY

DOI

View research connections

Related faculties, schools or groups