Skip to content

Hydrological controls on DOC : nitrate resource stoichiometry in a lowland, agricultural catchment, southern UK

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)4785-4802
Number of pages18
JournalHydrology and Earth System Sciences
Volume21
DOIs
DateAccepted/In press - 27 Jul 2017
DatePublished (current) - 27 Sep 2017

Abstract

The role that hydrology plays in governing the interactions between dissolved organic carbon (DOC) and nitrogen in rivers draining lowland, agricultural landscapes is currently poorly understood. In light of the potential 5 changes to the production and delivery of DOC and nitrate to rivers arising from climate change and land use management, there is a pressing need to improve our understanding of hydrological controls on DOC and nitrate dynamics in such catchments. We measured DOC and nitrate concentrations in river water of six reaches of the lowland river Hampshire Avon (Wiltshire, southern UK) in order to quantify the relationship between baseflow index (BFI) and DOC : nitrate molar ratios across contrasting geologies (Chalk, Greensand, and Clay ). We found a significant positive relationship between nitrate and BFI (p < 0.0001), and a significant negative relationship between DOC and BFI (p < 0.0001), resulting in a non-linear negative correlation between DOC : nitrate molar ratio and BFI. In the Hampshire Avon, headwater reaches which are underlain by clay and 20 characterised by a more flashy hydrological regime are associated with DOC : nitrate ratios > 5 throughout the year, whilst groundwater-dominated reaches underlain by Chalk, with a high BFI have DOC : nitrate ratios in surface waters that are an order of magnitude lower (< 0.5). Our analysis 25 also reveals significant seasonal variations in DOC : nitrate transport and highlights critical periods of nitrate export (e.g. winter in sub-catchments underlain by Chalk and Greensand, and autumn in drained, clay sub-catchments) when DOC : nitrate molar ratios are low, suggesting low potential for in-stream uptake of inorganic forms of nitrogen. Consequently, our study emphasises the tight relationship between DOC and nitrate availability in agricultural catchments, and further reveals that this relationship is controlled to a great extent by the hydrological setting.

Download statistics

No data available

Documents

Documents

DOI

View research connections

Related faculties, schools or groups