Skip to content

Interactive molecular dynamics in virtual reality from quantum chemistry to drug binding: An open-source multi-person framework

Research output: Contribution to journalArticle

Original languageUndefined/Unknown
JournalJournal of Chemical Physics
Early online date10 Jun 2019
DOIs
DateAccepted/In press - 5 Feb 2019
DateE-pub ahead of print (current) - 10 Jun 2019

Abstract

As molecular scientists have made progress in their ability to engineer nano-scale molecular structure, we are facing new challenges in our ability to engineer molecular dynamics (MD) and flexibility. Dynamics at the molecular scale differs from the familiar mechanics of everyday objects, because it involves a complicated, highly correlated, and three-dimensional many-body dynamical choreography which is often non-intuitive even for highly trained researchers. We recently described how interactive molecular dynamics in virtual reality (iMD-VR) can help to meet this challenge, enabling researchers to manipulate real-time MD simulations of flexible structures in 3D. In this article, we outline efforts to extend immersive technologies to the molecular sciences, and we introduce 'Narupa', a flexible, open-source, multi-person iMD-VR software framework which enables groups of researchers to simultaneously cohabit real-time simulation environments to interactively visualize and manipulate the dynamics of molecular structures with atomic-level precision. We outline several application domains where iMD-VR is facilitating research, communication, and creative approaches within the molecular sciences, including training machines to learn reactive potential energy surfaces (PESs), biomolecular conformational sampling, protein-ligand binding, reaction discovery using 'on-the-fly' quantum chemistry, and transport dynamics in materials. We touch on iMD-VR's various cognitive and perceptual affordances, and how these provide research insight for molecular systems. By synergistically combining human spatial reasoning and design insight with computational automation, technologies like iMD-VR have the potential to improve our ability to understand, engineer, and communicate microscopic dynamical behavior, offering the potential to usher in a new paradigm for engineering molecules and nano-architectures.

    Research areas

  • physics.chem-ph, cs.HC, physics.bio-ph, physics.ed-ph

Documents

Links

DOI

View research connections

Related faculties, schools or groups