Skip to content

Loop Motion in Triosephosphate Isomerase is not a Simple Open and Shut Case

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)15889-15903
Number of pages15
JournalJournal of the American Chemical Society
Issue number46
Early online date26 Oct 2018
DateAccepted/In press - 26 Oct 2018
DateE-pub ahead of print - 26 Oct 2018
DatePublished (current) - 21 Nov 2018


Conformational changes are crucial for the catalytic action of many enzymes. A prototypical and well-studied example is loop opening and closure in triosephosphate isomerase (TIM), which is thought to determine the rate of catalytic turnover in many circumstances. Specifically, TIM loop 6 ‘grips’ the phosphodianion of the substrate and, together with a change in loop 7, sets up the TIM active site for efficient catalysis. Crystal structures of TIM typically show an open or a closed conformation of loop 6, with the tip of the loop moving ~7 Å between conformations. Many studies have interpreted this motion as a two-state, rigid-body transition. Here, we use extensive molecular dynamics simulations, with both conventional and enhanced sampling techniques, to analyze loop motion in apo and substrate-bound TIM in detail, using five crystal structures of the dimeric TIM from S. cerevisiae. We find that loop 6 is highly flexible and samples multiple conformational states. Empirical valence bond simulations of the first reaction step show that slight displacements away from the fully closed loop conformation can be sufficient to abolish much of the catalytic action; full closure is required for efficient reaction. The conformational change of the loops in TIM is thus not a simple ‘open and shut’ case, and is crucial for its catalytic action. Our detailed analysis of loop motion in a highly efficient enzyme highlights the complexity of loop conformational changes and their role in biological catalysis.

Download statistics

No data available



  • Supplementary information PDF

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via ACS at . Please refer to any applicable terms of use of the publisher.

    Accepted author manuscript, 4 MB, PDF document

  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via ACS at . Please refer to any applicable terms of use of the publisher.

    Final published version, 6 MB, PDF document

    Licence: CC BY


View research connections

Related faculties, schools or groups