Skip to content

Monitoring increases in fracture connectivity during hydraulic stimulations from temporal variations in shear wave splitting polarization

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)1120-1131
Number of pages12
JournalGeophysical Journal International
Volume195
Issue number2
DOIs
DatePublished - Nov 2013

Abstract

Hydraulic overpressure can induce fractures and increase permeability in a range of geological settings, including volcanological, glacial and petroleum reservoirs. Here we consider an example of induced hydraulic fracture stimulation in a tight-gas sandstone. Successful exploitation of tight-gas reservoirs requires fracture networks, either naturally occurring, or generated through hydraulic stimulation. The study of seismic anisotropy provides a means to infer properties of fracture networks, such as the dominant orientation of fracture sets and fracture compliances. Shear wave splitting from microseismic data acquired during hydraulic fracture stimulation allows us to not only estimate anisotropy and fracture properties, but also to monitor their evolution through time. Here, we analyse shear wave splitting using microseismic events recorded during a multistage hydraulic fracture stimulation in a tight-gas sandstone reservoir. A substantial rotation in the dominant fast polarization direction (epsilon) is observed between the events of stage 1 and those from later stages. Although large changes in epsilon have often been linked to stress-induced changes in crack orientation, here we argue that it can better be explained by a smaller fracture rotation coupled with an increase in the ratio of normal to tangential compliance (Z(N)/Z(T)) from 0.3 to 0.6. Z(N)/Z(T) is sensitive to elements of the internal architecture of the fracture, as well as fracture connectivity and permeability. Thus, monitoring Z(N)/Z(T) with shear wave splitting can potentially allow us to remotely detect changes in permeability caused by hydraulic stimulation in a range of geological settings.

    Research areas

  • Downhole methods, Fracture and flow, Seismic anisotropy, SEISMIC ANISOTROPY, ELASTIC-ANISOTROPY, STRESS, ROCKS, VELOCITY, MEDIA, VOLCANO, MOVEOUT, CRACKS, RATIO

Documents

DOI

View research connections

Related faculties, schools or groups