Skip to content

Pipefish embryo oxygenation, survival and development: egg size, male size and temperature effects

Research output: Contribution to journalArticle

Original languageEnglish
Article numberarz101
Number of pages10
JournalBehavioral Ecology
Early online date29 Jun 2019
DateAccepted/In press - 8 Jun 2019
DateE-pub ahead of print (current) - 29 Jun 2019


In animals with uniparental care, the quality of care provided by one sex can deeply impact the reproductive success of both sexes. Studying variation in parental care quality within a species and which factors may affect it can therefore shed important light on patterns of mate choice and other reproductive decisions observed in nature. Using Syngnathus typhle, a pipefish species with extensive uniparental male care, with embryos developing inside a brood pouch during a lengthy pregnancy, we assessed how egg size (which correlates positively with female size), male size and water temperature affect brooding traits that relate to male care quality, all measured on day 18, approximately 1/3, of the brooding period. We found that larger males brooded eggs at lower densities, and their embryos were heavier than those of small males independent of initial egg size. However, large males had lower embryo survival relative to small males. We found no effect of egg size or of paternal size on within-pouch oxygen levels, but oxygen levels were significantly higher in the bottom than the middle section of the pouch. Males that brooded at higher temperatures had lower pouch oxygen levels presumably because of higher embryo developmental rates, as more developed embryos consume more oxygen. Together, our results suggest that small and large males follow distinct paternal strategies: large males positively affect embryo size while small males favour embryo survival. As females prefer large mates, offspring size at independence may be more important to female fitness than offspring survival during development.

    Research areas

  • Body condition, Embryo density, Embryo size, Embryo survival, Male size, Oxygen provisioning



  • Full-text PDF (accepted author manuscript)

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Oxford University Press at Please refer to any applicable terms of use of the publisher.

    Accepted author manuscript, 232 KB, PDF document

    Embargo ends: 26/06/20

    Request copy

    Licence: CC BY


View research connections

Related faculties, schools or groups