Skip to content

Restoring retinal neurovascular health via substance P

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)115-123
Number of pages9
JournalExperimental Cell Research
Volume380
Issue number2
Early online date14 Apr 2019
DOIs
DateAccepted/In press - 5 Apr 2019
DateE-pub ahead of print - 14 Apr 2019
DatePublished (current) - 15 Jul 2019

Abstract

Regulation of vascular permeability plays a major role in the pathophysiology of visually threatening conditions such as retinal vein occlusion and diabetic retinopathy. Principally, several factors such as vascular endothelial growth factor (VEGF), are up-regulated or induced in response to hypoxia thus adversely affecting the blood-retinal barrier (BRB), resulting in retinal edema and neovascularisation. Furthermore, current evidence supports a dysregulation of the inner retinal neural-vascular integrity as a critical factor driving retinal ganglion cell (RGC) death and visual loss. The principal objective of this study was to interrogate whether Substance P (SP), a constitutive neurotransmitter of amacrine and ganglion cells, may protect against N-methyl-d-aspartate (NMDA)-induced excitotoxic apoptosis of ganglion cells and VEGF-induced vessel leakage in the retina. Tight junctional protein expression and a Vascular Permeability Image Assay were used to determine vascular integrity in vitro. The protective effect of SP on RGC was established in ex vivo retinal explants and in vivo murine models. After NMDA administration, a reduction in TUNEL+ cells and a maintained number of Brn-3a+ cells were found, indicating an inhibition of RGC apoptosis mediated by SP. Additionally, SP maintained endothelial tight junctions and decreased VEGF-induced vascular permeability. In conclusion, administration of SP protects against NMDA apoptosis of RGC and VEGF-induced endothelial barrier breakdown.

    Research areas

  • Substance P, Retinal ganglion cell, Vascular permeability, ZO-1

Download statistics

No data available

Documents

Documents

  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via Elsevier at https://www.sciencedirect.com/science/article/pii/S0014482719301582 . Please refer to any applicable terms of use of the publisher.

    Proof, 2 MB, PDF-document

    Licence: CC BY-NC-ND

  • Supplementary information PDF

    Proof, 1 MB, PDF-document

    Licence: CC BY-NC-ND

DOI

View research connections

Related faculties, schools or groups