
Peer reviewed version

Link to published version (if available):
10.1063/1.4966017

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via AIP at http://aip.scitation.org/doi/abs/10.1063/1.4966017. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html
Synchronization and local convergence analysis of networks with dynamic diffusive coupling

Daniel A. Burbano L. and Mario di Bernardo

Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, 8125, Italy.

(Dated: 5 August 2016)

In this paper we address the problem of achieving synchronization in networks of nonlinear units coupled by dynamic diffusive terms. We present two types of couplings consisting of a static linear term, corresponding to the diffusive coupling, and a dynamic term which can be either the integral or derivative of the sum of the mismatches between the states of neighbouring agents. The resulting dynamic coupling strategy is a distributed proportional-integral (PI) or proportional-derivative (PD) law that is shown to be effective in improving the network synchronization performance for example when the dynamics at nodes are nonidentical. We assess the stability of the network by extending the classical Master Stability Function approach to the case where the links are dynamic ones of PI/PD type. We validate our approach via a set of representative examples including networks of chaotic Lorenz and networks of nonlinear mechanical systems.

PACS numbers: Valid PACS appear here
Keywords: Synchronization, Master stability function, Networks

I. INTRODUCTION

Many natural and engineered systems can be described as ensembles of dynamical systems interacting with each other over a network of interconnections. This approach has been found to be successful for capturing and characterising the behaviour of large and complex systems such as the world-wide-web, metabolic networks, the electrical power grid, and animal groups among many others. A particular phenomenon in networks of dynamical systems is synchronisation. When this happens the trajectories of all the components of the ensemble, asymptotically converge toward each other onto a common solution. Synchronization is relevant for different applications ranging from frequency synchronisation in power grids, robot vehicle coordination and traffic congestion to synchronous phenomena observed in Nature as, for instance, in neural networks or flock of birds. Typically, these multi-agent systems are modelled as networks of dynamical systems interconnected via static linear diffusive coupling, and their local stability and convergence are often studied using the Master Stability Function approach (MSF).

The MSF has been widely accepted for assessing local convergence to synchronisation in this class of networks. The main advantage of the MSF is that it allows to reduce the computational complexity required to assess if synchronization is possible, since instead of studying the stability of the whole network, it is just required to study the stability of one node (master node), which represents all the others in the ensemble.

The MSF approach is a powerful tool for investigating synchronisation in generic networks of identical oscillators, by providing theoretical predictions of such synchronous behaviour. Different extensions and applications of the MSF are available in the literature; for example, an extension of the MSF to the case of nearly iden-
tactical oscillators has been reported in43, while the MSF has also been exploited for studying networks with general delays on the links21. Also, the MSF has been used for studying synchronization in hypernetworks41, and for networks with switching links11,22. More recently, the MSF has been used for characterising and predicting the formation of clusters (or patterns) in networks with topological symmetries30.

The aim of this paper is two fold, (i) firstly to present a simple yet effective dynamic extension of linear diffusive coupling that can be used for enhancing synchronisation in networks of identical nonlinear units possibly with parameter mismatches. Secondly, (ii) to extend the well known MSF approach to study convergence in the case where the links are dynamic of PI/PD type.

To extend the classical diffusive coupling, we add an integral or derivative term depending on the mismatch between the states of neighbouring agents. The resulting dynamic coupling strategy is a proportional-integral (PI) or proportional-derivative (PD) law that has been shown to be effective in improving the network synchronisation performance7. From a control theoretic viewpoint the approach can be seen as the deployment of distributed PI or PD controllers over a network of interest8. The use of PI couplings has been proposed in the literature for achieving consensus in networks of identical nodes with linear dynamics2,16. More recently, a distributed PID coupling structure8 has been proposed for guaranteeing consensus in networks of heterogeneous first order linear agents with constant disturbances. It is important to highlight that distributed PI/PID actions have been also used in different applications comprising synchronisation and frequency control in power grids5,38,40, clock synchronisation in networks of discrete-time integrators10, autonomous space satellites2, congestion control47, containment control of mobile robots12. Further results still focused on networks of linear agents are reported in36,45,46.

Contrary to the previous results in the literature, in this paper we consider dynamic PI/PD couplings for networks of nonlinear possibly chaotic units. The stability of the synchronous solutions is studied by extending the MSF approach to the case where the couplings are dynamic, i.e. PI/PD. Here, the “master node” equations are derived and the theoretical results are illustrated via a representative example using networks of Chaotic Lorenz systems. Finally, the approach is applied to study synchroniztion in networks of mechanical nonlinear oscillators. We convincingly show that the dynamic couplings can be properly tuned for enhancing synchronization; as well as, for decreasing the residual error when some heterogeneities are present at all or some of the nodes. We wish to emphasize that our results can also be useful to investigate synchroniztion in networks of other nonlinear systems such as those consisting nonlinear circuits13,14,36 where inductive and capacitive couplings can be modelled as PI/PD coupling.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

We denote by I_N the identity matrix of dimension $N \times N$; by 1_N a $N \times 1$ vector with unitary elements. The Frobenius norm is denoted by $\| \cdot \|$. A diagonal matrix, say D, with diagonal elements d_1, \ldots, d_N is indicated by $D = \text{diag}(d_1, \ldots, d_N)$. The ordered eigenvalues of an $n \times n$ matrix A with real entries are denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$, and \otimes denotes the Kronecker product4.

An undirected graph G is defined by $G = (\mathcal{N}, \mathcal{E})$ where $\mathcal{N} = \{1, 2, \ldots, N\}$ is the finite set of N node indices, and $\mathcal{E} \subset \mathcal{N} \times \mathcal{N}$ is the set containing the E edges between the nodes (i, j) for any $i, j \in \mathcal{N}$. The architecture of the network of interconnections is represented by the adjacency matrix $A \in \mathbb{R}^{N \times N}$ whose entries A_{ij} are given by $A_{ij} = 1$ if $(i, j) \in \mathcal{E}$ and $A_{ij} = 0$ otherwise.

B. Network Model

We consider ensembles of N nonlinear units, each one described by a set of nonlinear ordinary differential equations (ODEs) of the form $dx_i/dt = f(x_i)$ where $x_i \in \mathbb{R}^n$, $f(x) : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is a nonlinear smooth function and $i \in \{1, \cdots, N\}$. Assuming diffusive coupling among neighbouring units25, the overall network dynamics can be written as

$$\frac{dx_i}{dt} = f(x_i) - \sigma \sum_{j=1}^{N} L_{ij} h(x_j, y_j), \quad x_i(0) = x_{i0}, i, j \in \mathcal{N}$$

(1)

where $\mathcal{N} = \{1, \cdots, N\}$ is the set of indices while $x_i(0) = x_{i0} \in \Omega \subseteq \mathbb{R}^n$, $i \in \mathcal{N}$ are the vectors of initial conditions. The constant and positive scalar σ is the global coupling strength. The function $h(x_i, y_i) : \mathbb{R}^n \to \mathbb{R}^n$ represents the coupling between neighbouring units which is characterized by static and dynamic terms via x_i and y_i, respectively. We consider two particular functional forms for h (see Section II C), where we assume the dynamic variable y_i to be $y_i = \int_0^T x_j(\tau) d\tau$ or $y_j = dx_j/dt$. The network of dynamical units (1) is represented by a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ which can be described in terms of its associated Laplacian matrix $L := \text{diag}(A_{ii}N) - A$, where A is the adjacency matrix representing the topology of the network.

Assumption II.1 The network of interconnections in (1) represented by a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ is assumed to be undirected, unweighted and connected.

It is important to highlight that for any connected and undirected graph \mathcal{G}, the associated Laplacian matrix L is a symmetric matrix; therefore, it can be eigen-decomposed8 as $L = QAQ^T$, where $Q \in \mathbb{R}^{N \times N}$ is an orthonormal matrix given by $Q := [q_1, \cdots, q_N]$ where $q_i \in \mathbb{R}^{N \times 1}$ are the eigenvectors
of \mathcal{L}, and $\Lambda := \text{diag}\{0, \lambda_2, \ldots, \lambda_N\}$ with $\lambda_i, i \in \mathcal{N}$ being the eigenvalues of \mathcal{L}, which can be ordered as $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_N$.

Here, we are interested in finding necessary and sufficient conditions guaranteeing that all states x_i in the network of dynamical units (1) asymptotically converge towards each other, i.e., synchronization.

Definition II.1 Network (1) is said to reach local synchronization if there exists a set of initial conditions $x_i(0) = x_{i0} \in \Omega \subseteq \mathbb{R}^n$ such that

$$\lim_{t \to \infty} \|x_j(t) - x_i(t)\| = 0, \ i, j \in \mathcal{N} \quad (2)$$

C. Dynamic Couplings

Rather than considering the standard static diffusive coupling, we use a control theoretic approach to define two types of dynamic diffusive couplings\(^8\).

- **Proportional and Integral (PI)**

 $$h(x_j, y_j) = \alpha \Gamma_P x_j + \beta y_j \quad (3)$$

 $$y_i = \Gamma_I \int_0^t x_j(\tau)d\tau, \quad i \in \mathcal{N} \quad (4)$$

 where nodes exchange information on their states using proportional and integral terms. Here, α, and β are non-negative constants each representing the strength of the proportional, and integral contributions respectively. The inner coupling matrices $\Gamma_P, \Gamma_I \in \mathbb{R}^{n \times n}$ capture the way in which information among nodes is being exchanged by identifying what states a node transmits to its neighbours.

 For instance in Example III.C, each unit is a third order system where $x = [x_1, x_2, x_3]^T$. Therefore, setting for example $\Gamma_P = \Gamma_I = \text{diag}\{1, 0, 0\}$ means that nodes are solely coupled through the first state variable x_1. Note that, in general, the matrices Γ_P and Γ_I are not necessarily the same opening the possibility of choosing independently the variables that can be coupled via static or dynamic terms.

 The second dynamic coupling we consider is

- **Proportional and Derivative (PD)**

 $$h(x_j, y_j) = \alpha \Gamma_P x_j + \gamma y_j \quad (5)$$

 $$y_i = \Gamma_D \frac{dx_i}{dt}, \quad i \in \mathcal{N} \quad (6)$$

 where nodes exchange information on their states using proportional and derivative terms. Here, α, and γ are non-negative constants each representing the strength of the proportional, and derivative contributions respectively, and $\Gamma_D \in \mathbb{R}^{n \times n}$ is the inner coupling matrix for the derivative term.

III. MASTER STABILITY FUNCTION FOR NETWORKS WITH DYNAMIC COUPLINGS

To study convergence towards synchronization, we next extend the MSF\(^{28}\) to networks with dynamic couplings of PI and PD type. For the sake of clarity we split the analysis in two cases and we derive the master equations for detecting local stable synchronous solutions in network (1).

A. MSF for Dynamic Proportional-Integral Coupling

Consider network (1) with dynamic PI coupling (3); setting $h(\cdot) = h_I$ yields

$$\frac{dx_i}{dt} = f(x_i) - \sigma \sum_{j=1}^N \mathcal{L}_{ij}(\alpha \Gamma_P x_j + \beta y_j) \quad (7)$$

$$\frac{dy_i}{dt} = \Gamma_I x_i, \quad y_i(0) = 0 \quad (8)$$

From (7) and (8) and from the fact that \mathcal{L} has zero row-sum it is immediate to note that the synchronous solution $s = x_1 = \cdots = x_N$ must be such that

$$\frac{ds}{dt} = f(s) \quad (9)$$

$$\frac{dw}{dt} = \Gamma_I s \quad (10)$$

where $d\bar{y}_1/dt = \cdots = d\bar{y}_N/dt = dw/dt$. The master stability function approach, studies the local stability of the synchronous solution $s(t), w(t)$ in the presence of small perturbations\(^{28}\). For the sake of clarity, we split the MSF approach into four steps.

S1: We first assume that the uncoupled dynamical system (9)-(10) has at least one asymptotic attractor, so that the synchronous solution $s(t), w(t)$ is invariant.

S2: Next, we study the local stability of the synchronous solution (9)-(10), in the presence of small perturbations δx and δy respectively. Thus we set $s = x_i - \bar{x}_i$, and $w = y_i - \bar{y}_i$. It follows from Taylor series expansion that $f(\delta x_i + s) \approx f(s) + Df(s)\delta x_i$, with $Df(s)$ being the time-varying Jacobian matrix of $f(\cdot)$. Let $\Delta_s := [\delta x_1, \ldots, \delta x_N]$ and $\Delta_y := [\delta y_1, \ldots, \delta y_N]$ be the stack vectors of the perturbed states of the network, we can recast the overall perturbed dynamics about the synchronous solution as

$$\frac{d\Delta_x}{dt} = [(\mathcal{I}_N \otimes Df(s)) - \sigma \alpha (\mathcal{L} \otimes \Gamma_P)] \Delta_x - \sigma \beta (\mathcal{L} \otimes \mathcal{I}_n) \Delta_y \quad (11)$$

$$\frac{d\Delta_y}{dt} = (\mathcal{I}_N \otimes \Gamma_I) \Delta_x \quad (12)$$

S3: Then, a state transformation is considered in order to decouple the perturbation dynamics of any single node from the others. In particular, from the fact that the network is assumed to be undirected and connected (see
Assumption II.1), we can eigen-decompose the Laplacian matrix as $L = QAQ^T$ with Q being an appropriate orthonormal matrix. Then, using the state transformation $\zeta := (Q^{-1} \otimes I_n) \Delta_x$ and $\xi := (Q^{-1} \otimes I_n) \Delta_x$, we can recast equations (11)-(12) in block-diagonal form as

$$\frac{d\zeta_i}{dt} = [Df(s) - \sigma \lambda_i \Gamma_P] \zeta_i - \sigma \beta \lambda_i I_N \xi_i,$$

$$\frac{d\xi_i}{dt} = \Gamma_i \zeta_i,$$

Note that for $\lambda_1 = 0$ the equations are equal to those of a single uncoupled system, while the other $N-1$ blocks differ from each other by the coupling terms $\sigma \lambda_k$ and $\sigma \beta \lambda_k$ for $k = \{2, \ldots, N\}$. Therefore, each block of (13)-(14) can be parametrised considering a “master node” equation (15)-(16), as a function of the parameters $\tilde{\alpha} = \sigma \lambda_i$, and $\tilde{\beta} = \sigma \beta \lambda_i$, yielding the parametrized equations

$$\frac{d\zeta}{dt} = [Df(s) - \tilde{\alpha} \Gamma_P] \zeta - \tilde{\beta} \xi,$$

$$\frac{d\xi}{dt} = \Gamma_i \zeta.$$

S4: Finally, local transversal stability of the synchronous solution (9)-(10) can be assessed by computing the Maximum Lyapunov Exponent (MLE) of the variational equation (15)-(16) as a function of the parameters $\tilde{\alpha}$ and $\tilde{\beta}$. We denote this MLE value as $\Psi_I(\tilde{\alpha}, \tilde{\beta})$, which we term as the PI Master Stability Function (PI-MSF).

It is important to highlight that if the matrix Γ_i has r null rows; then, r zero Lyapunov Exponents (LEs) will appear when studying the variational equation (16). Those zero values should not be taken into account when calculating the PI-MSF since they represent non-existing interconnections between the variables of each node. Hence, let Σ_1 be the set of all the LEs denoted by λ_k for $k = \{1, \ldots, 2n\}$ of the variational equation (15)-(16), and let Σ_2 be the set of all the null LEs, then the PI-MSF can be defined as

$$\Psi_I(\tilde{\alpha}, \tilde{\beta}) = \begin{cases} \max_k \lambda_k, \lambda \in \Sigma_1 & m > r, \tilde{\beta} \neq 0 \\ \max_k \lambda_k, \lambda \in \Sigma_1 \setminus \Sigma_2 & \text{otherwise} \end{cases}$$

where m is the cardinality of Σ_2, i.e. the number of null LE. Note that positive values of Ψ_I represent unstable modes, i.e. the network does not exhibit synchronised motion; while, negative values indicate that the network synchronises.

Note that if the synchronous solution $s(t)$ represents an equilibrium point; then, the stability problem becomes equivalent to that of studying the sign of the real part of the dominant eigenvalue of (15)-(16). An example of nonlinear systems with this characteristics are bistable (or multistable) systems, like the unforced Duffing oscillator or the toggle model in synthetic gene regulatory networks. In this case the solution $s(t)$ of the nonlinear model can be selected as one of the different equilibrium points exhibited by these systems. Moreover, when considering linear dynamics at nodes, the synchronisation problems becomes equivalent to the consensus problem where for the specific case of identical dynamics synchronisation is always achieved for any nonzero coupling strength.

Remark III.1 Analogously to the classic MSF for networks with only static coupling, the PI-MSF can also be classified according to how $\Psi_I(\tilde{\alpha}, \tilde{\beta})$ is an increasing function (never becomes negative); then, synchronisation cannot be attained, no matter the value of the coupling strengths. Type II: The surface $\Psi_I(\tilde{\alpha}, \tilde{\beta})$ intersects the zero manifold along a single well defined curve in the gain parameter space as shown in Fig 1(a). In this case synchronisation is guaranteed for the set of values $\tilde{\alpha}$ and $\tilde{\beta}$ that do not belong to the set where $\Psi_I(\tilde{\alpha}, \tilde{\beta})$ is positive.

Type III: The intersection between $\Psi_I(\tilde{\alpha}, \tilde{\beta})$ and the zero-manifold defines a limited or unlimited region where the PI-MSF is negative (see Fig. 1(b)). In this case synchronisation is attained for the set of values $\tilde{\alpha}$ and $\tilde{\beta}$ where $\Psi_I(\tilde{\alpha}, \tilde{\beta})$ remains negative.

Remark III.2 We wish to emphasize that the PI-MSF can be extended to the case of directed network structures, by considering that the eigenvalues of L in this scenario are complex variables $\lambda_i \in \mathbb{C}$ in (15)-(16). Specifically, by setting $\lambda_i = \lambda_{Re,i} + 1 \lambda_{Im,i}$ with $i := \sqrt{-1}$ and $\lambda_{Re,i}, \lambda_{Im,i} \in \mathbb{R}$ one has that (15) can be written as $d\zeta/dt = [Df(s) - (\tilde{\alpha}_{Re} + i \tilde{\alpha}_{Im}) \Gamma_P] \zeta - \tilde{\beta} \xi$, where $\tilde{\alpha}_{Re} := \sigma \alpha \lambda_{Re,i}$ and $\tilde{\alpha}_{Im} := \sigma \alpha \lambda_{Im,i}$. In this case, the PI-MSF depends on three parameters making more difficult its computation and visualization.
B. MSF for Dynamic Proportional-Derivative Coupling

Next, we study convergence of the network when the proportional and derivative coupling (5) is considered. Letting $\mathcal{L} := \mathbf{I}_N + \gamma(\mathcal{L} \otimes \Gamma_D)$, the closed-loop network can be written as

$$\ddot{\mathcal{L}} \left(\frac{dx}{dt} \right) = \mathbf{F}(x) - \sigma \alpha (\mathcal{L} \otimes \Gamma_P)x$$

(18)

where $\mathbf{F}(x) := [f(x_1)^T, \cdots, f(x_N)^T]^T$ and $x(t) := [x_1^T(t), \cdots, x_N^T(t)]^T$ are the stack vectors of the nonlinear functions and node states, respectively. From the fact that the network is undirected (Assumption II.1), one has that $\mathcal{L} = \mathbf{Q} \Lambda \mathbf{Q}^T$ where $\mathbf{Q}^T = \mathbf{I}_N$. Hence, we can write

$$\ddot{\mathcal{L}} = (\mathbf{Q} \otimes \mathbf{I}_n) \ddot{\Lambda}(\mathbf{Q}^T \otimes \mathbf{I}_n)$$

and regrouping terms yields

$$\ddot{\mathcal{L}} = (\mathbf{Q} \otimes \mathbf{I}_n) \ddot{\Lambda}(\mathbf{Q}^T \otimes \mathbf{I}_n)$$

(19)

where, $\ddot{\Lambda}$ is a diagonal matrix with positive entries given by $\ddot{\Lambda} = \mathbf{I}_N + \sigma \gamma (\ddot{\Lambda} \otimes \Gamma_P)$.

Note that the entries of the diagonal matrix $\ddot{\Lambda}$ are all positive values and they correspond to the eigenvalues of $\ddot{\mathcal{L}}$; therefore, $\ddot{\mathcal{L}}$ is a non-singular matrix and its inverse exists.

Next, from (18) we have

$$\frac{dx}{dt} = \ddot{\mathcal{L}}^{-1} \mathbf{F}(x) - \sigma \alpha \ddot{\mathcal{L}}^{-1} (\mathcal{L} \otimes \Gamma_P)x$$

(20)

Existence of a synchronous solution can be obtained from (20), by setting $s = x_1 = \cdots = x_N$ yielding

$$\frac{ds}{dt} = \ddot{\mathcal{L}}^{-1} (\mathbf{I}_N \otimes \mathbf{f}(s)) - \sigma \alpha \ddot{\mathcal{L}}^{-1} (\mathcal{L} \otimes \Gamma_P)(\mathbf{I}_N \otimes s)$$

(21)

where $s = (\mathbf{I}_N \otimes s) = [s^T, \cdots, s^T]^T$. Since $\ddot{\mathcal{L}}$ has zero row-sum we have that $\ddot{\mathcal{L}}_{NN} = 0_{N \times 1}$; hence the last term of the right-hand side of (21) is null. Moreover, from the definition of $\ddot{\mathcal{L}}$ it is easy to see that $\ddot{\mathcal{L}}(\mathbf{I}_N \otimes \mathbf{f}(s)) = (\mathbf{I}_N \otimes \mathbf{f}(s));$ hence, $\ddot{\mathcal{L}}^{-1}(\mathbf{I}_N \otimes \mathbf{f}(s)) = (\mathbf{I}_N \otimes \mathbf{f}(s))$. Consequently, we have that $d\mathbf{s}/dt = (\mathbf{I}_N \otimes \mathbf{f}(s))$ which corresponds to the equation governing the synchronous motion for each node, which is given by (9).

Moreover, letting $\mathbf{P} := \ddot{\mathcal{L}}^{-1} (\mathcal{L} \otimes \Gamma_D)$, and denoting by $\dot{\mathcal{L}}_{ij}$ and \mathbf{P}_{ij} the $n \times n$ blocks of matrices $\ddot{\mathcal{L}}^{-1}$ and \mathbf{P} respectively, we have

$$\ddot{\mathcal{L}}^{-1} = \begin{bmatrix} \dot{\mathcal{L}}_{11} & \cdots & \dot{\mathcal{L}}_{1N} \\ \vdots & \ddots & \vdots \\ \dot{\mathcal{L}}_{N1} & \cdots & \dot{\mathcal{L}}_{NN} \end{bmatrix}, \mathbf{P} = \begin{bmatrix} \mathbf{P}_{11} & \cdots & \mathbf{P}_{1N} \\ \vdots & \ddots & \vdots \\ \mathbf{P}_{N1} & \cdots & \mathbf{P}_{NN} \end{bmatrix}$$

so that, the dynamics of the ith node of network with PD coupling (20) can be written as

$$\frac{dx_i}{dt} = \sum_{j=1}^{N} \dot{\mathcal{L}}_{ij} f(x_j) - \sigma \alpha \sum_{j=1}^{N} \mathbf{P}_{ij} x_j, \forall i \in \mathcal{N}$$

(22)

Analogously to the case where dynamic PI couplings are considered, here we also follow four steps for assessing the local stability of the synchronous solution (9).

$S1$: As in the case of Proportional-Integral coupling, we assume the existence of a synchronous invariant trajectory $s(t)$ which is a solution of the dynamical equations of an isolated node.

$S2$: Next, we study the stability of the synchronous solution of the closed-loop network (22), in the presence of small perturbations $\delta x(t)$ whose dynamics are given by

$$\frac{d\delta x_i}{dt} = \sum_{j=1}^{N} \dot{\mathcal{L}}_{ij} Df(x_j) \delta x_j - \sigma \alpha \sum_{j=1}^{N} \mathbf{P}_{ij} \delta x_j$$

(23)

which in compact form reads

$$\frac{d\Delta}{dt} = \ddot{\mathcal{L}}^{-1} \left(\mathbf{I}_N \otimes D\mathbf{f}(s) \right) \Delta - \sigma \alpha \mathbf{P} \Delta$$

(24)

where $\Delta(t) := [\delta x_1^T(t), \cdots, \delta x_N^T(t)]^T$.

$S3$: From (19) one has that $\ddot{\mathcal{L}}^{-1} = (\mathbf{Q} \otimes \mathbf{I}_n) \ddot{\Lambda}^{-1}(\mathbf{Q}^T \otimes \mathbf{I}_n)$; therefore,

$$\mathbf{P} = \ddot{\mathcal{L}}^{-1} (\mathcal{L} \otimes \Gamma_P) = (\mathbf{Q} \otimes \mathbf{I}_n) \ddot{\Lambda}^{-1}(\mathbf{L} \otimes \Gamma_P)(\mathbf{Q}^T \otimes \mathbf{I}_n)$$

Hence, by applying the state transformation $\zeta = (\mathbf{Q}^T \otimes \mathbf{I}_n) \Delta(t)$ to (24) yields

$$\frac{d\zeta_i}{dt} = (\mathbf{I}_n + \gamma \lambda_i \Gamma_D)^{-1} (D\mathbf{f}(s) - \sigma \alpha \lambda_i \Gamma_P) \zeta_i$$

(26)

Note that (26) is in triangular form with N decoupled blocks given by

$$\frac{d\zeta_i}{dt} = (\mathbf{I}_n + \gamma \lambda_i \Gamma_D)^{-1} (D\mathbf{f}(s) - \sigma \alpha \lambda_i \Gamma_P) \zeta_i$$

(27)

Then, letting $\dot{\gamma} = \sigma \gamma \lambda_i$, and $\dot{\alpha} = \sigma \alpha \lambda_i$ we have that the general equation describing the perturbed dynamics of the synchronous state for any node in the network can be written in the parametric form

$$\frac{d\zeta_i}{dt} = (\mathbf{I}_n + \dot{\gamma} \Gamma_D)^{-1} (D\mathbf{f}(s) - \dot{\alpha} \Gamma_P) \zeta_i$$

(28)

$S4$: Similarly to the PI case, local stability of the synchronous solution $s(t)$ can be investigated by computing the MLE, say $\Psi_D(\alpha, \gamma)$, of the variational equation (28). Hence, synchronisation is guaranteed for the set of values $\dot{\alpha}$ and $\dot{\gamma}$ such that $\Psi_D(\dot{\alpha}, \dot{\gamma})$ remains negative.

C. Illustrative Example

Next, we validate numerically the theoretical derivations of the Master Stability Function for networks with dynamic diffusive coupling of PI/PD type.
Consider network (1), where the non-linear vector-field modelling the intrinsic dynamics of each unit is described by the well known Lorenz equation

\[
f(x) = \begin{bmatrix}
\mu(x_2 - x_1) \\
x_1(\rho - x_3) - x_2 \\
x_1x_2 - \omega x_3
\end{bmatrix}
\]

(29)

with the parameters set as \(\mu = 10, \rho = 28\) and \(\omega = 2\) for which the Lorenz system exhibits a chaotic solution\(^{19}\).

1. Computation of the PI-MSF

To compute the PI-MSF (17) we start by assuming that the coupling is only through the first state variable, i.e. the inner coupling matrices are set as \(\Gamma_P = \Gamma_I = \text{diag}\{1,0,0\}\). Note that for this particular choice of the inner coupling matrix \(\Gamma\), we have that \(r = 2\) in (17). We can obtain the synchronous trajectory \(s(t)\) by integrating (9)-(10) with \(f(\cdot)\) being the Lorenz system until it reaches its chaotic attractor.

Next, using the Jacobian matrix of (29) given by

\[
Df(x) = \begin{bmatrix}
-\mu & \mu & 0 \\
\rho - x_3 & -1 & -x_1 \\
x_2 & x_1 & -\omega
\end{bmatrix}
\]

(30)

we compute the PI-MSF \(\Psi_f(\tilde{\alpha}, \tilde{\beta})\) by solving the variational equation (15)-(16), using standard methods for estimating the Lyapunov exponents\(^{37}\). We then repeat this computation for different values of the parameters \(\tilde{\alpha}\) and \(\tilde{\beta}\) obtaining the plot shown in Fig. 2(a). For the sake of clarity we also show the projection of the PI-MSF onto a two dimensional space (see Fig. 2(b)). Here positive values of the PI-MSF are colored in a red scale, while negative values are depicted in blue. Note that pure static coupling \((\beta = 0)\) or dynamic coupling \((\alpha = 0)\) are both able to guarantee synchronization above a certain threshold. These cases are represented by the red and green curves in Fig. 2. However, both gains can be considerably reduced by using both actions together with a proper tuning. This represents an enhancement of the stability of the synchronous state. Moreover, from Fig. 2(b) we can see that along the line \(\beta = 10\tilde{\alpha}\) (white-dashed line in Fig. 2(b)) the Lyapunov Exponents decrease almost in a linear manner, suggesting that a faster convergence to synchronization is expected as long as both gains increase. We point out that the enhancement provided by the dynamic PI-coupling can be also exploited for controlling synchronization in networks, by adding extra links such that the PI-MSF becomes negative\(^{34}\).

To validate our theoretical predictions for the PI-MSF, we next consider a group of one hundred \((N = 100)\) chaotic Lorenz with \(\Gamma_P = \Gamma_I = \text{diag}\{1,0,0\}\) and three different network configurations: random, scale-free and small-world as shown in Fig. 3. As a measure of synchronisation we use the average error dynamics (or disagreement dynamics) given by

\[
d(t) := \|x(t) - (1/N) (1_N \otimes \mathbf{I}_N^T) x(t)\|
\]

(31)

where \(d(t) = 0\) indicates that the network has reached synchronization. We simulate the network at two points in the control parameter space (see Fig. 2(b)). At point \(P_1\): \((\tilde{\alpha} = 4, \tilde{\beta} = 6)\), where the PI-MSF is positive, and synchronization should not be attained, and at point \(P_2\): \((\tilde{\alpha} = 4, \tilde{\beta} = 20)\) where synchronization is ensured.

For tuning the proportional \(\alpha\) and integral \(\beta\) coupling strengths we notice that \(\tilde{\alpha} = \alpha \sigma \lambda_1\) and \(\tilde{\beta} = \beta \sigma \lambda_1\), for any \(i \in \mathcal{N}\).

Without loss of generality we set \(\sigma = 1\) and explore different network structures setting \(\alpha = \tilde{\alpha}/(\sigma \lambda_2)\) and \(\beta = \tilde{\beta}/(\sigma \lambda_2)\) at each of the two points \((P_1\) and \(P_2)\) and...
FIG. 3. Three different network structures: (a) Random, (b) Scale-free and (c) Small world

TABLE I. Coupling gains for the PI

<table>
<thead>
<tr>
<th>Point</th>
<th>Rand. $\lambda_2 \approx 1.6$</th>
<th>S.F. $\lambda_2 \approx 0.5$</th>
<th>S.W. $\lambda_2 \approx 0.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha(P1)$</td>
<td>2.547</td>
<td>8</td>
<td>12.578</td>
</tr>
<tr>
<td>$\beta(P1)$</td>
<td>3.821</td>
<td>12</td>
<td>18.867</td>
</tr>
<tr>
<td>$\alpha(P2)$</td>
<td>2.547</td>
<td>8</td>
<td>12.578</td>
</tr>
<tr>
<td>$\beta(P2)$</td>
<td>12.738</td>
<td>40</td>
<td>62.893</td>
</tr>
</tbody>
</table>

FIG. 4. Evolution of the error dynamics for a network of 100 Lorenz coupled with dynamic PI for three different network topologies: random, scale free and small-world: (a) at point P_1, (b) at point P_2

for each of the network structures being considered. A summary of the gain selection is reported in Table I together with the algebraic connectivity λ_2 of the networks under investigation.

The time responses of the error dynamics $d(t)$ at point P_1 and P_2 for the three network configurations are shown in Fig. 4(a) and Fig. 4(b) respectively. As expected at P_1 no synchronization is attained, while at P_2 the error $d(t)$ asymptotically converges to zero indicating that all the node states converge toward each other in all the three network configurations.

Note that for the random network the synchronization error $d(t)$ at P_1 oscillates in a lower range of values than the scale-free and small world, suggesting better performance is achieved with this particular configuration. This is strongly related with the algebraic connectivity of the network λ_2, which for the random structure is the highest one (see Table I).

2. Computation of the PD-MSF

Following a similar approach to that used to compute the PI-MSF, we now compute the PD-MSF by solving the variational equation (28) with $\Gamma = \text{diag}\{1, 0, 0\}$. The PD-MSF together with its two-dimensional representation are depicted in Fig. 5. From the diagrams of Fig. 5 we note that similarly to the PI case, a purely static ($\gamma = 0$) or dynamic ($\alpha = 0$) coupling is found able to guarantee synchronization above a certain threshold.
FIG. 6. Evolution of the error dynamics for a network of 100 Lorenz coupled with dynamic PD for the three different network topologies: (a) at point P_1, (b) at point P_2.

Most importantly, we note once again that an appropriate choice of $\hat{\alpha}$ and $\hat{\gamma}$ can considerably enhance the stability of the synchronous solution, suggesting that depending on the network structure (via λ_k, for $k \in \{2, \cdots, N\}$), the static (α) and dynamic (γ) coupling gains can be properly adjusted in order to guarantee synchronization.

In the following we validate the theoretical predictions of the PD-MSF shown in Fig. 5 by considering the same three networks structures of the previous example. Note that at the point $P_1 = (\hat{\alpha}, \hat{\gamma}) = (4, 4)$ the networks should not synchronize, while at $P_2 = (\hat{\alpha}, \hat{\gamma}) = (4, 8)$ (see diagram in Fig. 5(b)) synchronization should be attained.

Hence, for P_1 we have that $\alpha = \beta$ is equal to 2.54, 7.2 and 12.17 for the random, scale-free and small world networks respectively, while for P_2: (4, 8) we have that β is 5.09, 14.41 and 25.15 for each network configuration. The time response of the three networks at points P_1 and P_2 are shown in Fig. 6 which confirms the theoretical findings.

IV. APPLICATION TO NETWORKS OF MECHANICAL OSCILLATORS

Synchronization in mechanical systems can be traced back to the seventeenth century, to the observation on coupled pendulum clocks made by the Dutch scientist Christiaan Huygens32. Nowadays, synchronization in mechanical networks is an active research field with applications including networks of robot manipulators27, networks of electromechanical power generators15, horizontal platform systems1, harmonic oscillators35, etc. Here, we consider a nonlinear oscillator, which is a mass-damper-spring system described by the paradigmatic Duffing equations31 with an external forcing signal.

A. Mathematical Model of the Duffing Oscillator

The free-body diagram of a duffing oscillator is depicted in Fig. 7, and its dynamics are described by31

\begin{align}
\frac{dx}{dt} &= v \quad (32) \\
\frac{dv}{dt} &= -d_y v - (-k_y + k_d x^2)x + k(F(t) - x) \quad (33)
\end{align}

where x and v are the position and velocity of a mass m respectively. d_y is the viscous damping, while k_y and k_d are both constants representing the linear and nonlinear stiffness of the spring respectively. $F(t) := \delta(t) + u(t)$ is an external forcing signal which is transmitted through a linear spring with associated constant stiffness k. $\delta(t)$ is the periodic forcing signal given by $\delta(t) := q\sin(\omega t)$ and u is a control input.

B. Mechanical Network Model

We consider the case where N Duffing oscillators can be interconnected through ideal linear springs and dampers with associated constants k_c and d_c respectively (see Fig. 8). Thus, the mechanical network of duffing oscillators can be represented by a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E}, \mathcal{A})$, where \mathcal{N} is the set of indices for each oscillator and \mathcal{A} denotes the adjacency matrix representing the architecture of the interconnections between any pair of Duffing oscillators. The overall network dynamics can then be
written as
\begin{align}
\frac{dx_i}{dt} &= v_i \\
\frac{mv_i}{dt} &= -d_y v_i - (-k_y + k_d x_i^2) x_i + k(\delta(t) - x_i) + k u_i \\
&\quad + \sum_{j=1}^{N} a_{ij} \left[k_c (x_j - x_i) + d_c \frac{d}{dt}(x_j - x_i)\right]
\end{align}

where \(x_i\) and \(v_i\) represent the position and velocity of the \(i\)th oscillator. \(a_{ij}\) are the elements of the adjacency matrix with \(a_{ij} = 1\) if there is an interconnection between oscillator \(i\) and \(j\) and \(a_{ij} = 0\) otherwise, for any \(i, j \in N\). Next we show that the mechanical network (34)-(35) can be written as network (1) with dynamic diffusive coupling of PD type, and we study the synchronization of the network when the control action is first absent and then when there is coupling through a feedback on the accelerations of neighbouring oscillators.

C. Mechanical network neglecting the control input

In this case we consider \(u_i = 0\) in (35) and we assess the stability of the synchronous solutions. Then, by setting \(x_i := [x_i, y_i]^T, a = -d_y/m, b = (k_y - k)/m, c = -k_d/m, d = k/m,\) the overall network dynamics can be written in compact form (1) with \(\sigma = 1/m,\) and
\[
f = \begin{bmatrix} v \\
a v + b x + c x^3 + d \delta(t) \end{bmatrix}
\]

while the dynamic coupling \(h(x_j, y_j)\) is a proportional-derivative one (5) with \(\alpha = k_c, \gamma = d_c\) and
\[
\Gamma_P = \Gamma_I = \begin{bmatrix} 0 & 0 \\
1 & 0 \end{bmatrix}
\]

Note that the first row of the inner coupling matrix are zeros since the first state variable of each oscillator is not affected by any coupling term and feedback is implemented through the second state variable with contributions depending only on the position \(x_i\) of the neighbouring Duffing systems. We set the parameters of each oscillator as \(a = -0.1, b = 0, c = 1, k = 3, q = 1.8667, \) and \(\omega = 1\) so that they exhibit chaotic behaviour\(^{19}\). Also without loss of generality we assume all oscillators have unitary mass \(m = 1\) so that \(\sigma = 1\). Then following a procedure similar to that followed for the Example III C, we obtain the two dimensional diagram of the PD-MSF shown in Fig. 9(a), for the network of Duffing oscillators.

Note that when the oscillators are only coupled through springs, i.e. via purely proportional coupling (\(\dot{\gamma} = 0\)) we have that the MSF exhibits multiple intersections at zero leading to two unstable regions where
synchronization is not attained. When a damper is included in the coupling i.e. an additional derivative action is added to the coupling among oscillators, stability is much improved as for values of $\hat{\gamma} > 0.16$ we observe the PD-MSF to be always negative for any value of α.

D. Mechanical network with distributed acceleration control

Next we use our theoretical derivations to design a distributed control action to extend the network synchronizability region. Specifically, we consider the following coupling protocol based on the accelerations of the oscillators in the network. Namely, we set

$$u_i = K_u \frac{d}{k} \sum_{j=1}^{N} a_{ij} \left(\frac{dv_j}{dt} - \frac{dv_i}{dt} \right)$$ \hspace{1cm} (37)

where dv_i/dt is the acceleration of the ith oscillator and K_u is the control gain. Using the notation introduced above, we can rewrite the resulting network as a network of the form (1) coupled through the PD protocol in (5) with

$$\Gamma_P = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \Gamma_I = \begin{bmatrix} 0 & 0 \\ 1 & K_u \end{bmatrix}$$

Solving the variational equation (28), we obtain the two dimensional diagram shown in Fig. 9(b) when $K_u = 2$. Note that the new coupling strategy notably extends the stability region when compared to Fig. 9(a). In particular, we now observe the PD-MSF to remain negative for any value of α when $\hat{\gamma}$ is greater than 0.05.

Contrary to the case where no control action is present and the coupling matrices are set to be identical $\Gamma_P = \Gamma_I$, the addition of the feedback control term (37) makes the coupling matrices Γ_P and Γ_I to be different from each other. Such independence of the coupling matrices has a notably effect on the stability by expanding the region where synchronization is attained. Even, recent studies on this aspect support the idea that this independence on the inner coupling matrices represents an extra degree of freedom that may be used to enhance synchronization.

We wish to emphasize that the uncontrolled network of mechanical oscillators can be also studied with the classic MSF approach by considering only diffusive static couplings, nevertheless, when the acceleration feedback is present the overall network dynamics cannot be recast as a static problem and a PD coupling should be considered instead.

V. ROBUSTNESS ASSESSMENT: HETEROGENEOUS NODE DYNAMICS

In many practical applications networks are often heterogeneous with nodes being described by different vector fields. Therefore, we investigate next synchronization of networks with dynamic PI/PD couplings when a mismatch on the parameters of each node dynamics is present. In particular we consider a network of the form

$$\frac{dx_i}{dt} = f(x_i, \mu_i) - \sigma \sum_{j=1}^{N} L_{ij} h(x_j, y_j), \forall i \in \mathcal{N}$$ \hspace{1cm} (38)

where μ_i represents a generic constant parameter. Note that μ_i renders the node dynamics heterogeneous when at least one parameter μ_i of the ith node is different from the others. In this case exact synchronization cannot be achieved since the nodes do not share a common solution onto which to synchronize. Instead, trajectories remain asymptotically close to each other with a bounded error depending on the coupling strength value and the network structure.

A. Case study I: nonidentical Lorenz oscillators

For the sake of simplicity we consider four chaotic Lorenz (29) coupled in an All-to-All network configuration. We set $\mu_i = \omega_i$ as the parameter undergoing mismatches so that $\mu_i = -2$ for $i = 1, 3$ (just nodes 1 and 3), while $\mu_i = -2.15$ otherwise. As a measure of synchronization and to better expound the results of our analysis, we first average the disagreement signal $d(t)$ defined in (31) neglecting the transient response. We denote such average as $< d >$. Next we rescale $< d >$ in the range $[0, 1]$ by considering an exponential function

$$\bar{d} := e^{-c<d>}$$ \hspace{1cm} (39)

where c is a non-negative constant representing the sensitivity of the rescaling. Note that for large values of $< d >$, d takes values close to zero (high synchronization error), while if instead $< d >$ is close to zero the function \bar{d} tends to one (corresponding to a lower synchronization error).

We calculate \bar{d} varying the static coupling gain in the range $\alpha \in [0, 15]$ with an increment step of 0.125 for different values of the integral and derivative coupling strengths. The results are shown in Fig. 10 where for each point we calculate the average of \bar{d} over 100 trials starting from random initial conditions.

It is important to highlight that for tuning the value of the sensitivity c, the worst case scenario is considered, i.e. all the oscillators are uncoupled. First, note that simplifying c from (39) one has that $c = -ln(\bar{d})/ < d >$ with \bar{d} representing the level of synchronization. Since the oscillators are uncoupled, no synchronization is attained and \bar{d} should be exactly zero; however, in our numerical simulator we assume $\bar{d} = 10^{-5}$ for this worst case scenario. Finally, we calculate $< d >$ for 100 different initial conditions yielding $c = -ln(10^{-5})/\min_k(< d >)$ where $\min_k(< d >)$ is the best error case out of the $k = 100$ trials, yielding $c = 0.5459$. Note from Fig. 10 that when the integral or derivative actions are neglected (purely proportional diffusive coupling) the network exhibits a
B. Case study II: nonidentical mechanical oscillators

Following the example presented above we consider again an All-to-All network of four chaotic mechanical oscillators (34)-(35). For the sake of completeness we first show the case when all the oscillators are identical; so that, the results of the PD-MSF in Fig. 9(a) are validated. In Fig. 11(a), the rescaled average disagreements are shown for the All-to-All mechanical network with null control input, using three different values of the derivative gain where synchronization is attained (i.e. $\dot{d} = 1$). Finally, we choose the amplitude of the forcing signal $\delta(t)$ to be a parameter undergoing mismatches, i.e. $\mu_i = q_i$ for $i = \{1, 2, 3, 4\}$. Specifically we consider $\mu_i = 1.8667$ for nodes 1 and 3, while $\mu_i = 1.9667$ for nodes 2 and 4 and we calculate the rescaled average disagreement \dot{d} with $c = 6.1301$ as can be seen in Fig. 11(b). Once again the addition of a derivative term in the coupling among oscillators is shown to improve the network synchronization performance when heterogeneities are present.

VI. CONCLUSIONS

Inspired by a theoretical control approach, we studied two different types of dynamic coupling strategies to achieve synchronization in a network of nonlinear dynamical systems. In both cases the coupling consists of a static diffusive term complemented by either an integral or derivative term depending on the mismatch of the states between neighboring nodes. We shown that the presence of dynamic coupling can notably expand the region where synchronization is attained. The numerical observations were confirmed analytically by extending the well known MSF approach to the case where the couplings are dynamic of PI/PD type. Synchronization regions are shown to be non trivial functions of the coupling parameters and network structure exhibiting complex geometries. Moreover, we have shown that dynamic couplings are of particular importance when some parameter mismatches are presents at nodes, since the coupling gains can be properly tuned for decreasing the residual error. Analytical estimations of such errors are the subject of ongoing work where the aim is to adapt the Extended MSF approach to the case of dynamic couplings. We wish to emphasize that the presence of both static and dynamic contributions for each existing link in the network can be relaxed by considering a multiplex approach where the proportional and the integral/derivative couplings are deployed independently from each other. Pre-
liminary numerical results show that this extra-degree of freedom can also be exploited for enhancing synchronization. This is currently under investigation and will be presented elsewhere.

