2-Pyridyl substituents enhance the activity of palladium–phospha-adamantane catalysts for the methoxycarbonylation of phenylacetylene†

Timothy A. Shuttleworth, Alexandra M. Miles-Hobbs, Paul G. Pringle* and Hazel A. Sparkes

The synthesis of a series of CgPAr ligands is reported, where CgP is the 6-phospha-2,4,8-trioxa-1,3,5,7-tetramethyladamant-6-yl moiety and Ar = 2-pyridyl (L2), 3-pyridyl (L3), 2-pyrimidyl (L4), 4-R-2-pyridyl (R = Me (L5a), CF3 (L5b), SiMe3 (L5c)) or 6-R-2-pyridyl (R = Me (L6a), CF3 (L6b), SiMe3 (L6c)). Testing of these ligands in the Pd-catalysed methoxycarbonylation of phenylacetylene reveals that the activity and branched selectivity of the catalysts derived from these ligands varies as a function of the N-heterocycle, with the catalyst derived from L5a being the most active of those tested. This, together with the poor performance of catalysts derived from L3 supports the hypothesis that the catalysis proceeds by a “proton shuttling” mechanism, an idea that previously had only been applied to arylphosphines. Reaction of [PtCl2(cod)] with L where L = L2 or L4–7 yields a rac/meso mixture of the trans-[PtCl2(L)] (1a–h) complexes, three of which are structurally characterised. 31P NMR spectroscopy shows that reaction of L3 with [PtCl2(cod)] gives a mixture of mononuclear and binuclear metal complexes in solution. The complex trans-[PdCl2(L2)] (4) reacts with AgBF4 to give the [PdCl(k2-L2)(k2-L2)]BF4 (5) with spectroscopic and structural characterisation confirming the presence of a P,N-chelate. 1H and 31P NMR evidence supports the assignment of a pyridyl-protonated species being formed upon treatment of 4 with TsOH·H2O in CD2Cl2; both the protonated species and chelate 5 are observed when the reaction is carried out in MeOH.

Introduction

The palladium-catalysed methoxycarbonylation of alkynes (Scheme 1) is an atom-efficient way of producing branched or linear α,β-unsaturated esters from readily available feedstocks.1,2

The methoxycarbonylation of propyne (Scheme 1, R = Me) has been extensively studied owing to the industrial interest in the branched product, methyl methacrylate (MMA) which is a precursor to poly(methyl methacrylate).3 The methoxycarbonylation of phenylacetylene (Scheme 1, R = Ph) produces methyl atropate (branched product), a precursor to ibuprofen4 or methyl cinnamate (linear product), which has applications in the perfume and flavouring industries.4

The activity, selectivity and stability of the palladium catalyst for methoxycarbonylation depend critically on the ligand. Drent et al. reported that changing the ligand from PPh3 to Ph3P(2-py) (L1) led to an increase in rate of three orders of magnitude for propyne and an increase in branched selectivity from 89% to 99%.2 It was postulated that a “non-classical” carbomethoxy mechanism involving P,N-chelates was in operation and the greater catalyst activity was a result of the Ph3P(2-py) acting as a “proton messenger”,3 by bringing the proton into close proximity to the metal and thereby promoting the protonolysis of the proposed vinyl-palladium intermediate as shown in Scheme 2.

Recently, Bühl et al. reported a computational study of several possible pathways for methoxycarbonylation.3 Drent’s original mechanism was challenged, as it was found that the postulated, selectivity-determining transition state would
favour the formation of linear product (methyl crotonate) over the branched product (MMA). Instead, an alternative cycle involving labile P,N-chelates was proposed which proceeded by an \textit{in situ} base mechanism (Scheme 3) closely related to that described by Scrivanti \textit{et al.}6 This was suggested to be the most plausible mechanism due to it having surmountable barriers congruent with the high turnover and selectivity observed experimentally with \textit{L}1. Common to the Drent and Bühl mechanisms (Schemes 2 and 3) is the chelation of the P,N ligand which acts to stabilise the catalyst. Catalysts derived from \textit{Ph}3P(2-py) have been shown to be excellent for phenylacetylene methoxycarbonylation (Scheme 1, \textit{R} = \textit{Ph}).5,6

It has also been observed that substituents on the 2-pyridyl ring have a pronounced effect upon the performance of the catalyst; moreover \textit{Ph}3P(3-py) and \textit{Ph}3P(4-py) give catalysts of much lower activity.3 Palladium complexes of other monophosphines with the potential to form heterodonor P,L-chelates (e.g. pyrimidylphosphines,7 iminophosphines,8 phosphinoquinilines,9 furylphosphines10 and so called TROP\textsubscript{P}s11) have been shown to be efficient methoxycarbonylation catalysts. It is notable that in all of these ligands an \textit{Ar}2P moiety is present.12

Ligands incorporating the 6-phospha-2,4,8-trioxa-1,3,5,7-tetramethyladamant-6-yl (CgP) moiety are effective for a range of Pd-catalysed carbonylation reactions.13 CgPR and \textit{t}Bu2PR are comparable in terms of bulk but very different in \textit{σ}/\textit{π}-bonding characteristics: the donor properties of CgPR are comparable to a (PhO)2PR.14 It was therefore of interest to investigate CgP(2-py) (\textit{L}2) and its derivatives as ligands for Pd-catalysed methoxycarbonylation of phenylacetylene. We show here that the Pd-\textit{L}2 catalysts are active and that 4- and 6-substituents on the 2-pyridyl affect the performance of the catalyst. The platinum and palladium coordination chemistry of these ligands has been explored which has given some insight into the function of \textit{L}2 and related ligands.

Results and discussion

Ligand synthesis

The synthesis of CgP(2-py) (\textit{L}2) has previously been reported via a Pd-catalysed \textit{P}-arylation of CgPH15 and we have extended the route to the preparation of cage phosphines containing 3-pyridyl (\textit{L}3), 2-pyrimidyl (\textit{L}4), 4-substituted-2-pyridyl (\textit{L}5-7a) and 6-substituted-2-pyridyl (\textit{L}5-7b) (Scheme 4). These air-stable ligands were purified by column chromatography and have been fully characterised. Crystals of all of the ligands \textit{L}2-7 suitable for X-ray crystallography have been obtained. The structures are very similar to each other and so only \textit{L}2, as a representative structure, is shown in Fig. 1 along with its main metrical parameters; the structures of \textit{L}3-7 are given in the ESI.†

Methoxycarbonylation catalysis

In order to draw comparisons in performance among the ligands, the methoxycarbonylation of phenylacetylene (eqn (1)) has been carried out in the presence of \textit{L}1-7, PPh3 and CgPPh under the same reaction conditions and the results are presented in Table 1.
the catalyst was not stable. As previously reported,\(^4\) the very presumably metallic palladium, was observed indicating that and at the end of the runs, copious amounts of black deposit,

\[
\text{Ph} \quad \text{Pd/L/H}^+ \quad \text{CO, MeOH} \quad 60 \degree C \quad \text{Ph} = \text{Ph} \quad (1)
\]

and at the end of the runs, copious amounts of black deposit, presumably metallic palladium, was observed indicating that the catalyst was not stable. As previously reported,\(^4\) the very high activity of the catalyst derived from \(L_1\) (entry 3) contrasts sharply with that of the isosteric \(PPh_3\) analogue (entry 1). The \(CgPPh\) is superior to \(PPh_3\) in producing a moderately active catalyst (entry 2) that shows no evidence of decomposition to metallic \(Pd\) during the catalytic runs.

Table 1 Catalytic methoxycarbonylation of phenylacetylene\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>ligand</th>
<th>% Conversion(^b)</th>
<th>% Branched(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(PPh_3)</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>(CgPPh)</td>
<td>72</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>(L_1)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>(L_2)</td>
<td>89</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>(L_{5a})</td>
<td>63</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>(L_{5b})</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>7</td>
<td>(L_{6a})</td>
<td>92</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>(L_{6b})</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>(L_{7a})</td>
<td>89</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>(L_{7b})</td>
<td>87</td>
<td>34</td>
</tr>
<tr>
<td>11</td>
<td>(L_3)</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>(L_4)</td>
<td>75</td>
<td>47</td>
</tr>
<tr>
<td>13</td>
<td>—</td>
<td><2</td>
<td>—</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: 5.5 mmol of phenylacetylene, \(5.5 \times 10^{-3}\) mmol of \(Pd(OAc)_2\), 2.2 mmol of \(p\)-tolysulfonic acid monohydrate, 1.1 mmol of ligand, \(1.5 \text{ cm}^3\) of \(MeOH\), 45 bar of \(CO\), \(60 \degree C\). \(^b\) Conversion and selectivity determined by \(^{1}H\) NMR (see Experimental for details). Each result is an average of 2 or more runs. \(^c\) The rest of the product was the linear isomer.

Ligand \(L_2\) (entry 4) produced a higher activity catalyst than \(CgPPh\) (entry 3) indicating that the 2-pyridyl group has a positive effect within the \(CgPAr\) series of ligands. This is reinforced by the low activity observed with the 3-pyridyl isomer \(L_3\) (entry 11). The pyrimidyl group in ligand \(L_4\) (entry 12) led to a catalyst with lower activity than \(L_2\).

The results for the catalysts derived from \(L_{5a}\) and \(L_{5b}\) show that substituents \(Me\), \(CF_3\) and \(SiMe_3\) at the 4- and 6-positions in the 2-pyridyl ring can, in some cases, have a significant effect on the conversion compared to the unsubstituted \(L_2\). However, there appears to be no consistent trends associated with the stereoelectronic effect of the substituents. Relative to \(L_2\): (1) the 4-Me ligand \(L_{5a}\) (entry 5) gives a significantly lower conversion while the 6-Me ligand \(L_{5b}\) (entry 6) gives a significantly higher conversion; (2) the 4-CF_3 and 4-SiMe_3 ligands, \(L_{6a}\) (entry 7) and \(L_{7a}\) (entry 9), perform similarly to \(L_2\) while the 6-CF_3 and 6-SiMe_3 ligands, \(L_{6b}\) (entry 8) and \(L_{7b}\) (entry 10), produce catalysts of lower activity than \(L_2\).

In terms of branched selectivity, there is some evidence that the 6-substituted 2-pyridyl ligands \(L_{5-7b}\) give more branched-selective catalysts than their 4-substituted isomers \(L_{5-7a}\) (entries 5–10). Others have reported similar observations with 4- and 6-substituted pyridyl derivatives of \(L_4\) that is, greater branched selectivity was obtained with 6-substituted than with 4-substituted pyridyl ligands.\(^4\)

In order to elucidate the function of the 2-pyridyl in the Pd-catalysis, the coordination chemistry of \(L_{2-7}\) with Pt and Pd has been investigated.

Coordination chemistry

Ligands \(L_{2-7}\) have been reacted with \([PtCl_2(\text{cod})]\) (\(\text{cod} = 1,5\)-cyclooctadiene) in \(CH_2Cl_2\). With the exception of the reaction with \(L_1\) (see below), products of the type \(trans-[PtCl_2(L_i)](1a-h)\) were obtained (Scheme 5) which have been fully characterised.
The 31P NMR spectra of the products in each case showed two closely spaced singlets with 195Pt satellites ($J_{P,Pt}$ values are typical of trans-[PtCl$_2$(PR$_3$)$_2$] complexes) consistent with the presence of rac and meso diastereomers resulting from the chirality of the cage ligands.14

Crystals suitable for X-ray crystallography of 1c, 1d, 1e and 1g (meso isomers in each case) were grown by slow diffusion of hexane into a CH$_2$Cl$_2$ solution of a rac/meso mixture of the corresponding complex. As shown in Fig. 2–5, in each case, the ligands adopt an anti conformation, with the C(pyridyl)–P–P–C(pyridyl) torsion angle of 180°.

The reaction of [PtCl$_2$(cod)] with the 3-pyridyl ligand L$_3$ gave different results from those for all of the 2-pyridyl ligands L$_1$, and L$_4$–7. The 31P NMR spectrum of the products of the reaction of [PtCl$_2$(cod)] with 2 equiv. of the 3-pyridyl ligand L$_3$ showed four signals with 195Pt satellites, as well as free ligand (δ_P ~29.5 ppm). Two of the signals were assigned to rac/meso-[PtCl$_2$(L$_3$)$_2$] (11) because of the similarity of their 31P NMR data (δ_P ~2.6 ppm, $J_{P,Pt} = 2703$ Hz; δ_P ~2.8 ppm, $J_{P,Pt} = 2710$ Hz) to those of the analogues 1a–h. The remaining two signals were assigned to binuclear complexes of the type [Pt$_2$Cl$_2$(L$_3$)$_2$(μ-Cl)$_2$] on the basis of their large $J_{P,Pt}$ values (δ_P 8.3 ppm, $J_{P,Pt} = 4592$ Hz; δ_P 7.9 ppm $J_{P,Pt} = 4608$ Hz). Two types of isomerism (syn/anti and rac/meso) would be expected for [Pt$_2$Cl$_2$(L$_3$)$_2$(μ-Cl)$_2$]; in view of the 0.4 ppm difference in their δ_P values, we tentatively assign the two observed 31P NMR signals to syn- and anti-2 (Scheme 6) with the signals expected for the rac and meso isomers unresolved. Mixtures of mononuclear and binuclear products were also reported in the reaction of [PtCl$_2$(cod)] with 2 equiv. CgPPh$_{14}$ and so the observation of exclusive formation of mononuclear complexes 1a–h appears to be an effect of the 2-pyridyl group. It is tempting to associate this with weak Pt···N interactions stabilising the mononuclear complexes.
although in the solid state at least, no such interactions were detected in complexes 1c–e and 1g (see Fig. 2–5).

The ability of 2-pyridylphosphines to switch between P-monodentate and P,N-bidentate coordination has been invoked as part of the explanation for the high activity of Pd-complexes of 2-pyridylphosphines in methoxycarbonylation.3,5,6 It was therefore of interest to investigate if 2-pyridylphosphine L2 could form 4-membered P,N-chelates. Treatment of the trans complex 1a with 1 equiv. of AgBF4 gave a precipitate of AgCl and a solution whose 31P{1H} NMR spectrum was consistent with the formation of the monochelate 3[BF4] (Scheme 7). Two doublets were observed at -48.1 ppm ($^3J_{P,Pt} = 2728$ Hz) and $+0.8$ ppm ($^3J_{P,Pt} = 3514$ Hz) with a small $^2J_{P,P}$ of 11 Hz typical of cis coordinated phosphines. The signal at -48.1 ppm is assigned to the P,N-chelate since its high field shift is characteristic of a 4-membered chelate.16 The lower value of $^1J_{P,P}$ for the chelate-P is consistent with the ring strain being relieved by lengthened Pt–P bonds; the crystal structure of the Pd analogue 5[BF4] (see below) supports this inference.

In a similar manner to that described above for the Pt analogues, reaction of [PdCl2(cod)] with 2 equiv. of L2 yielded trans-[PdCl2(L2)2] (4) which has been fully characterised. Treatment of 4 with 1 equiv. of AgBF4 gave a product assigned the structure 5[BF4], the Pd analogue of 3[BF4] (Scheme 8). Crystals of 5[BF4] suitable for X-ray crystallography were obtained and its crystal structure determined (Fig. 6) which confirmed the cis orientation of the two P-donors. The chelate ring strain is apparent from the acute P–Pd–N angle of 69.0°. The Pd–P length within the chelate is longer (by ca. 0.02 Å).
than that for the monodentate ligand perhaps reflecting the ring strain.

The 31P(1H) NMR spectrum of $5\mathrm{[BF}_4]$ in CHCl$_3$ showed a slightly broadened ($w_{1/2} \sim 8$ Hz) signal at 28.8 ppm, corresponding to the monodentate ligand, and a sharp doublet at -42.7 ppm ($^3J_{PP} = 3.2$ Hz), assigned to the P,N-chelate. The signals remain distinct but broaden as the temperature is raised (e.g. $w_{1/2} \sim 70$ Hz at 100 °C in CHCl$_3$) indicating that cation 5 is fluxional, which is associated with intramolecular interchange of chelating and non-chelating P,N ligands. Iggo et al. have shown that the complex [PdCl(κ^2-Ph$_2$P(2-py))][(κ^2-Ph$_2$P(2-py))][BF$_4$] (an analogue of $5\mathrm{[BF}_4]$) is fluxional but with a coalescence temperature for the 31P NMR signals of ~ 30 °C which is at least 150 °C lower than for cation 5. The high barrier to exchange in 5 can be rationalised in terms of steric hindrance to Pd-P bond rotation which may be required in order for the pyridyl-nitrogen in the κ^2-L$_2$ to coordinate. Energy barriers to κ^2-P,P bond rotation in complexes containing cis-M(CgPH)$_2$ moieties have previously been shown to be of the order of 50 kJ mol$^{-1}$.

Complex 4 is only sparingly soluble in CD$_2$Cl$_2$ but addition of 1.1 equiv. of TSOH.H$_2$O to a suspension of 4 in CD$_2$Cl$_2$ gave a homogenous yellow solution. The 31P NMR spectrum showed two broad peaks at 6.0 and 3.7 ppm ($w_{1/2} \sim 57$ Hz and 53 Hz respectively), which are tentatively assigned to diastereoisomers of protonated species such as 6 (Scheme 9) with rapid proton exchange rendering the 31P NMR signals equivalent on the NMR timescale. In the 1H NMR spectrum of 6 a broad signal centred at 6.55 ppm is assigned to the exchanging N-H. When a suspension of 4 in MeOH was treated with TsOH, the 31P NMR spectrum of the resulting solution displayed two broad signals at 6.3 and 4.5 ppm (assigned to 6) but in addition, two signals at 28.8 and -42.2 ppm are present, suggesting that the P,N-chelate 5[OTs] is also generated (Scheme 9).

The Pd and Pt coordination chemistry of L$_2$ has shown that the ligand can be monodentate (κ^1) or chelating (κ^2) and the pyridyl-N can be protonated by TsOH. These properties are essential for the catalyst to be able to function in a manner similar to L$_4$ shown in Schemes 1 and 2. Tellingly, the 31P(1H) NMR spectrum of the mixture obtained after catalysis runs involving Pd and L$_4$ showed, amongst other peaks, a prominent signal at -37.8 ppm, reminiscent of the peak observed at -42.1 ppm for the cation 5, suggesting that a four-membered Pd chelate is present.

Conclusions

A series of substituted pyridyl-functionalised phospha-adamantyl ligands L$_{2-7}$ have been made and fully characterised. It was found that, in some cases, substituents on the pyridyl ring had a marked effect on the rate of Pd-catalysed methoxycarbonylation of phenylacetylene. The 6-methyl substituted ligand L$_{5b}$ showed good activity and selectivity for the branched product albeit lower than that of the well-known Ph$_2$P(2-py) (L$_1$). The catalytic performance is a function of the substituents on the pyridine consistent with the idea that a mechanism involving P,N-chelation and “proton shuttling” may be operating.

The Pt and Pd coordination chemistry of L$_{2-7}$ has been probed and the ability of the ligands to form P,N-chelates has been established in solution from the characteristic 31P NMR spectra and in the solid state by the crystal structure of a palladium complex containing L$_2$ ligands bound in a κ^1- and κ^2-mode. Moreover protonation of the pyridyl-N in a Pd-L$_2$ complex has been observed in solution. In contrast to the CgP(2-py) ligands, the CgP(3-py) ligand L$_3$ gives binuclear Pt complexes in a similar fashion to the CgPPh.

The methoxycarbonylation activity with catalysts derived from CgP(2-py) and its derivatives demonstrates that the 2-pyridyl effect is not restricted to Ph$_2$P(2-py) and its derivatives. The CgP and Ph$_2$P moieties have very different stereoelectronic effects and therefore the results presented hold out the prospect that other R$_2$P(2-py) ligands may be useful for alkyn methoxycarbonylation catalysis.

Experimental

General procedures

All reactions were carried out under an atmosphere of dry nitrogen, unless otherwise stated, using standard Schlenk line techniques and oven dried (200 °C) glassware. CH$_3$Cl$_2$ and hexane were collected from a Grubbs type solvent purification system, and deoxygenated by bubbling with N$_2$ for 30 minutes. Xylene and CD$_2$Cl$_2$ were dried over activated 4 Å molecular sieves for 72 hours and deoxygenated by successive freeze–pump–thaw cycles. MeOH was purchased as anhydrous, stored over 3 Å molecular sieves and deoxygenated by bubbling with N$_2$ for 30 minutes. Other commercial reagents were used as supplied unless otherwise stated. [PtCl$_3$(cod)]$_{19}$ [PdCl$_2$(cod)]$_{20}$ 1,3,5,7-tetramethyl-4,6,8-triaza-2-phospha-adamantane (CgPH)$_{21}$ CgPPh. 14 Ph$_2$P(2-py) 22 (L$_4$) 2-bromo-4-(trimethylsilyl)pyridine. 23 and 2-bromo-6-(trimethylsilyl)pyridine 24 were synthesised accord-
ing to literature procedures. $^{1} \text{H}$, $^{11} \text{B}$, $^{13} \text{C}$, $^{19} \text{F}$ and $^{31} \text{P}$ NMR spectra were recorded at ambient temperature unless otherwise stated, on Jeol ECP (Eclipse) 300, Jeol ECS 300, Jeol ECO 400, Varian 400-MR, Varian VNMRSS 500 spectrometers and a Bruker Avance III HD 500 spectrometer equipped with a $^{13} \text{C}$-observe (DCH) cryogenic probe. Chemical shifts are given in parts per million (ppm) and coupling constants J are in Hz. $^{1} \text{H}$ and $^{13} \text{C}$ chemical shifts were referenced to residual solvent peaks. $^{19} \text{F}$ and $^{31} \text{P}$ chemical shifts were referenced to BF$_3$OEt$_2$, CFC$_1$ and 85% H$_3$PO$_4$ respectively. Mass Spectra were recorded by the University of Bristol Mass Spectrometry Service on VG Analytical Autospec (El) or VG Analytical Quattro (ESI) spectrometers. Elemental Analysis was carried out by the Microanalytical Laboratory of the School of Chemistry, University of Bristol. X-ray crystallography was performed by the University of Bristol X-ray Analytical Service using Bruker AIXS microstar or Bruker Kappa Apex II diffractometers. Thin Layer Chromatography (TLC) was performed using Merck Kieselgel 60 F$_{254}$ (Merck) aluminium backed plates (0.25 mm layer of silica). Flash column chromatography was performed using a Biotage Isolera Spectra One Chromatographic Isolation system.

General procedure for the synthesis of pyridyl-functionalised phospha-adamantyl ligands. A Schlenk flask was charged with a suspension of CGP (1 equiv.), K$_2$CO$_3$ (3 equiv.) and [Pd[PPh$_4$_]$_3$] (3 mol%) in toluene (6 cm3). The desired ArBr (1.2 equiv.) was added and the mixture heated to 110 °C and stirred for 24 h. The mixture was then allowed to cool and, in air, passed through silica, eluting with Et$_2$O. Removal of the solvents in vacuo yielded the crude product.

CGP(2-pyrm) (L$_2$). Prepared according to a literature procedure.14 Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a CH$_2$Cl$_2$ solution of the product. Spectroscopic data the same as those reported.

CGP(3-py) (L$_3$). Purification by flash column chromatography (20% EtOA/c/hexane) yielded the product as a white solid (0.432 g, 71%). Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a CH$_2$Cl$_2$ solution of the product. $^{1} \text{H}$ NMR (400 MHz, CDCl$_3$): $\delta =$ 8.93–8.92 (m, 1H, ArH (H-2)), 8.61–8.59 (m, 1H, ArH (H-6)), 8.19–8.15 (m, 1H, ArH (H-4)), 7.31–7.26 (m, 1H, ArH (H-5)), 2.05 (dd, $J_{\text{H,H}}$ = 13.3 Hz, $J_{\text{H,P}}$ = 7.3 Hz, 1H, CGP CH$_2$), 1.94 (dd, $J_{\text{H,H}}$ = 25.1 Hz, $J_{\text{H,P}}$ = 7.3 Hz, 1H, CGP CH$_2$), 1.66 (dd, $J_{\text{H,H}}$ = 15.3 Hz, 1H, CGP CH$_2$), 1.51 (dd, $J_{\text{H,H}}$ = 13.4 Hz, $J_{\text{H,P}}$ = 4.3 Hz, 1H, CgP CH$_3$), 1.49 (dd, $J_{\text{H,H}}$ = 12.8 Hz, 3H, CGP CH$_3$), 1.41 (s, 6H, CGP CH$_3$), 1.25 (dd, $J_{\text{H,H}}$ = 13.3 Hz, 3H, CGP CH$_3$). $^{13} \text{C}$ NMR (101 MHz, CDCl$_3$): $\delta =$ 155.6 (d, $J_{\text{C,P}}$ = 26.4 Hz, ArC (C-2)), 150.5 (s, ArC (C-6)), 142.3 (d, $J_{\text{C,P}}$ = 14.5 Hz, ArC (C-4)), 130.6 (d, $J_{\text{C,P}}$ = 32.4 Hz, ArC (C-3)), 123.6 (d, $J_{\text{C,P}}$ = 4.4 Hz, ArC (C-5)), 97.0 (s, CGP quat. C), 96.2 (s, CGP quat. C), 73.3 (d, $J_{\text{C,P}}$ = 21.6 Hz, CGP quat. C), 73.2 (d, $J_{\text{C,P}}$ = 7.3 Hz, CGP quat. C), 45.3 (d, $J_{\text{C,P}}$ = 17.7 Hz, CGP CH$_3$), 36.4 (d, $J_{\text{C,P}}$ = 1.9 Hz, CGP CH$_3$), 28.1 (s, CGP CH$_3$), 27.9 (s, CGP CH$_3$), 27.5 (d, $J_{\text{C,P}}$ = 22.2 Hz, CGP CH$_3$), 26.9 (d, $J_{\text{C,P}}$ = 11.1 Hz, CGP CH$_3$). $^{31} \text{P}$ NMR (162 MHz, CDCl$_3$): $\delta =$ 29.5 (s, CGP). HRMS (EI): EI/m/z calc. for C$_{17}$H$_{19}$NO$_3$P [M$^+$] $=$ 309.1184; obs. = 309.1174. Elem. Anal. found (calc. for C$_{15}$H$_{18}$NO$_3$P): C, 61.78 (61.43); H, 6.94 (6.87); N, 5.00 (4.78).
(δ, J_H,P = 12.3 Hz, 3H, CgP CH_3), 1.41 (d, J_H,P = 12.5 Hz, 3H, CgP CH_3), 1.40 (s, 3H, CgP CH_3), 1.35 (s, 3H, CgP CH_3). 31^1^H NMR (126 MHz, CDCl_3): δ_C = 60.1 (d, J_C,P = 10.7 Hz, ArC-C(6)-), 158.9 (d, J_C,P = 14.4 Hz, ArC-(C-2)-), 135.6 (d, J_C,P = 1.2 Hz, ArC-(C-4)-). 126.2 (d, J_C,P = 8.4 Hz, ArC[C(3)]), 122.6 (s, ArC-C(5)-), 10.9 (d, J_C,P = 9.9 Hz, CgP quat. C), 73.1 (d, J_C,P = 22.9 Hz, CgP quat. C), 45.2 (d, J_C,P = 16.7 Hz, CgP CH_2), 37.6 (d, J_C,P = 2.1 Hz, CgP CH_2), 28.2 (s, CgP quat. C), 28.0 (s, CgP CH_3), 27.9 (d, J_C,P = 20.4 Hz, CgP CH_3), 27.3 (d, J_C,P = 11.8 Hz, CgP CH_3), 24.3 (s, Ar-CH_3). 31^P{1^H} NMR (162 MHz, CDCl_3): δ_P = -24.9 (s, CgP). HRMS (EI): m/z calc. for C_{16}H_{19}F_3NO_3P [M + H]^+ = 380.1410; obs. = 380.1404. Elem. Anal. found (calc. for C_{16}H_{19}F_3NO_3P): C, 62.44 (62.53); H, 7.27 (7.22); N, 4.57 (4.56).

CgP(4-CF_3-2-py) (L_{4a}). Purification by flash column chromatography (10% EtOAc/hexane) yielded the product as a white solid (0.390 g, 56%). Crystals suitable for X-ray diffraction were grown by slow evaporation of a CH_2Cl_2 solution of the product. 1^H NMR (500 MHz, CDCl_3): δ_H = 8.64 (d, J_H,H = 4.7 Hz, 1H, ArH (H-3)), 8.11 (br s, 1H, ArH (H-6)), 7.30 (d, J_H,H = 4.7 Hz, 1H, ArH (H-5)), 2.10 (dd, J_H,H = 13.3 Hz, 1H, CgP CH_3), 1.92 (dd, J_H,P = 23.4 Hz, 1H, ArH (H-3)), 1.80 (d, J_H,H = 13.3 Hz, 1H, CgP CH_3), 1.57 (d, J_H,P = 12.4 Hz, 3H, CgP CH_3), 1.51 (dd, J_H,H = 13.3 Hz, 1H, ArH (H-4)), 1.42 (s, 3H, CgP CH_3), 1.41 (d, J_H,P = 12.6 Hz, 3H, CgP CH_3), 1.37 (s, 3H, CgP CH_3), 0.32 (s, 9H, Si(CH_3)_3). 31C{1^H} NMR (126 MHz, CDCl_3): δ_C = 159.6 (d, J_C,P = 13.5 Hz, ArC-C(2)-), 149.8 (s, ArC-C(4)-), 149.1 (d, J_C,P = 13.4 Hz, ArC-C(3)-), 133.9 (d, J_C,P = 9.1 Hz, ArC-C(6)-), 127.3 (s, ArC-C(5)-), 96.9 (s, CgP quat. C), 96.3 (s, CgP quat. C), 73.5 (d, J_C,P = 9.7 Hz, CgP quat. C), 73.1 (d, J_C,P = 22.7 Hz, CgP quat. C), 45.2 (d, J_C,P = 16.7 Hz, CgP CH_3), 37.5 (d, J_C,P = 2.1 Hz, CgP CH_3), 28.2-27.8 (m, CgP CH_3), 27.3 (d, J_C,P = 11.4 Hz, CgP CH_3), 1.6 (s, Si(CH_3)_3). 31^P{1^H} NMR (162 MHz, CDCl_3): δ_P = -64.8 (s, Ar-CF_3). HRMS (EI): m/z calc. for C_{18}H_{28}F_3NO_3PSi [M + H]^+ = 366.1699; obs. = 366.169. Elem. Anal. found (calc. for C_{18}H_{28}F_3NO_3PSi): C, 59.55 (59.15); H, 7.89 (7.72); N, 4.02 (3.83).

CgP(6-SiMe_3-2-py) (L_{5b}). Purification by flash column chromatography (10% EtOAc/hexane) yielded the product as a white solid (0.424 g, 42%). Crystals suitable for X-ray diffraction were grown by slow evaporation of a CH_2Cl_2 solution of the product. 1^H NMR (400 MHz, CDCl_3): δ_H = 7.71 (d, J_H,H = 7.9 Hz, 1H, ArH (H-3)), 7.73 (br s, 1H, ArH (H-6)), 7.38 (d, J_H,H = 7.5 Hz, 1H, ArH (H-5)), 2.15 (d, J_H,H = 13.2 Hz, 1H, CgP CH_3), 2.10 (dd, J_H,H = 13.2 Hz, 1H, CgP CH_3), 1.91 (d, J_H,P = 23.5 Hz, 1H, ArH (H-4)), 1.57-1.51 (m, 3H, CgP CH_3 and 1H CgP CH_3), 1.47 (d, J_H,P = 12.5 Hz, 3H, CgP CH_3), 1.42 (s, 3H, CgP CH_3), 1.33 (s, 3H, CgP CH_3), 0.30 (s, 9H, Si(CH_3)_3). 31C{1^H} NMR (126 MHz, CDCl_3): δ_C = 165.0 (d, J_C,P = 10.0 Hz, ArC-(C-6)-), 160.5 (d, J_C,P = 13.4 Hz, ArC-(C-2)-), 133.0 (d, J_C,P = 3.2 Hz, ArC-(C-4)-). 128.4 (d, J_C,P = 17.2 Hz, ArC-(C-3)-). 127.4 (s, ArC-(C-5)-), 96.9 (s, CgP quat. C), 96.4 (s, CgP quat. C), 73.7 (d, J_C,P = 8.7 Hz, CgP quat. C), 73.2 (d, J_C,P = 23.4 Hz, CgP quat. C), 45.3 (d, J_C,P = 16.8 Hz, CgP CH_3), 37.7 (d, J_C,P = 2.0 Hz, CgP CH_3), 28.1 (s, CgP CH_3), 28.0 (s, CgP CH_3), 27.9 (d, J_C,P = 19.9 Hz, CgP CH_3), 27.4 (d, J_C,P = 11.6 Hz, CgP CH_3), 1.6 (s, Si(CH_3)_3). 31^P{1^H} NMR (162 MHz, CDCl_3): δ_P = -26.9 (s, CgP). HRMS (EI): m/z calc. for C_{18}H_{28}NO_3PSi [M + H]^+ = 366.1649; obs. = 366.1651. Elem. Anal. found (calc. for C_{18}H_{28}NO_3PSi): C, 59.29 (59.15); H, 7.79 (7.72); N, 3.87 (3.83).
heating in MeOH (ca. 0.5 cm³) with TsOH·H₂O (2 equiv.) and Pd(OAc)₂ (0.1 equiv.) for 24 h and no decomposition was observed.)

[PtCl₃(L₁₂)] (1a). A solution of L₂ (0.157 g, 0.537 mmol) in CH₂Cl₂ (2 cm³) was added to a solution of [PtCl₃(cod)] (0.100 g, 0.267 mmol) in CH₂Cl₂ (2 cm³) and stirred for 24 hours. In air, the product was then precipitated in hexane (ca. 25 cm³). After the mixture was allowed to settle, the supernatant was removed using a pipette and the residual solvent removed in vacuo to give the product as a pale yellow solid (0.184 g, 81%). rac : meso compounds observed in 3 : 2 ratio.¹ H NMR (500 MHz, CDCl₃): δ = 8.76 (d, J = 4.9 Hz) and 8.76 (d, J = 4.9 Hz) (total 2H, ArH (H-6), 8.04–8.01 (m, 2H, ArH (H-3)), 7.70–7.64 (m, 2H, ArH (H-4)), 7.32–7.26 (m, 2H, ArH (H-5)), 3.04 (dt, J = 13.6 Hz, J = 2.3 Hz) and 2.95 (dt, J = 13.6 Hz, J = 2.3 Hz) (total 2H, CgP H₃₂), 1.98–1.81 (m, 3H, CgP H₅₈), 1.85 (vir t, J = 6.2 Hz) and 1.80 (vir t, J = 6.2 Hz) (total 6H, CgP H₇₄), 1.74 (vir t, J = 6.7 Hz) and 1.69 (vir t, J = 6.7 Hz) (total 6H, CgP H₇₄), 1.66–1.59 (m, 1H, CgP H₂), 1.39 (s) and 1.34 (s) (total 6H, CgP H₂), 1.27 (s) and 1.26 (s) (total 6H, CgP H₂).³¹ P{¹H} NMR (126 MHz, CDCl₃): δ = 154.2 (vir t, J = 154.1 Hz, ArC (C-2)), 149.6 (app q, J = 8.4 Hz, ArC (C-6)), 134.7 (app q, J = 3.3 Hz, ArC (C-3)), 130.7 (app q, J = 8.3 Hz, ArC (C-3)), 123.9 (s, ArC (C-5)), 96.4–96.2 (m, CgP quat. C), 74.9 (vir t, J = 14.1 Hz) and 74.7 (vir t, J = 14.1 Hz) (CgP quat. C), 73.8 (vir t, J = 11.1 Hz) and 73.7 (vir t, J = 11.1 Hz) (CgPquat. C), 42.2 (vir t, J = 3.8 Hz) and 42.1 (vir t, J = 3.8 Hz) (CgP CH₂), 41.9–41.8 (m, CgP CH₂), 27.9 (s, CgP CH₂), 27.7 (s, CgP CH₂), 27.6 (br s) and 27.2 (br s) (CgP CH₂), 26.0 (vir t, J = 2.0 Hz) and 25.8 (vir t, J = 2.5 Hz) (CgP CH₂). H₂.³¹ P¹H NMR (162 MHz, CDCl₃): δ = -0.6 (s, J = 2740 Hz) and -1.1 (s, J = 2727 Hz) (CgP). HRMS (ESI): m/z calc. for C₃₂H₄₄ClN₂O₆P₂Pt [M – Cl]⁺ = 816.1695; obs. = 816.1690. Elem. Anal. found (calc. for C₃₀H₄₀Cl₂N₂O₆P₂Pt): C, 39.66 (39.35); H, 4.57 (4.48); N, 6.34 (6.56).

[PtCl₃(L₃₅)] (1c). A solution of L₅₅ (0.018 g, 0.058 mmol) in CH₂Cl₂ (1 cm³) was added to a solution of [PtCl₃(cod)] (0.010 g, 0.027 mmol) in CH₂Cl₂ (1 cm³) and stirred for 24 hours. In air, the product was then precipitated in hexane (ca. 25 cm³). After the mixture was allowed to settle, the supernatant was removed using a pipette and the residual solvent removed in vacuo to give the product as a pale yellow solid (0.022 g, 86%). Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a CH₂Cl₂ solution of the product. rac : meso compounds observed in 3 : 2 ratio.¹ H NMR (500 MHz, CDCl₃): δ = 8.60 (s, J = 5.0 Hz) and 8.58 (d, J = 5.0 Hz) (total 2H, ArH (H-6)), 7.89 (br s) and 7.86 (br s) (total 2H, ArH (H-3)), 7.14 (d, J = 4.7 Hz) and 7.10 (d, J = 5.0 Hz) (total 2H, ArH (H-5)), 3.05 (d of vir t, J = 13.6 Hz, J = 2.1 Hz) and 2.95 (d of vir t, J = 13.6 Hz, J = 2.1 Hz) (total 2H, ArH (H-3)), 2.38 (s) and 2.35 (s) (total 6H, Ar–CH₃), 2.05–2.02 (m, 1H, CgP H₅₈), 1.98–1.88 (m, 2H, CgP H₇₄), 1.84 (vir t, J = 6.2 Hz) and 1.80 (vir t, J = 6.2 Hz) (CgP CH₂), 1.73 (vir t, J = 6.6 Hz) and 1.68 (vir t, J = 6.6 Hz) (total 6H, CgP CH₂), 1.65–1.56 (m, 3H, CgP CH₂), 1.39 (s) and 1.34 (s) (total 6H, CgP CH₂), 1.27 (s) and 1.26 (s) (total 6H, CgP CH₂).³¹ C¹H NMR (126 MHz, CDCl₃): δ₁₅₉.₃ (vir t, J = 34.6 Hz, ArC (C-2)), 149.8 (vir t, J = 8.7 Hz) and 149.6 (vir t, J = 8.7 Hz) (ArC (C-6)), 146.9–146.7 (br s, ArC (C-4)), 132.2 (vir t, J = 8.7 Hz) and 132.0 (vir t, J = 8.7 Hz) (ArC (C-3)), 125.6 (s, ArC (C-5)), 96.9 (s, CgP quat. C), 96.8 (s) and 96.7 (s) (CgP quart. C), 75.5 (vir t, J = 14.0 Hz) and 75.3 (vir t, J = 14.0 Hz) (CgP quart. C), 74.4 (vir t, J = 11.1 Hz) and 74.3 (vir t, J = 11.1 Hz) (CgP quart. C), 42.9 (app q, J = 4.1 Hz, CgP CH₂), 42.4 (s) and 42.3 (s) (CgP CH₂), 27.8 (s, CgP CH₂), 27.6 (s) and 27.5 (s) (CgP quart. C), 182.7–180.2 (m, 4H, CgP CH₂), 1.37 (s) and 1.35 (s) (total 6H, CgP CH₂), 1.20 (s, 6H, CgP CH₂).³¹ P¹H NMR (162 MHz, CDCl₃): δ = -0.6 (s, J = 2738 Hz) and -1.0 (s, J = 2729 Hz) (CgP). HRMS (ESI): m/z calc. for C₃₂H₄₄ClN₂O₆P₂Pt [M – Cl]⁺ = 844.2009; obs. = 844.1993. Elem. Anal. found (calc. for C₃₀H₄₀Cl₂N₂O₆P₂Pt): C, 43.47 (43.64); H, 5.07 (5.04); N, 3.19 (3.18).

[PtCl₃(L₅₅)] (1d). A solution of L₅₅ (0.017 g, 0.055 mmol) in CH₂Cl₂ (1 cm³) was added to a solution of [PtCl₃(cod)] (0.010 g, 0.027 mmol) in CH₂Cl₂ (1 cm³) and stirred for 24 hours. In air, the product was then precipitated in hexane (ca. 25 cm³). After the mixture was allowed to settle, the supernatant was removed using a pipette and the residual solvent removed in vacuo to give the product as a pale yellow solid (0.020 g, 78%). Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a CH₂Cl₂ solution of the product. rac : meso compounds observed in 3 : 2 ratio.¹ H NMR (500 MHz, CDCl₃): δ = 8.77–8.74 (m, 2H, ArH (H-3)),
A solution of L₄a (0.020 g, 0.055 mmol) in CH₂Cl₂ (1 cm³) was added to a solution of [PtCl₂(cod)] (0.010 g, 0.027 mmol) in CH₂Cl₂ (1 cm³) and stirred for 24 hours. In air, the product was then precipitated in hexane (ca. 25 cm³). After the mixture was allowed to settle, the supernatant was removed using a pipette and the residual solvent removed in vacuo to give the product as a pale yellow solid (0.019 g, 72%). Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a CH₂Cl₂ solution of the product. rac: meso compounds observed in 3:1 ratio.

A solution of L₄a (0.040 g, 0.110 mmol) in CH₂Cl₂ (1 cm³) was added to a solution of [PtCl₂(cod)] (0.020 g, 0.053 mmol) in CH₂Cl₂ (1 cm³) and stirred for 24 hours. In air, the product was then precipitated in hexane (ca. 25 cm³). After the mixture was allowed to settle, the supernatant was removed using a pipette and the residual solvent removed in vacuo to give the product as a pale yellow solid (0.035 g, 66%). Crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a CH₂Cl₂ solution of the product. rac: meso compounds observed in 1:1 ratio.
A solution of 1b (0.040 g, 0.110 mmol) in CH2Cl2 (1 cm3) was added to a solution of [PtCl2(cod)] (0.020 g, 0.053 mmol) in CH2Cl2 (1 cm3) and stirred for 24 hours. In air, the product was then precipitated in hexane (ca. 25 cm3). After the mixture was allowed to settle, the supernatant was removed using a pipette and the residual solvent removed in vacuo to give the product as a pale yellow solid (0.044 g, 83%). *rac: meso* compounds observed in 1:1 ratio. 1H NMR (500 MHz, CD2Cl2); δ 8.04 (d, JHH = 13.6 Hz) and 7.88 (d, JHH = 13.6 Hz) (total 2H, ArH (H-3)), 7.60–7.52 (m, 2H, ArH (H-4)), 7.48 (d, JHH = 7.4 Hz) and 7.44 (d, JHH = 7.4 Hz) (total 2H, ArH (H-5)), 3.90–3.04 (m, 2H, CgP CH2) 2.29 (d, JHH = 13.6 Hz) and 2.18 (d, JHH = 13.6 Hz) (total 2H, CgP CH2), 1.87–1.58 (m, 16H, CgP CH2 CH2), 1.36 (s) and 1.33 (s) (total 6H, CgP C) 1.26 (s) and 1.25 (s) (total 6H, CgP C), 0.32 (s) and 0.32 (s) (total 18H, Si(Ch3)). 31P{1H} NMR (162 MHz, CD2Cl2); δP = 169.0 (br s) and 168.8 (br s) (ArC (C-6)), 155.1 (s) and 155.0 (s) (ArC (C-2)), 133.0–132.8 (m, ArC (C-3)), 130.4 (vir t, JCP = 10.2 Hz) and 130.2 (vir t, JCP = 9.7 Hz) (ArC (C-3)), 128.9 (s) and 128.8 (s) (ArC (C-5)), 96.9–96.8 (m, CgP quat. C), 75.6–75.3 (m) and 74.7–74.3 (m) (CgP quat. C), 42.9 (vir t, JCP = 3.8 Hz) and 42.8 (vir t, JCP = 3.9 Hz) (CgP CH2), 42.4 (s) and 42.3 (s) (CgP CH2), 28.0 (s, CgP CH2), 27.8 (s) and 27.7 (s) (CgP CH2), 27.4 (br s) and 27.3 (br s) (CgP CH2), 26.4 (br s) and 26.3 (br s) (CgP CH2), 1.56 (s) and 1.57 (s) (Si(Ch3)). 31P{1H} NMR (202 MHz, CD2Cl2); δP = 1.61 (s) and 1.59 (s) (JCP = 2722 Hz) and = 1.9 (s, JCP = 2722 Hz) (CgP CH2). HRMS (ESI): m/z calc. for C19H18Cl3N2O2P2Si2 [M + H]⁺ = 845.8724; obs. = 845.8721. Anal. Found (calc. for C19H18Cl3N2O2P2Si2): H, 5.94 (5.84); N, 5.70 (5.67).}
CH₂Cl₂ solution of the product. ¹H NMR (500 MHz, CD₂Cl₂): δH: 8.92–8.89 (m, 1H, ArH), 8.79–8.78 (m, 1H, ArH), 8.41–8.36 (m, 1H, ArH), 8.06–8.02 (m, 2H, ArH), 7.87–7.79 (m, 2H, ArH), 7.79–7.47 (m, 1H, ArH), 2.43–1.27 (m, 32H, CgP C₃H₃ and CgP CH₂). ¹₁B²[H] NMR (128 MHz, CD₂Cl₂): δB = −2.2 (s, BF₄). ¹³F NMR (377 MHz, CD₂Cl₂): δF = −152.8 (s, BF₄). ³¹P²[H] NMR (121 MHz, CD₂Cl₂): δP = 28.8 (br s, monodentate CgP), −42.1 (d, ²¹P–F = 3.2 Hz, chelate CgP). ³¹P²[H] NMR (121 MHz, CD₂Cl₂, −90 °C): δP = 28.8 (d, ²¹P–F = 3.2 Hz, monodentate CgP), −42.0 (br s, chelate CgP). HRMS (ESI): m/z calc. for C₃₀H₄₀BClF₄N₂O₆P₂Pd·CH₂Cl₂: [M⁺]+ = 727.1088; obs. = 727.1118. Elem. Anal. found (calc. for C₃₀H₄₀BClF₄N₂O₆P₂Pd·CH₂Cl₂): C, 41.79 (41.36); H, 4.86 (4.70); N, 3.20 (3.11) (the presence of CH₂Cl₂ was confirmed by ¹H NMR spectroscopy and was observed in the crystal structure).

Protonation studies

TsOH·H₂O (0.003 g, 0.015 mmol) was added to a suspension of 4 (0.010 g, 0.013 mmol) in CD₂Cl₂ (0.7 cm³), upon which the solution became homogeneous, yielding species assigned to be a mixture of 6 and a P,N-chelate species related to [OTs]⁺. ³¹P²[H] NMR (121 MHz, CD₂Cl₂): δP = 6.0 (br s, CgP) and 3.7 (br s, CgP). An analogous procedure in MeOH (0.7 cm³) also gave a homogenous solution, assigned to be a mixture of 6 and a P,N-chelate species related to [OTs]⁺.

Phenylacetylene methoxycarbonylation

Adapted from previously reported procedure.⁹ Catalysis was performed using a Baskerville Multi-Cell autoclave. The ligand (0.11 mmol) was added to the autoclave and the system put under an atmosphere of N₂. Solutions of Pd(OAc)₂ (0.0055 mmol) in MeOH (0.5 cm³) and TsOH·H₂O (0.22 mmol) in MeOH (0.5 cm³) were then added, followed by phenylacetylene (5.5 mmol). This was then washed in using MeOH (0.5 cm³) and the autoclave flushed with three cycles of CO (ca. 10 bar). The autoclave was then pressurised to 45 bar and heated to 60 °C. After 1 hour or 4.5 hours, the autoclave was transferred to an ice bath and once cooled, the system was vented. A small amount of each sample was dissolved in CDCl₃ and analysed by ¹H NMR spectroscopy. Conversion and selectivity was determined by integration of the phenylacetylene alkynyl proton (δH = 3.10 ppm) and the methyl atropate (δH = 6.38 and 5.90 ppm) and methyl cyanimate (δH = 7.71 and 6.42 ppm) alkynyl protons.

X-ray crystallography

All of the X-ray diffraction data were collected at 100 K on a Bruker Apex II diffractometer with CCD area detector using Mo-Kα radiation (λ = 0.71073 Å). Absorption corrections were carried out using SADABSS.²⁵ All of the structures were solved using Superflip²⁶,²⁷ and refined by full matrix least squares on F² using ShelXL²⁸,²⁹ within Olex2.³⁰ The structure of meso-1g displayed disorder in the cage, the occupancies of the disordered atoms were refined with the sum of the occupancies set to 1 before being fixed at the refined values. Restraints were applied to the bond lengths and the thermal parameters of pairs of disordered atoms on almost the same site were constrained to be equal. The structure of 5 was twinned and refined as a 2-component twin. In addition, the BF₄⁻ counterion displayed disorder in the fluorine positions, the sum of the occupancies were set to equal 1 and refined before being fixed at the refined values. Restraints were applied to maintain sensible thermal parameters and B-F distances. Crystal structure and refinement details are given in Tables S1–S3 in ESI.† Crystallographic data for the compounds have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication, CCDC 1497885-1497898.

Acknowledgements

The Bristol Chemical Synthesis Centre for Doctoral Training (BCS CDT) funded by the Engineering and Physical Sciences Research Council (EPSRC) (EP/G036764/1) and the University of Bristol are thanked for a PhD studentship (to T. A. S.).

References

25 G. M. Sheldrick, *SADABS V2012/1*, University of Göttingen, Germany.

