Robust Tracking and Vibration Suppression for Nonlinear Two-Inertia System via Modified Dynamic Surface Control with Error Constraint

Shubo Wanga, Xuemei Rena,*, Jing Nab, Xuehui Gaoa

aSchool of Automation, Beijing Institute of Technology, Beijing 100081, China
bFaculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming Yunnan 650500, China

Abstract

This paper proposes a modified dynamic surface control (DSC) for speed tracking and torsional vibration suppression for two-inertia systems with nonlinear friction. The proposed controller contains two parts: tracking controller and friction compensator. The tracking controller is designed by modifying dynamic surface control, which replaces the traditional first-order filter with a high-gain tracking differentiator (HGTD). Meanwhile, an improved prescribed performance function with error constraint is also presented and incorporated into DSC design. As for the friction compensator, the nonlinear nonsmooth friction is parameterized and then compensated using echo state neural networks (ESNs). The state observer with friction compensation is used to estimate unmeasurable load speed and torsional torque. The effectiveness of proposed control scheme is verified by simulation and experiment results.

Keywords: Dynamic surface control, friction compensation, two-inertia system, vibration suppression, prescribed performance constraint.

*Corresponding author.

Email addresses: wangshubo1130@126.com (Shubo Wang), xuren@bit.edu.cn (Xuemei Ren), najing250163.com (Jing Na), xhgao@163.com (Xuehui Gao)
1. Introduction

Electric actuators are widely used for the drive systems in various industrial applications, such as servo drive, robot-arm, crane system and automotive industry. The drive system is composed of a motor connected to a load through a stiffness shaft and flexible coupling, which can be modeled as a two-inertia system. This configuration may cause the torsional vibration and lead to the failure of the drive system in some cases. In order to achieve stable operation and reduce the speed vibration, it is necessary to eliminate the torsional vibration.

In order to achieve stable operation and reduce the speed vibration, many control algorithms have been proposed to damp the torsional vibration. Among them, a Proportional-Integral-Derivative (PID) control [1, 2] is used for the speed control of a two-inertia system. Although this PID algorithm designed by using motor speed feedback is widely used in industry applications, it may cause decreased dynamic performance of drive system and may not be able to effectively suppress oscillations. To achieve highly precise control performance for a drive system, advanced control structures based on state feedbacks from state variables, such as motor speed, shaft torque, load speed and disturbance torque, are proposed in [3]. However, the state variables may not be used directly because these variables are difficult to measure in reality. Thus, the estimation and observation are needed to estimate these variables [4, 5, 6, 7, 8, 9]. In many papers, Luenberger observers are applied to observe the unmeasured state variables for the linear system with small measurement noise and nonchangeable parameter [10]. However, the performance of Luenberger observer may be unsatisfactory due to the nonlinearity, measurement noise and uncertainty. In [7], the Kalman filter is proposed for a two-inertia system. It is utilized to estimate the shaft torque, load speed and load torque of the two-inertia system. A sliding-mode and optimized PID controller with a grey estimator is proposed, where the gray estimator is used to estimate torsional torque and load speed [11].
Furthermore, artificial intelligent techniques are also utilized to suppress torsional vibration of the two-inertia system [12, 13, 14, 15, 16, 17]. A torsional vibration control approach is presented in [12], which is based on the additional feedback from the torsional torque and the load-side speed estimated by a neural network estimator. To estimate the motor-side speed for suppressing the torsional vibration, the neuro-fuzzy system is employed [13]. In [14], an adaptive sliding-mode neuro-fuzzy speed controller based on model reference adaptive structure is used to suppress torsional vibration. The modified fuzzy Luenberger observer based on the difference between the electromagnetic and estimated shaft torque [15] is reported.

The nonlinear nonsmooth friction should also be taken into account in the two-inertia system. To handle unknown nonlinearities, Recurrent Neural Networks (RNNs) and Fuzzy Logic systems (FLS) have been applied to approximate unknown nonlinearities owing to their nonlinear approximation and learning abilities [18, 19, 20, 21, 22, 23]. Recently, an echo state networks (ESNs) is reported as a simplified RNNs in [24, 25, 26]. ESNs has the function approximation capability of RNNs, but requires simpler training than RNNs. Compared with RNNs, the ESNs can easily be trained without adjusting the weights between the input layer and the hidden layer, and the connection weights of the reservoir network are not altered during the training phase. However, it is noted that the transient convergence of aforementioned classical adaptive control schemes cannot be guaranteed (e.g., the overshoot, convergence rate cannot be quantitatively studied).

Recently, a new prescribed performance control (PPC) approach is proposed [27, 28, 29, 30], to guarantee the convergence of output error to a predefined arbitrarily small region, where the convergence rate should be no less than a prespecified value. In [31], an improved prescribed performance function is proposed and incorporated into the controller design for the turntable servo system. An adaptive control with prescribed performance function is proposed for suspension systems to guarantee the error convergence rate, maximum overshoot and steady-state error within a predefined region [32]. However, to our best
knowledge, the prescribed performance control has not yet been applied for the nonlinear two-inertia system.

In this paper, we propose a recursive feedback controller for the nonlinear two-inertia system with PPC. Inspired by [30], an improved prescribed performance function with error constraint is proposed and incorporated into the controller design. A recursive feedback controller is designed by modifying DSC technique from all state variables. In particular, the nonlinear friction of the two-inertia system is difficult to observe and compensate. A nonsmooth friction physics-model proposed in [33] is re-parameterized, which can capture the various friction dynamic effects such as Coulomb friction, Viscous friction, Static friction and Stribeck effect. Then, the unknown nonlinear nonsmooth friction force is approximated by ESNs, and compensated online. In order to obtain the state variables, the state observer with the estimated friction is employed to estimate the unmeasured load speed and torsional torque. Simulations and experiments based on a realistic test rig are utilized to validate the proposed control scheme. The main contributions of this paper can be summarized as follows.

1. An improved prescribed performance function is developed and incorporated into the control design of DSC for the nonlinear two-inertia system, and the tracking error is ensured within a prescribed region.

2. A new dynamic surface controller is designed by using the high-gain tracking differentiator (HGTD) to replace the first-order filter in virtual intermediate control signal. The use of HGTD can lead to better transient performance than first-order filter in the classical DSC.

3. The nonlinear nonsmooth friction model has been further parameterized, and then ESNs are used to successfully online approximate and compensate for these nonlinear nonsmooth dynamics.

4. The state observer with estimation of friction is designed to observe unmeasured load speed and torsional torque.

The rest of this paper is organized as follows. Section 2 provides a description of the nonlinear two-inertia system, the structure of ESNs, and an improved
prescribed performance function. Section 3 designs a speed control by using the modified DSC and friction compensation. The stability of closed-loop system is given in Section 4. Section 5 presents simulation results. Section 6 is devoted to validate the proposed control scheme by experiments. Some conclusions are given in Section 7.

2. Problem Formulation

2.1. Mathematical Model of Nonlinear Two-Inertia System

A typical two-inertia system is composed of a servo motor connected to a load through a stiffness shaft and flexible coupling (Figure 1). The considered system could be described by the following state equation:

\[
\frac{d}{dt} \begin{pmatrix} \omega_m \\ m_s \\ \omega_l \\ J_l \\
\end{pmatrix} = \begin{pmatrix} -b_f \\ \frac{1}{J_l} \\ J_l \\
\end{pmatrix} \begin{pmatrix} \omega_l \\ m_s \\ \omega_m \\
\end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\
\end{pmatrix} + \begin{pmatrix} \frac{f}{J_l} \\ 0 \\ J_l \\
\end{pmatrix} \begin{pmatrix} \tau_m \\ \tau_l \\
\end{pmatrix} + \begin{pmatrix} \Delta_1(\omega_m, \omega_l) \\ \Delta_2(\omega_m, \omega_l) \\
\end{pmatrix}
\]

where \(\omega_m \) and \(\omega_l \) are the motor speed and load speed, \(J_m \) and \(J_l \) are the inertia of the motor and the load, \(f_m \) and \(f_l \) represent the nonlinear friction forces at the motor side and the load side, respectively. \(u \) is the motor electromagnetic torque, \(m_s \) is the shaft torque, \(k_f \) is the torsional stiffness coefficient, \(b_f \) is damping coefficient. \(\tau_m \) and \(\tau_l \) are the external disturbances of the motor side and the load side, \(\Delta_1(\omega_m, \omega_l) \) and \(\Delta_2(\omega_m, \omega_l) \) denote the parameters uncertainties.

Assumption 1: The reference input \(x_d, \dot{x}_d, \) and \(\ddot{x}_d \), are continuous and bounded, that is, there exists a known compact set \(\Omega_0 = \{ x_d, \dot{x}_d, \ddot{x}_d : x_d^2 + \dot{x}_d^2 + \ddot{x}_d^2 \leq \delta \} \), where \(\delta \) is a positive constant.

Assumption 2: The disturbances \(\tau_m, \tau_l \) and parameters uncertainties \(\Delta_1(\omega_m, \omega_l) \) and \(\Delta_2(\omega_m, \omega_l) \) are bounded.
The control objective is to design a feedback control strategy which ensures:
(i) the tracking error S converges to the prescribed performance boundary; (ii) vibration in the elastic shaft is damped; (iii) the friction is compensated; (iv) all signals in the closed-loop system are bounded.

2.2. Friction Model Structure

From Figure 1, the two-inertia system mainly includes two friction forces: the motor side friction f_m and the load side friction f_l. Note that, the motor side friction force f_m is a function of the motor side velocity ω_m, while the load side friction f_l is a function of the load side velocity ω_l.

The combination of two-inertia system model (1) gives

$$J_m \ddot{\omega}_m + J_l \ddot{\omega}_l = u - f - d$$

(2)

where $f = f_m + f_l$ defines the friction force of the two-inertia system, and $d = \tau_l + \tau_m + \tilde{\Delta}_1(\omega_m, \omega_l) + \tilde{\Delta}_2(\omega_m, \omega_l)$ denotes the external disturbance and uncertainties. Thus, they can be lumped as $F = -J_l \dot{\omega}_l + f + d$ and then referred to the uncertain dynamics to be compensated on the motor side [34].

Equation (2) is used to show that the friction of two-inertia system can be lumped as an entire friction force. There are two reasons to model the entire friction force f as reflected on the motor side. First, it is not straightforward to compensate the friction separately on the load side. However, it is possible to compensate the effects of frictions entirely on the motor side. Second, from the
point view of the torque compensation, the friction force is usually compensated by operating the driving motor. In this paper, we will propose a compensation strategy to compensate the friction as an entire friction imposed on the motor side.

In order to define the characteristics of the friction f, a physics-based model named LuGre model (LG) was reported in [33], which is able to capture dynamic friction effects, such as the Stribeck effect, Hysteresis, Stick-lop limit cycling, and Rising static friction (Figure 2). The LG model is described by an internal friction state ζ governed by

$$
\begin{align*}
 f &= \sigma_0 \zeta + \sigma_1 \dot{\zeta} + \sigma_2 \dot{v} \\
 \dot{\zeta} &= v - |v|\zeta/h(v) \\
 h(v) &= f_c + (f_s - f_c)e^{-(v^2/v_s^2)}
\end{align*}
$$

where v is the relative velocity between the two contacting surface at the motor side, that is, $v = \omega_m$, σ_0 is an equivalent stiffness, σ_1 is the microdamping coefficient of the internal state ζ, and σ_2 denotes the viscous friction coefficients, respectively. The function $h(v)$ is chosen to capture the Stribeck effect, where f_c and f_s are the levels of Coulomb friction and Static friction, respectively. v_s is the Stribeck velocity, which is the velocity for the sliding friction attains its minimal value. Notice that the LG model has the following property.

Property 1[33]: It follows from (3) that $f_c \leq h(v) \leq f_s$ if $|\zeta(0)| \leq f_s/\sigma_0$, then $|\zeta(t)| \leq f_s/\sigma_0$ for all $t \geq 0$.

2.3. Function Approximation Using ESNs

Recently, the ESNs have been successfully used to model nonlinear dynamical systems [26] and also used as a state observer to estimate nonlinear function [35]. It divides the weights of the recurrent neural network into two parts: 1) a hidden layer (dynamical reservoir) with sparsely and randomly interconnected neurons, and 2) a memoryless output layer (readout). The structure of ESNs is shown in Figure 3, where the ESNs have K inputs, N neurons in the hidden layer, and L neurons in the output layer. The continuous-time dynamics of a
leaky-integrator ESNs is given by

\[
\dot{X} = C \left(-aX + \psi(\Theta^{in}u + \Theta X + \Theta^{out}y) \right) \\
y = G(\Theta_0^T X)
\]

(4)

where \(X\) is \(N\)-dimensional activation state, \(C > 0\) is a time constant, \(a\) is the leaking decay rate, \(\psi(\cdot)\) is the internal unit’s activation function (sigmoid, etc.), \(G(\cdot)\) is the output activation function. \(\Theta^{in} \in \mathbb{R}^{N \times K}\), \(\Theta \in \mathbb{R}^{N \times N}\), \(\Theta^{out} \in \mathbb{R}^{N \times L}\) and \(\Theta_0 \in \mathbb{R}^{L \times (K+N+L)}\) are the input weight matrix, internal weight matrix, feedback connection weights and output weight matrix, respectively.

The ESNs system performs universal approximation in the sense that for any given real continuous function \(f(\cdot)\): \(\mathbb{R}^{L \times (K+N+L)} \rightarrow \mathbb{R}\) on a sufficiently large compact set \(\Omega \subset \mathbb{R}\) and arbitrary \(\varepsilon_m\), ESNs system \(y(x)\) exists in the form of (4) such that

\[
\sup_{x \in \Omega} |f(x) - y(x)| \leq \varepsilon_m
\]

(5)

The function \(f(x)\) can be expressed as

\[
f(x) = \Theta_0^T X(x) + \varepsilon^* \quad \forall x \in \Omega \subset \mathbb{R}^{a}
\]

(6)

where \(\varepsilon^*\) is the error of the ESNs and \(|\varepsilon^*| \leq \varepsilon_m\), the \(\Theta_0^*\) is the value of \(\Theta_0\) that minimizes the approximation error \(\varepsilon^*\). Therefore

\[
\Theta_0^* = \arg \min_{\Theta_0 \in \mathbb{R}^{L \times (K+N+L)}} \left\{ \sup_{x \in \Omega} |f(x) - \Theta_0^T X(x)| \right\}
\]

(7)
Because Θ_0 is unknown, it is replaced by the estimation value $\hat{\Theta}_0$ of Θ_0. Adaptive laws are required to update the parameter $\hat{\Theta}_0$ online to minimize the reference tracking error. Thus, the optimal ESNs weight can be written as

$$\hat{\Theta}_0 = \Theta_0 + \tilde{\Theta}_0$$

where $\tilde{\Theta}_0 = \hat{\Theta}_0 - \Theta_0$. By setting $C = 1$, $a = 1$, $G = 1$, it can be obtained from (5) that

$$X = \psi (\Theta_{in}u + \Theta X + \Theta_{out}y)$$

when $\dot{X} = 0$.

In this paper, we choose

$$X(Z) = [\varphi_1(Z), \varphi_2(Z), ..., \varphi_l(Z)]^T$$

as Gaussian functions with l being the node number of ESNs output layer. That is

$$\varphi_k(Z) = \exp \left\{ - \frac{(Z - \varsigma)^T (Z - \varsigma)}{\eta^2} \right\}$$

with $Z = [z_1, ..., z_i]^T$, $i = 1, ..., n$ being the number of input variables, ς and η are the center and radius of the Gaussian function.

2.4. Performance Function and Error Transformation

To study the transient and steady-state performances of tracking error $e(t) = [e_1(t), e_2(t), ..., e_i(t)]$, a smooth decreasing function $\lambda_i(t) : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ with $\lim_{t \rightarrow \infty} \lambda_i(t) = \lambda_{i\infty}$ will be used as prescribed performance function. In this paper, the $\lambda_i(t)$ is given as

$$\lambda_i(t) = (\lambda_{i0} - \lambda_{i\infty})e^{-c_i t} + \lambda_{i\infty}$$
Figure 4: Basic concept of prescribed performance

where \(\lambda_{i0} > \lambda_{i\infty} \) and \(c_i \) are design parameters.

According to [27], the prescribed performance is given as

\[
-\delta_i \lambda_i(t) < e_i(t) < \delta_i \lambda_i(t), \forall t > 0
\]

(12)

where \(-\delta_i\) and \(\delta_i\) are design parameters.

From (11) and (12), one can see that \(-\delta_i \lambda_{i0}\) defines the lower bound of the undershoot and \(\delta_i \lambda_{i0}\) defines the upper bound of the maximum overshoot. The decreasing rate \(c_i\) denotes the required speed of convergence of the tracking errors [31]. Hence, the transient and steady-state performance can be designed a priori via tuning the parameters \(-\delta_i, \delta_i, c_i, \lambda_{i0}\), and \(\lambda_{i\infty}\). To introduce prescribed performance, an error transformation is used to transform the original nonlinear system, with the constrained tracking error behavior (12), into an equivalent "unconstrained" one. With this purpose, we define a smooth strictly increasing function \(T_i(z_i)\) of transformed error \(z_i\), which possesses the following properties:

1) \(-\delta_i < T_i(z_i) < \delta_i, \forall z_i \in L\infty.\)

2) \(\lim_{z_i \to +\infty} T_i(z_i) = \delta_i\), and \(\lim_{z_i \to -\infty} T_i(z_i) = -\delta_i.\)

From these properties of \(T_i(z_i)\), (12) is equal to

\[
e_i(t) = \lambda_i(t)T_i(z_i).
\]

(13)
Then, z_i can be written as

$$z_i = T_i^{-1} \left(\frac{e_i(t)}{\lambda_i(t)} \right). \quad (14)$$

For any initial condition $e_i(0)$, if parameters $\lambda_i(0)$, $\bar{\delta}_i$, and δ_i are selected that $-\delta_i \lambda_i(0) < e_i(0) < \bar{\delta}_i \lambda_i(0)$ and z_i can be controlled to be bounded, then $-\delta_i < T_i(z_i) < \bar{\delta}_i$ holds. Then, the condition $-\delta_i \lambda_i(t) < e_i(t) < \bar{\delta}_i \lambda_i(t)$ is guaranteed. In this paper, we propose a new prescribed transformation function combined with the virtual control of the modified DSC. A candidate transformation function is chosen as

$$T_i(z_i) = \frac{\delta_i e^{z_i} - \delta_i e^{-z_i}}{e^{z_i} + e^{-z_i}}. \quad (15)$$

Then, from (15), the transformed error z_i is derived as

$$z_i = T_i^{-1} \left(\frac{e_i(t)}{\lambda_i(t)} \right) = R_i \left(\frac{e_i(t)}{\lambda_i(t)} \right) = \frac{1}{2} \ln \left(\frac{e_i(t)}{\lambda_i(t)} + \delta_i \right) - \frac{1}{2} \ln \left(\bar{\delta}_i - \frac{e_i(t)}{\lambda_i(t)} \right). \quad (16)$$

where $R_i(\cdot)$ is the inverse function of $T_i(\cdot)$. The transformed error will be utilized to ensure the prescribed output performance of the modified DSC scheme.

2.5. Luenberger State Observer

As mentioned previously, the two-inertia system is composed of a motor connected to a load machine through a shaft, which is difficult to measure all state variables. Consequently, the Luenberger state observer is designed to estimate torsional torque and the load speed. In this paper, the damping coefficient b_f is not considered because $k_f \gg b_f$.

Choose state vector $x = [\omega_l \quad m_a \quad \omega_m]^T$, $u = m_e$, $z = -F$. Then equation (1) can be written as follows:

$$\dot{x} = Ax + Bu + Bz$$
$$y = Cx$$

where $A = \begin{pmatrix} 0 & \frac{1}{J_l} & 0 \\ -k_f & 0 & k_f \\ 0 & \frac{1}{J_m} & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{J_m} \end{pmatrix}$, $C = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. To estimate
states x, the observer equation is

$$\dot{\hat{x}} = A\hat{x} + Bu + B\hat{z} + L(y - \hat{y})$$

$$\hat{y} = C\hat{x}$$

where \hat{x}, and \hat{y} represent estimations of x, and y, respectively. $L = [l_1, l_2, l_3]^T$ is the design matrix which must be designed so that the observer is stable. $\hat{z} = -\hat{F}$ with \hat{F} being the estimated lumped dynamics including frictions, which will be given by ESNs in the following Section.

Defining $\hat{x} = x - \hat{x}$ estimation error dynamics are then given by

$$\dot{\hat{x}} = \dot{x} - \dot{\hat{x}} = (A - LC)\hat{x} + B\hat{z}$$

where $\hat{z} = z - \hat{z}$. The important question in observer synthesis is that choosing appropriate matrix $A - LC$ to ensure the stability of error dynamics (19). A stability condition of the matrix $A - LC$ is presented in [36].

3. Controller Design

The proposed controller is composed of a modified error constraint dynamic surface controller (ECDSC) and the friction compensator (FC). Choose state variable $x = [x_1 \ x_2 \ x_3]^T = [\omega_l \ m_s \ \omega_m]^T$. The system (1) can be written as

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & J_l \\ -k_f & 0 & k_f \\ 0 & 1 & J_m \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1/J_m \end{pmatrix} (u - F)$$

Then the overall control u consists of a feedback control to retain tracking and an adaptive friction compensator, which will be designed in follow section.

3.1. Nonlinear High-Gain Tracking Differentiator

In [37], Guo proposed the nonlinear high-gain tracking differentiator (HGT-D) to improve the performance of closed-loop control system. In this section, HGTD will be incorporated into the traditional DSC design procedure to obtain
Figure 5: Closed-loop control diagram composed by two-inertia system, the ECDSC and FC.

the precise original intermediate control signals and the derivative signals. The form of HGTD is given as

\[
\begin{aligned}
\dot{\vartheta}_1(t) &= \vartheta_2(t) \\
\dot{\vartheta}_2(t) &= H^2 (-\rho_1 [\vartheta_1(t) - \bar{\chi}_i]^{\alpha} - \rho_2 [\vartheta_2(t)/H]^\beta)
\end{aligned}
\]

(21)

where \(\rho_i\), \(\alpha\), \(\beta\) and \(H\) are positive design parameters. \(\bar{\chi}_i\) represents the input signal of the HGTD, which is replaced by virtual intermediate control signal in the ECDSC design procedure.

Lemma 1 (37): If the signal \(\bar{\chi}_i\) satisfies, \(\sup_{t \in [0, \infty)} |\bar{\chi}_i^{(j)}| < \infty\) for \(j = 1, 2\), then the first differentiator (22) is convergent for any initial value of (22) and \(T > 0\), there exists \(H > H_0 > 0\) and \(t > T\), the following inequalities hold

\[
\|\vartheta_1(t) - \bar{\chi}_i\| \leq L_1(1/H)^{a/b}, |\vartheta_2(t) - \dot{\bar{\chi}}_i| \leq L_2
\]

(22)

where \(L_1, L_2, a\) and \(b\) are constants.

The fast finite-time convergence makes it superior to linear filters in the control design and synthesis. When incorporated into the ECDSC design procedure, (21) can solve the explosion of complexity caused by differentiation of the intermediate control signals in conventional backstepping method.
3.2. Design ECDSC

In this section, a modified ECDSC with HGTD is developed for the nonlinear two-inertia system. The ECDSC is designed in the following steps.

Step 1: Define the first error surface as

\[S_1 = \hat{x}_1 - x_d. \]
(23)

from (16), we can obtain

\[z_1 = R_1 \left(\frac{S_1}{\lambda_1} \right) \]
(24)

The time derivative of \(z_1 \) is

\[\dot{z}_1 = r_1 \left(\hat{S}_1 - \frac{\lambda_1}{\lambda_1} S_1 \right) = r_1 \left(\hat{x}_2 - \dot{x}_d - \frac{\lambda_1}{\lambda_1} S_1 \right) \]
(25)

where \(r_1 = (1/2\lambda_1)[1/(\rho_1 + \delta_1) - 1/(\rho_1 - \delta_1)] \), and \(\rho_1 = S_1/\lambda_1 \).

To avoid the problem of “explosion of complexity” in traditional backstepping design methods \([38]\), we let \(x_d \) go through a high-gain tracking differentiator as

\[
\begin{cases}
 \dot{\vartheta}_{1,1} = \vartheta_{2,1} \\
 \dot{\vartheta}_{2,1} = H^2 \left(-\rho_{1,1} [\vartheta_{1,1} - x_d]^{\alpha} - \rho_{2,1} [\vartheta_{2,1}/H]^{\beta} \right)
\end{cases}
\]
(26)

where \(H, \rho_{1,1}, \rho_{2,1}, \alpha, \) and \(\beta \) are the positive constants, \(\vartheta_{1,1} \) is the filter signal of the desired trajectory of \(x_d \). The time derivative of \(z_1 \) is

\[\dot{z}_1 = r_1 (\hat{x}_2 - \vartheta_{2,1} - \frac{\lambda_1}{\lambda_1} S_1) \]
(27)

By defining \(S_2 = \hat{x}_2 - \bar{\chi}_1 \) as the second error surface, one obtains

\[\hat{x}_2 = S_2 + \bar{\chi}_1. \]
(28)

The error transformation can be expressed as \(S_2 = \lambda_2 R_2^{-1}(z_2) \), Substituting (27) into (28) yields

\[\dot{z}_1 = r_1 \left(\lambda_2 R_2^{-1}(z_2) + \bar{\chi}_1 - \vartheta_{2,1} - S_1 \frac{\lambda_1}{\lambda_1} \right). \]
(29)

In order to make (29) negative, a virtual control \(\bar{\chi}_1 \) is defined as

\[\bar{\chi}_1 = -k_1 z_1 - \delta_1 \frac{r_1 z_1 \lambda_2}{|r_1 z_1 \lambda_2| + \mu_1} + \frac{S_1 \lambda_1}{\lambda_1} + \vartheta_{2,1}. \]
(30)
where $k_1 > 0$, $\delta_1 > 0$ and $\mu_1 > 0$ are the design parameters.

Step 2: In order to eliminate the explosion of complexity problem, we introduce a new state vector $\vartheta_2 = [\vartheta_{1,2}, \vartheta_{2,2}]^T$, and let $\bar{\chi}_1$ pass through a high-gain tracking differentiator as

\[
\begin{aligned}
\dot{\vartheta}_{1,2} &= \vartheta_{2,2} \\
\dot{\vartheta}_{2,2} &= H^2(\vartheta_{1,2} - \bar{\chi}_1)^\alpha - \rho_{2,2}[\vartheta_{2,2}/H]^\beta
\end{aligned}
\]

where $\rho_{1,2}$ and $\rho_{2,2}$ are the design parameters. The derivative of z_2 is given as

\[
\dot{z}_2 = r_2(\dot{S}_2 - \frac{\dot{\lambda}_2}{\lambda_2}S_2) = r_2(\dot{x}_2 - \dot{\hat{x}}_1 - \frac{\dot{\lambda}_2}{\lambda_2}S_2)
\]

where $r_2 = (1/2\lambda_2)[1/(\rho_2 + \delta_2) - 1/(\rho_2 - \delta_2)]$, and $\rho_2 = S_2/\lambda_2$.

The derivative of (32) is

\[
\dot{z}_2 = r_2[k_f(x_3 - \hat{x}_1) - \vartheta_{2,2} - \frac{\dot{\lambda}_2}{\lambda_2}S_2]
\]

By defining $S_3 = x_3 - \bar{\chi}_2$ as the third error surface, one obtains

\[
x_3 = S_3 + \bar{\chi}_2.
\]

Substituting (34) into (33) yields

\[
\dot{z}_2 = r_2[k_f(\lambda_3R_3^{-1}(z_3) + \bar{\chi}_2 - \hat{x}_1) - \vartheta_{2,2} - \frac{\dot{\lambda}_2}{\lambda_2}S_2]
\]

Choose the virtual control $\bar{\chi}_2$ as

\[
\bar{\chi}_2 = \frac{1}{k_f} \left(-k_2z_2 + \vartheta_{2,2} + \frac{\dot{\lambda}_2}{\lambda_2}S_2 \right) + \hat{x}_1 - \delta_2 \frac{r_2z_2\lambda_2^2}{|r_2z_2\lambda_3| + \mu_2}
\]

where $k_2 > 0$, $\delta_2 > 0$ and $\mu_2 > 0$ are the design parameters.

Step 3: In the final design step, the controller u will be obtained. The last error surface is defined as

\[
S_3 = x_3 - \bar{\chi}_2.
\]

The time derivative of z_3 is

\[
\dot{z}_3 = r_3(\dot{S}_3 - \frac{\dot{\lambda}_3}{\lambda_3}S_3) = r_3(x_3 - \hat{x}_2 - \frac{\dot{\lambda}_3}{\lambda_3}S_3)
\]

\[
= r_3\left(-\frac{1}{J_m}\dot{x}_2 + \frac{1}{J_m}u - \frac{1}{J_m}F - \hat{\dot{x}}_2 - \frac{\dot{\lambda}_3}{\lambda_3}S_3 \right)
\]

\[
= r_3\left(-\frac{1}{J_m}\dot{x}_2 + \frac{1}{J_m}u - \frac{1}{J_m}F - \hat{\dot{x}}_2 - \frac{\dot{\lambda}_3}{\lambda_3}S_3 \right)
\]
where \(r_3 = (1/2\lambda_3)[1/(\rho_3 + \delta_3) - 1/(\rho_3 - \delta_3)] \), and \(\rho_3 = S_3/\lambda_3 \).

Again, a new state vector \(\vartheta_3 = [\vartheta_{1,3}, \vartheta_{2,3}]^T \) is introduced, and let \(\tilde{\chi}_2 \) pass through a high-gain tracking differentiator as

\[
\begin{align*}
\dot{\vartheta}_{1,3} &= \vartheta_{2,3} \\
\dot{\vartheta}_{2,3} &= H^2 \left(-\rho_{1,3}[\vartheta_{1,3} - \tilde{\chi}_2]^\alpha - \rho_{2,3}[\vartheta_{2,3} / H]^\beta \right)
\end{align*}
\]

(39)

Then, the variable \(\dot{z}_3 \) can be rewritten as

\[
\dot{z}_3 = r_3 \left[\frac{1}{J_m} u - \frac{1}{J_m} \ddot{x}_2 - \frac{1}{J_m} F - \vartheta_{2,3} - \frac{\dot{\lambda}_3}{\lambda_3} S_3 \right]
\]

(40)

Finally, the control signal \(u \) is chosen to be

\[
u = J_m \left(-k_3 z_3 + \vartheta_{2,3} + \frac{\dot{\lambda}_3}{\lambda_3} S_3 \right) + \ddot{x}_2 + \hat{F}
\]

(41)

where \(k_3 > 0 \) is the design parameter, and \(\hat{F} \) is the estimated of unknown friction \(F \), which will be given in the following subsection.

3.3. ESNs Friction Compensation Design

In the above control design, the controller \(u \) is obtained, where the \(F \) was merged. To obtain \(\hat{F} \), the ESNs will be introduced to compensate it in this paper.

Defined \(\epsilon = \zeta - \zeta_0 \), the friction expression of the two-inertia system can be written as follows:

\[
F = \sigma_0 \zeta + \sigma_1 \dot{\zeta} + \sigma_2 \omega_m + d
\]

\[
= \sigma_2 \dot{\theta}_m + \left[f_c + (f_s - f_c)e^{-(\omega_m/\dot{\zeta}_s)^2} \right] sgn(\omega_m) + \sigma_0 \epsilon \left[1 - \frac{1}{f_c + (f_s - f_c)e^{-(\omega_m/\dot{\zeta}_s)^2}} |\omega_m| \right] + d.
\]

(42)

The first part \(\sigma_2 \omega_m + \left[f_c + (f_s - f_c)e^{-(\omega_m/\dot{\zeta}_s)^2} \right] sgn(\omega_m) \) is a static function of the velocity. The second part \(\sigma_2 \omega_m + \left[f_c + (f_s - f_c)e^{-(\omega_m/\dot{\zeta}_s)^2} \right] sgn(\omega_m) + \sigma_0 \epsilon \left[1 - \frac{1}{f_c + (f_s - f_c)e^{-(\omega_m/\dot{\zeta}_s)^2}} |\omega_m| \right] \) is scaled by the error \(\epsilon \) due to the dynamic perturbation in friction. Then

\[
F \leq \Delta_1 |\omega_m| + \Delta_2 + \left[f_c + (f_s - f_c)e^{-(\omega_m/\dot{\zeta}_s)^2} \right] sgn(\omega_m)
\]

(43)
where \(\epsilon \) is bounded since \(\sigma \) and \(\sigma_0 \) are bounded. \(\Delta_1 \) and \(\Delta_2 \) are positive constants. Let \(f_1 = f_c + (f_s - f_c)e^{-(\omega_m/v_s)^2} \), and \(f_2 = \Delta_1|\omega_m| + \Delta_2 \). Then (43) can be rewritten as

\[
F \leq f_1 \text{sgn}(\omega_m) + f_2.
\] (44)

Since (44) is not a smooth function, it cannot be directly approximated via ESNs. However, \(f_1 \) is smooth function, which is compensated by ESNs as follows:

\[
\hat{f}_1 = \hat{\Theta}^T X(x)
\] (45)

where \(\hat{\Theta} \) is the estimation of \(\Theta^* \). Then, the updated learning algorithm is given as

\[
\dot{\hat{\Theta}} = \Gamma_{\Theta}(r_3 z_3 X \text{sgn}(\omega_m) - \varrho_1 \hat{\Theta})
\] (46)

where \(\hat{\Theta} = \hat{\Theta} - \Theta^* \) and \(\Gamma_{\Theta}, \varrho_1 > 0 \).

Moreover, an adaptive estimator is employed to estimate \(f_2 \), and one can obtain

\[
\hat{f}_2 = \hat{\Delta}_1|\omega_m| + \Delta_2
\] (47)

where \(\hat{\Delta}_1 \) is the estimate of \(\Delta_1 \). Then, the estimation algorithm is provided by

\[
\dot{\hat{\Delta}}_1 = \Gamma_{\Delta_1}(r_3 z_3 |\omega_m| - \varrho_2 \hat{\Delta}_1)
\] (48)

where \(\Gamma_{\Delta_1} \) and \(\varrho_2 \) are positive constants.

From (45)-(48), one can obtain the friction compensation controller as

\[
\hat{F} = \hat{f}_1 \text{sgn}(\omega_m) + \hat{f}_2.
\] (49)

Then, the controller \(u \) is given by

\[
u = J_m \left(-k_3 z_3 + \varrho_2 + \frac{\lambda_3}{\lambda_3} S_3 \right) + \dot{x}_2 + \hat{f}_1 \text{sgn}(\omega_m) + \hat{f}_2
\] (50)

4. Stability Analysis

In this section, the stability of closed-loop system is proved by Lyapunov stability theory.
Theorem 1: Consider the closed-loop system (1), for any bounded initial conditions, actual controller (50), the virtual controllers (30), (36), and friction compensation controller (49), adaptive laws (46) and (48) guarantee that all the signals in the resulting closed-loop are semiglobally uniformly ultimately bounded (SGUUB). Moreover, the tracking error and observer errors can be made arbitrarily small by choosing the design parameters.

Proof Consider Lyapunov function candidate as

\[V = \frac{1}{2} \sum_{i=1}^{3} z_i^2 + \frac{1}{2} \tilde{\Theta}^T \Gamma_1^{-1} \tilde{\Theta} + \frac{1}{2} \Gamma_1^{-1} \tilde{\Delta}_1^2. \]

(51)

Taking the time derivative of \(V \), and Substituting (30), (36), (50), (46) and (48) into (51), it can be shown that

\[
\dot{V} = \sum_{i=1}^{3} z_i \dot{z}_i + \tilde{\Theta}^T \Gamma_1^{-1} \dot{\tilde{\Theta}} + \tilde{\Delta}_1 \Gamma_1^{-1} \dot{\tilde{\Delta}}_1 \\
= r_1 z_1 \left(\lambda_2 R_2^{-1}(z_2) + \bar{\chi}_1 - \vartheta_{2,1} - S_1 \lambda_1 \right) + r_2 z_2 \left[k_f(\lambda_3 R_3^{-1}(z_3) + \bar{\chi}_2 - \bar{z}_1) - \vartheta_{2,2} \\
- \frac{\lambda_3}{\lambda_2} S_2 \right] - r_3 z_3 \left[\frac{1}{J_m} u - \frac{1}{J_m} \dot{x}_2 - \frac{1}{J_m} F - \vartheta_{2,3} - \frac{\lambda_3}{\lambda_3} S_3 \right] - \frac{1}{\Gamma_{\Theta}} \tilde{\Theta}^T \dot{\tilde{\Theta}} - \frac{1}{\Gamma_{\Delta_1}} \dot{\tilde{\Delta}}_1 \dot{\tilde{\Delta}}_1 \\
= r_1 z_1 \left(-k_1 z_1 + \lambda_2 R_2^{-1}(z_2) - \bar{\delta}_1 \frac{r_1 z_1 \lambda_1^2}{|r_1 z_1 \lambda_2| + \mu_1} \right) + r_2 z_2 \left(-k_2 z_2 + \lambda_3 R_3^{-1}(z_3) \right. \left. - \bar{\delta}_2 \frac{r_2 z_2 \lambda_2^2}{|r_2 z_2 \lambda_3| + \mu_2} \right) + r_3 z_3 \left[-\tilde{\Theta}^T \Gamma_1^{-1} \dot{\tilde{\Theta}} - \tilde{\Delta}_1 \Gamma_1^{-1} \dot{\tilde{\Delta}}_1 \right] \\
\leq -\pi V + \iota
\]

(52)

Using the Young’s inequality, one has

\[
\varrho_1 \tilde{\Theta}^T \dot{\tilde{\Theta}} \leq -\frac{\varrho_1}{2} \tilde{\Theta}^T \tilde{\Theta} + \frac{\varrho_1}{2} \Theta^2
\]

(53)

and

\[
\varrho_2 \tilde{\Delta}_1 \dot{\tilde{\Delta}}_1 \leq -\frac{\varrho_2}{2} \dot{\tilde{\Delta}}_1^T \dot{\tilde{\Delta}}_1 + \frac{\varrho_2}{2} \Delta_1^2.
\]

(54)

Substituting (53) and (54) into (52) results in

\[
\dot{V} \leq -r_1 k_1 z_1^2 - r_2 k_2 z_2^2 - r_3 k_3 z_3^2 - \frac{\varrho_1}{2} \tilde{\Theta}^T \tilde{\Theta} - \frac{\varrho_2}{2} \dot{\tilde{\Delta}}_1 \dot{\tilde{\Delta}}_1 + \frac{\varrho_1}{2} \Theta^2 + \frac{\varrho_2}{2} \Delta_1^2 \\
\leq -\pi V + \iota
\]

(55)

where \(\pi \) and \(\iota \) are positive constants, i.e.,
Figure 6: Transients of the real, estimated by Luenberger state observer and its estimation error: (a) motor speed, (b) load speed, and (c) torsional torques.

\[\pi = \min \{2r_1k_1, 2r_2k_3, 2r_3k_3\varrho_1, \varrho_2\} , \iota = \frac{\Theta}{2} + \frac{\varrho}{2} \Delta_1^2 \]

Solving this inequality yields

\[0 \leq V(t) \leq \left(V(0) - \frac{\iota}{\pi} \right) e^{-\pi t} + \frac{\iota}{\pi} \leq V(0) e^{-\pi t} + \frac{\iota}{\pi} \]

From (55), \(V(t) \) is eventually bounded by \(\iota/\pi \), which can be made arbitrarily small via designing controller parameters. Therefore, all the error signals are semiglobally, uniformly and ultimately bounded, and the \(|S(t)| \leq \sqrt{2V(0)} e^{-\pi t} + \sqrt{2\iota/\pi} \). As \(t \to \infty \), \(e^{-\pi t} \to 0 \), it follows that \(|S(t)| \leq \sqrt{2\iota/\pi} \). Moreover, the bound \(|S(t)| \leq \sqrt{2\iota/\pi} \) can be made as small as possible by choosing the design parameters. Therefore, the transient performance of the system is guaranteed with the prescribed performance bound for all \(t \geq 0 \). This completes the proof.

Remark 1: In the proposed control scheme, the initial condition \(-\delta_0 < e(0) < \delta_0 \) should be guaranteed by designing the PPF parameters \(\lambda_0, \delta \) and \(\delta \), so that \(z_i(0) \) is finite.
Remark 2: It is noted that many parameters are adjusted for applying the proposed control scheme for the nonlinear two-inertia system (1). From (55), we known that the bound of $|S(t)| \leq \sqrt{2\iota/\pi}$ depends on parameters ι and π. Increasing constant π and decreasing constant ι lead to small tracking error, i.e., increasing $k_i(i = 1, 2, 3)$ and decreasing $\mu_i(i = 1, 2)$. If μ_i is too small, it may not be sufficient to prevent the parameter estimates from the drifting. If k_i is large, the control energy is significant. Therefore, in practice, the design parameters should be chosen to trade off the transient and steady-state performance.

Remark 3: Compared with the traditional backstepping controller, the proposed ECDSC does not involve $\dot{\chi}_i$, this will avoid the explosion of complexity caused by repeatedly differentiating $\dot{\chi}_i$, and can reduce the computational costs. In additional, the ECDSC is designed by introducing HGTD to replace the first-order filter in each recursive step, the transient convergence of filter performance on closed-loop stability can be improved though slightly increased computational cost should be used in comparison to first order filter. The prescribed performance function is integrated into controller design, which guarantees the tracking error within the prescribed region.

5. Simulation Results

In this section, the nonlinear frictions, parameters uncertainties and external disturbance are taken into consideration. The ECDSC with direct feedbacks from all the state variables is first tested for the nonlinear two-inertia system. The system model is constructed as Figure 1. In fact, the coefficients J_m, k_f, J_l are considered to be constant. The LG model is used to represent the friction dynamics. The system parameters are given as $J_m = 0.005 kg \cdot m$, $J_l = 0.04 kg \cdot m$, $k_f = 5$, the prescribed performance function parameters are chosen as $\lambda_0 = 1.2$, $\lambda_\infty = 0.1$, $c_i = 0.5$, and $\delta_i = -1$, $\delta_i = 1.5$. For the ESNs design, the number of neurons in the input and hidden layers are 2 and 13, respectively. The initial weights are zero. Now, ECDSC parameters are given as $\rho_{1,i} = \rho_{2,i} = 1(i = 1, 2, 3)$, $H = 100$, $\alpha = 1/2$, $\beta = 2/3$, $\mu_1 = \mu_2 = 0.1$, \ldots
Figure 7: Transients of the nonlinear two-inertia system by ECDSC with friction compensation: (a) motor speed and load speed (b) electromagnetic and torsional torques, and (c) tracking error.

\[k_1 = 5, k_2 = 40, k_3 = 25. \]

As a comparison, an optimally tuned PID controller \[[1] \] is simulated for the nonlinear two-inertia system, the controller \(u \) is given as

\[
u = \left(K_p + \frac{K_i}{s} + K_d s \right) e(t) \tag{57}
\]

where \(e(t) \) is the tracking error, and \(K_p = 3.025, K_i = 0.015 \) and \(K_d = 0.0765 \) represent the proportional, integral and derivative gains, respectively.

The simulation results are shown in Figures 6-10. The response curves of the real values and estimated values and their estimate errors are shown in Figure 6. From Figure 6, one can be observed that the estimation of the state variables can achieve the true values. In order to illustrate the effect of the parameters uncertainties and external disturbance on the transient performance of the control system, the step signal \(d = 1 \), is added to simulation at time \(t = 0s \). The simulation results of proposed control scheme are shown in Figure 7. From Fig-
Figure 8: Transients of the nonlinear two-inertia system by ECDSC with friction compensation: (a) motor speed and load speed, (b) electromagnetic and torsional torques, and (c) tracking error.

Figure 7, one can see that the transient performance can be guaranteed when there exist the the nonlinear friction, parameters uncertainties and external disturbance. The load-side speed can accurately track motor speed (Figure 7(a)), and there is no shaft torque oscillation (Figure 7(b)), which means that the torsional vibration is successfully damped. In addition, the tracking error is retained within prescribed performance bounds. As a comparison, the results of PID method are shown in Figure 9. It is clearly seen that the transient performance of load-side cannot be guaranteed, the load speed cannot accurately track motor speed (Figure 9(a)), and the oscillation occurred (Figure 9(b)). Besides, the tracking error exceeds the prescribed performance boundary (Figure 9(c)).

Moreover, to study the effect of parameters uncertainties on the dynamic response of the nonlinear control system, the system parameters J_m and J_l are added $\Delta J_m = 0.05J_m$ and $\Delta J_m = 0.05J_l$, respectively. The simulation results
Figure 9: Transients of the nonlinear two-inertia system by PID: (a) motor speed and load speed, and error, (b) electromagnetic and torsional torques, and (c) tracking error.

Figure 10: (a) Transient performance of HGTD and FD, (b) Steady-state performance of HGTD and FD.

are shown in Figure 8. As seen, although the speed and torque happen very small change, the dynamic performance of the control system can be guaranteed, and the tracking error has also been remained within prescribed boundary. From Figure 6 and Figure 8, it is clearly seen that the proposed control scheme can
guarantee the dynamic performance of the control system when the parameters uncertainties exists in control system.

Figure 10 shows the filter effect of HGTD and first-order filter (FD). It can be found that both the transient and steady-state performance of HGTD are better than that of first-order filter. In particular, for the first-order filter with a large time constant ($\tau = 1$), the steady-state performance is the same as that of HGTD. However, the transient performance of first-order filter will deteriorate, as shown in Figure 9. Thus, one can conclude that the filter effect of HGTD is better than first-order filter.

6. Experimental results

6.1. Experimental setup

A realistic two-inertia system is used as the test-rig to validate the suggested control method. The configuration of the whole experimental setup is shown in Figure 11. The experimental setup is composed of the permanent-magnet synchronous motors connects to a load, PC with a 2.0GHz i5 CPU and 2G memory, and a digital signal processor (DSP, 28335). The control algorithms are written by Visual C++ program. The sampling time in the experiment setup is 0.1 ms. Nominal parameters of the drive system are presented in Table 1. The motor speed is measured by speed sensor in the test rig. However, the
Table 1: Parameters of the two-inertia system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>1.5</td>
<td>kW</td>
</tr>
<tr>
<td>Nominal motor voltage</td>
<td>230</td>
<td>V</td>
</tr>
<tr>
<td>Shaft length</td>
<td>40</td>
<td>cm</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>3600</td>
<td>r/min</td>
</tr>
<tr>
<td>Motor inertia (J_m)</td>
<td>0.0062</td>
<td>Kg·m</td>
</tr>
<tr>
<td>Load inertia (J_l)</td>
<td>0.004106</td>
<td>Kg·m</td>
</tr>
<tr>
<td>Stiffness coefficient (k_f)</td>
<td>65</td>
<td>N·m</td>
</tr>
</tbody>
</table>

state variables such as torsional torque and load speed can not be measured, the Luenberger state observer is employed to estimate the unmeasured state variables.

6.2. Controller design

The controller parameters are given as \(\rho_{1,i} = \rho_{2,i} = 1(i = 1, 2, 3), H = 100, \alpha = 1/2, \beta = 2/3, \mu_1 = \mu_2 = 0.1, k_1 = 2, k_2 = 10, k_3 = 15\). The prescribed performance function parameters are \(\lambda_0 = 4, \lambda_{\infty} = 1, c_j = 3\), and \(\delta_j = 1.5, \delta_j = 2, j = 1, 2\). The ESNs parameters are the same as simulation. The PID parameters are \(K_p = 4, K_i = 0.25\) and \(K_d = 0.03\).

6.3. Experimental results

Extensive experiments have been carried out on the two-inertia system to show the effect of the proposed control scheme. First, the square-wave (Amplitude = 10) reference signal is adopted to illustrate the effect of the nonlinear friction, parameters uncertainties and external disturbance on transient response of the two-inertia system. The experiment results are shown in Figure 12. Figure 12(a) shows that the tracking performance and vibration suppression of the ECDSC is better than PID (Figure 12(b)), the overshoot is smaller than PID.
Figure 12: Transients performance and tracking performance for square wave (a) ECDSC, (b) PID

Figure 13: Tracking performance and tracking performance for sinusoid wave (a) PID, (b) ECDSC, and (c) tracking error

and there is no torsional vibration. To further show the effect of the parameters uncertainties and external disturbance on the dynamic performance of the two-inertia system, the sinusoid signal \(x_d = 5 \sin(0.4\pi t) \) is adopted as reference signal and the step signal \(d = 1 \) is adopted at time \(t = 1s \) as a disturbance.
signal is added to experiment, and the experiment results are shown in Figure 13. One can see that, compared with the PID method, the tracking performance of proposed ECDSC is satisfactory, and the torsional vibration is damped. The tracking error is smaller than PID (Figure 13(c)), and the robustness of proposed control scheme is guaranteed when the external disturbance is added to experiment. To illustrate the effect of the friction compensation, Figure 14 shows the transients performance of the ECDSC with friction compensation and without friction compensation when the extra disturbance is added to experiment. From Figure 14, one can see that the proposed control scheme is effective to suppress the extra disturbance and guarantee dynamic response of the nonlinear system.

To further show the efficacy and compare the control performance, four indices are adopted [39]; 1) integrated absolute error \(IAE = \int |S_1(t)| \, dt \); 2)
Table 3: Comparison for three indexes of difference signals.

<table>
<thead>
<tr>
<th></th>
<th>PID</th>
<th>ECDSC</th>
<th>PID</th>
<th>ECDSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_e</td>
<td>3.8872</td>
<td>2.6507</td>
<td>0.5630</td>
<td>0.1407</td>
</tr>
<tr>
<td>μ</td>
<td>0.2334</td>
<td>0.1820</td>
<td>0.2594</td>
<td>0.0896</td>
</tr>
<tr>
<td>σ</td>
<td>0.0022</td>
<td>0.0018</td>
<td>0.002</td>
<td>0.0016</td>
</tr>
</tbody>
</table>

grated square error $ISDE = \int (S_1(t) - S_0)^2 dt$, where S_0 is the mean value of error; 3) integrated absolute control $IAU = \int |u(t)| dt$; and 4) integrated square control $ISDU = \int (u(t) - u_0)^2 dt$, where u_0 is the mean value of the control signal. The results are shown in Table 2. From Table 2, it is clearly shown that the proposed ECDSC performs better than PID control method for different reference signal. The four indices of proposed control scheme are smaller than PID control scheme.

Moreover, another three performance indexes are used to measure the quality of each control algorithm, i.e., maximal absolute value of the tracking errors $M_e = \max_{t=1,..,T} |S_1(t)|$, average tracking error $\mu = \frac{1}{T} \int |S_1(t)| dt$, and standard deviation of the tracking errors $\sigma = \sqrt{\frac{1}{T} \int |S_1(t)| - \mu|^2 dt}$. The performance indexes are given in Table 3. From Table 3, one can clearly see that all performance indexes of the proposed control scheme are better than the PID control method for different input signals.

7. Conclusion

This paper proposes a vibration suppression control design method for elastically coupled two-inertia system based on ECDSC with friction compensation. The torsional vibrations of the two-inertia system are effectively suppressed using the control structure with recursive feedbacks from the load speed, torsional torque and motor speed. The unmeasured feedback signals are estimated by using a Luenberger state observer. The nonlinear friction is compensated by
using the ESNs. The stability of the closed-loop system is ensured by Lyapunov
method and the tracking error is retained within the prescribed performance
bounds. Comparative simulation and experiment results are obtained to illus-
trate the effectiveness of the proposed control scheme. In the future work, we
will focus on extending the suggested control to two-inertia system with un-
known parameters such as load inertia, elastic coefficients and motor inertia.

Acknowledgement

This work is supported by the National Natural Science Foundation of China
(61433003, 61273150, 61573174, 61321002), the Research Fund for the Doctoral
Program of Higher Education of China (20121101110029).

References

[1] G. Zhang, Speed control of two-inertia system by pi/pid control, Industrial

drive system using pi speed controller and additional feedbacks – compar-
ative study, Industrial Electronics, IEEE Transactions on 54 (2) (2007)
1193–1206.

inertia servo-drive systems using low-cost integrated saw torque transduc-

on the feedback of imperfect derivative of the estimated torsional torque,

two-inertia system, Industrial Electronics, IEEE Transactions on 60 (7)

[22] T. Wang, H. Gao, J. Qiu, A combined adaptive neural network and non-linear model predictive control for multirate networked industrial process

