PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS

Melissa C Southey,1 David E Goldgar,2 Robert Winqvist,3 Katri Pylkäs,3
Fergus Couch,4 Marc Tischkowitz,5 William D Foulkes,6 Joe Dennis,7
Kyriaki Michailidou,7 Elizabeth J van Rensburg,8 Tuomas Heikkinen,9
Heli Nevanlinna,9 John L Hopper,10 Thilo Dörk,11 Kathleen BM Claes,12
Jorge Reis-Filho,13 Zhi Ling Teo,1 Paolo Radice,14 Irene Catucci,15 Paolo Peterlongo,15
Helen Tsimiklis,1 Fabrice A Odefrey,1 James G Dowty,20,21 Lothar Haebeler,20,22 Arif
B Ekici,23 Matthias W Beckmann,20 Julian Peto,24 Isabel dos-Santos-Silva,24
Olivia Fletcher,25 Nichola Johnson,25 Manjeet K Bolla,7 Elinor J Sawyer,26
Ian Tomlison,27 Michael J Kerin,28 Nicola Miller,28 Federik Marme,29,30
Barbara Burwinkel,29,31 Rongxi Yang,29,31 Pascal Guénel,32,33 Thérèse Truong,32,33
Florence Menegaxis,32,33 Marie Sanchez,32,33 Stig Bojesen,34,35 Sune F Nielsen,34,35
Henrik Flyger,36 Javier Benitez,37,38 M Pilar Zamora,39 Jose Ignacio Arias Perez,40
Primitivo Menéndez,41 Hoda Anton-Culver,42 Susan Neuhausen,43 Argyrios Zogias,44
Christina Clarke,45 Hermann Brenner,46,47,48 Volker Arndt,46 Christa Stegmaier,49
Hiltrud Brauch,48,50,51 Thomas Brüning,52 Yu-Dschun Ko,53 Taru A Muranen,54
Kristiina Aittomäki,55 Carl Blomqvist,56 Natalia V Bogdanova,11,57 Natalia
A Antonenkova,58 Anika Lindblom,59 Sara Margolin,60 Arto Mannermaa,61,62
Vesa Kataja,63,64 Veli-Matti Kosma,61,62 Jaana M Hartikainen,61,62 Amanda
B Spurdle,65 kConFab Investigators,66 Australian Ovarian Cancer Study Group65,66
Els Wauters,67,68 Dominiek Smeets,67,68 Benoit Beuselinck,69 Giuseppe Floris,69
Jenny Chang-Claude,70 Anja Rudolph,70 Petra Seibold,70 Dieter Flesch-Janys,71
Janet E Olson,72 Celine Vachon,72 Vernon S Pankratz,72 Catriona McLean,73
Christopher A Haiman,74 Brian E Henderson,74 Fredrick Schumacher,74 Loic Le
Marchand,75 Vessela Kristensen,76,77 Grethe Grenaker Alnæs,76 Wei Zheng,78
David J Hunter,79,80 Sara Lindstrom,79,80 Susan E Hankinson,80,81 Peter Kraft,79,80
Irene Andrunis,82,83 Julia A Knight,84,85 Gord Glendon,82 Anna Marie Mulligan,86,87
Arja Jukkola-Vuorinen,88 Mervi Grip,89 Saima Kaupilla,90 Peter Devilee,91
Robert A E M Tollenaar,91 Caroline Seynaeve,92,98 Antoinette Hollestelle,92,98
Montserrat Garcia-Closas,93 Jonine Figueroa,94 Stephen J Chanock,94
Jolanta Lissowska,95 Kamila Czene,96 Hatef Darabi,96 Mikael Eriksson,96
Diana M Eccles,97 Sajjad Rafiq,97 William J Tapper,97 Sue M Gerty,97
Maartje J Hooning,98 John W M Martens,98 J Margriet Collée,99
Madeleine Tilanus-Linthorst,100 Per Hall,100 Jingmei Li,101 Judith S Brand,101
Keith Humphreys,101 Angela Cox,101 Malcolm W R Reed,103 Craig Luccarini,104
Caroline Baynes,104 Alison M Dunning,104 Ute Hamann,105 Diana Torres,105,106
Katarzyna Jaworska,109,110 Katarzyna Durda,109 Susan Slager,72 Amanda E Toland,111
Christine B Ambrose,112 Drakoulis Yannoukakos,113 Anthony Swerdlow,114
Alan Ashworth,93 Nick Orr,93 Michael Jones,114 Anna Gonzalez-Neira,37
Guillermo Pita,37 M Rosario Alonso,37 Nuria Alvarez,37 Daniel Herrero,37

BMJ
ABSTRACT

Background The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study.

Methods We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.7271T>G. We assessed associations with breast cancer risk for three variants in PALB2, CHEK2 and ATM via a multicentre case-control study.

Results For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.29 to 3.95), c.3113G>A OR 2.26 (95% CI 1.42 to 3.44) and c.349A>G OR 2.26 (95% CI 1.39 to 3.59), and CHEK2 c.1343T>G OR 3.03 (95% CI 1.15 to 7.90) and c.538C>T OR 1.33 (95% CI 1.05 to 1.67). The rarity of mutations in ATM made it difficult to estimate precisely associated cancer risks.

Conclusion PALB2, CHEK2 and ATM mutations are associated with breast cancer risk. Further studies are needed to replicate these findings and to evaluate the clinical relevance of these mutations.
Cancer genetics

men. No evidence of association with ovarian cancer was found for any of these variants.

Conclusions This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important.

INTRODUCTION

The rapid introduction of massive parallel sequencing (MPS) into clinical genetics services is enabling the screening of multiple breast cancer susceptibility genes in one assay at reduced cost for women who are at increased risk of breast (and other) cancer. These gene panels now typically include the so-called ‘moderate-risk’ breast cancer susceptibility genes, including PALB2, CHEK2 and ATM. However, mutations in these genes are individually extremely rare and limited data are available with which to accurately estimate the risk of cancer associated with them.

Estimation of the age-specific cumulative risk (penetrance) of breast cancer associated with specific mutations in these three genes has been limited to those that have been observed more frequently, such as PALB2 c.1592delT (a Finnish founder mutation), PALB2 c.3113G>A and ATM c.2727T>G. These mutations have been estimated to be associated with a 40% (95% CI 17% to 77%), 91% (95% CI 44% to 100%) and 52% (95% CI 28% to 80%) cumulative risk of breast cancer to the age of 70 years, respectively. These findings, based on segregation analyses in families of population-based case series, indicate that at least some mutations in these ‘moderate-risk’ genes are associated with a breast cancer risk comparable to that of the average pathogenic mutation in BRCA2: 45% (95% CI 31% to 56%). However, such estimates are imprecise and, moreover, may be confounded by modifying genetic variants or other familial risk factors.

Case-control studies provide an alternative approach to estimating cancer risks associated with specific variants. This design can estimate the relative risk directly, without making assumptions about the modifying effects of other risk factors. However, because these variants are rare, such studies need to be extremely large to provide precise estimates.

The clearest evidence for association, and the most precise breast cancer risk estimates, for rare variants in PALB2, CHEK2 and ATM relate to protein truncating and splice-junction variants. However, studies based on mutation screening in case-control studies, combined with stratification of variants by their evolutionary likelihood suggest that at least some evolutionarily unlikely missense substitutions are associated with a similar risk to those conferred by truncating mutations. For example, Tavtigian et al estimated an OR of 2.85 (95% CI 0.83 to 8.86) for evolutionarily unlikely missense substitutions in the 3’ third of ATM, which is comparable to that for truncating variants. Specifically, ATM c.2721C>G has been associated with a more substantial breast cancer risk in several studies. Le Calvez-Kelm et al estimated that the ORs associated with rare mutations in CHEK2 from similarly designed studies were 6.18 (95% CI 1.76 to 21.8) for rare protein-truncating and splice-junction variants and 8.75 (95% CI 1.06 to 72.2) for evolutionarily unlikely missense substitutions.

It is plausible that monoallelic mutations in PALB2, CHEK2 and ATM could be associated with increased risk of cancers other than breast cancer, as has been observed for BRCA1 and BRCA2 and both ovarian and prostate cancers. However, with the exception of pancreatic cancer in PALB2 carriers, there is little evidence to support or refute the existence of such associations, although a few individually striking pedigrees have been observed.

In this study we selected rare genetic variants on the basis that they had been observed in breast cancer candidate gene case-control screening projects involving PALB2, CHEK2 or ATM. These included three rare variants in PALB2: the protein truncating variants c.1592delT (p.Leu531Cysfs) and c.3113 G>A (p.Trp1038*) and the missense variant c.2816T>G, (p. Leu939Trp), six rare missense variants in CHEK2: c.349A>G (p.Arg117Gly) and c.1036C>T (p.Arg346Cys) predicted to be deleterious on the basis of evolutionary conservation, c.538C>T (p.Arg180Cys), c.715G>A (p.Glu239Lys), c.1312G>T (p.Asp437Tyr) and c.1343T>G (p.Ile448Ser) and ATM c.7271T>G (p.Val2424Gly). We assessed the association of these variants with breast, ovarian and prostate risk by case-control analyses in three large consortia participating in the Collaborative Oncological Gene-environment Study.

METHODS

Participants

Participants were drawn from studies participating in three consortia as follows:

The Breast Cancer Association Consortium (BCAC), involving a total of 48 studies: 37 of women from populations with predominantly European ancestry (42 671 cases and 42 164 controls), 9 of Asian women (5795 cases and 6624 controls) and 2 of African-American women (1046 cases and 932 controls). All cases had invasive breast cancer. The majority of studies were population-based or hospital-based case-control studies, but some studies of European women oversampled cases with a family history or with bilateral disease (see online supplementary table S1). Overall, 79% of BCAC cases with known Estrogen Receptor (ER) status (23% missing) are ER-positive. The proportion of cases selected by family history that are ER-positive is 78% (38% missing).

The Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) involving a total of 26 studies: 25 included men with European ancestry (22 301 cases and 22 320 controls) and 3 included African-American men (623 cases and 569 controls). The majority of studies were population-based or hospital-based case-control studies (see online supplementary table S2).

The Ovarian Cancer Association Consortium (OCAC), involving a total of 46 studies. Some studies were case-only and their data were combined with case-control studies from the same geographical region (leaving 36 study groupings). Of these groupings, 33 included women from populations with predominantly European ancestry (16 287 cases (14 542 with invasive disease) and 23 491 controls), 25 included Asian women (813 cases (720 with invasive disease) and 1574 controls), 17 included African-American women (186 cases (150 with invasive disease) and 200 controls) and 29 included women of other ethnic origin (893 cases (709 with invasive disease) and 864 controls). The majority of studies were population-based or hospital-based case-control studies (see online supplementary table S3).

Variant selection

We selected for genotyping 13 rare mutations that had been observed in population-based case-control mutation screening studies. These variants were PALB2 (c.1592delT, p.

Genotyping

Three PALB2 variants c.2323C>T (p.Gln775*), c.3116delA (p.Asn1039Ilefs) and c.3549C>G (p.Tyr1183*) were unable to be designed for measurement on the custom Illumina iSelect genotyping array and were not considered further (table 1). Genotyping was conducted using a custom Illumina Infinium (iCOGS) in four centres, as part of a multiconsortia collaboration not accounted for by the components derived from the analysis of all studies. Addition of further principal components did not reduce inflation further. Data from all breast cancer studies were included to assess statistical significance. Data from cases selected for inclusion based on personal or family history of breast cancer were excluded in order to obtain unbiased OR estimates for the general population of white European women (leaving 37 039 cases and 38 260 controls from 32 studies). Multiple testing was adjusted for using the Benjamini-Hochberg procedure to control the false discovery rate, with a significance threshold of 0.05.

REPORTED p values are unadjusted unless otherwise stated. Reported CIs are all nominal. We included two race-specific principal components in each of the main breast cancer analyses of Asian and African-American women. Similar analyses were conducted using the data from PRACTICAL and OCAC, consistent with those used previously.23 26 All analyses were carried out using Stata: Release V10 (StataCorp, 2008).

RESULTS

PALB2

In BCAC, PALB2 c.1592delE (Leu531Cysfs) was only observed in 35 cases and 6 controls, all from four studies from Sweden and Finland (Helsinki Breast Cancer Study (HEBCS), Kuopio Breast Cancer Project (KBCP), Oulu Breast Cancer Study (OBCS) and Karolinska Mammaryography Project for Risk Prediction Breast Cancer (pKARMA); see online supplementary material for a complete table of variants). We therefore decided not to include these data in the analyses.

Table 1 Rare genetic variants included in the iCOGS array.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Variant*</th>
<th>Amino acid*</th>
<th>dbSNP rs</th>
<th>OR (95% CI)</th>
<th>Penetrance† (95% CI)</th>
<th>Align-GVGD</th>
<th>Reference(s)</th>
<th>Designed‡</th>
<th>Genotyped</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALB2</td>
<td>c.1592delE</td>
<td>p.Leu531Cysfs</td>
<td>rs1801717102</td>
<td>3.94 (1.5–12.1)§</td>
<td>40% (17–77)</td>
<td>na</td>
<td>4, 5, 10</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>c.2323C>T</td>
<td>p.Gln775*</td>
<td>rs18017111</td>
<td>na</td>
<td>25, 26</td>
<td>C55</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>c.3113G>A</td>
<td>p.Trp1038*</td>
<td>rs18017132</td>
<td>95% (44–100)</td>
<td>na</td>
<td>2, 6, 20</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>c.3116delA</td>
<td>p.Asn1039Ilefs</td>
<td>rs18017133</td>
<td>na</td>
<td>2</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>c.3549C>G</td>
<td>p.Tyr1183*</td>
<td>rs18209988</td>
<td>8.75 (1.06–72.2)¶</td>
<td>C65</td>
<td>11</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CHEK2</td>
<td>c.349A>G</td>
<td>p.Arg117Gly</td>
<td>rs28909982</td>
<td>2.47 (0.45–13.49)¶</td>
<td>C15</td>
<td>11</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>c.538C>T</td>
<td>p.Arg180Cys</td>
<td>rs77130827</td>
<td>8.75 (1.06–72.2)¶</td>
<td>C15</td>
<td>11</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>c.715G>A</td>
<td>p.Glu239Lys</td>
<td>rs12190870</td>
<td>8.75 (1.06–72.2)¶</td>
<td>C15</td>
<td>11</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>c.1036C>T</td>
<td>p.Arg346Cys</td>
<td>rs17886163</td>
<td>1.82 (0.62–5.34)†</td>
<td>C15</td>
<td>11</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>c.1312G>T</td>
<td>p.Asp438Tyr</td>
<td>rs28909421</td>
<td>52% (28–80)</td>
<td>C65</td>
<td>7, 13, 23, 27</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Human Genome Variation Society (HGVS); reference sequences PALB2, NM_024675.3, NP_078951.2; CHEK2, NM_007194.3, NP_009125.1; ATM, NM_000051.3, NP_000042.3.
†Age-specific cumulative risk of breast cancer to age 70 years.
‡Able to be designed for measurement on the custom Illumina iSelect genotyping array.
§Breast cancer cases unscreened for family history of breast cancer.
¶OR estimated in a combined group of C65 CHEK2 variants.
**OR estimated in a combined group of C25 CHEK2 variants.
††OR estimated in a combined group of C15 CHEK2 variants.
na, not available.
Table 2 Summary results from Breast Cancer Association Consortium studies of white Europeans (42 671 invasive breast cancer cases and 42 164 controls)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Frequency* Controls</th>
<th>Frequency* Cases</th>
<th>OR (95% CI)</th>
<th>LRT p Value</th>
<th>OR† (95% CI)</th>
<th>LRT p Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALB2‡</td>
<td>c.1592delT (p.Leu531Cysfs)</td>
<td>0.00014</td>
<td>0.00082</td>
<td>4.52 (1.90 to 10.8)</td>
<td>7.1×10⁻⁵</td>
<td>3.44 (1.39 to 8.52)</td>
</tr>
<tr>
<td></td>
<td>c.2816T>G (p.Leu939Trp)</td>
<td>0.00342</td>
<td>0.00352</td>
<td>1.05 (0.83 to 1.32)</td>
<td>0.70</td>
<td>1.03 (0.80 to 1.32)</td>
</tr>
<tr>
<td></td>
<td>c.3113G>A (p.Trp1038*)</td>
<td>0.00019</td>
<td>0.00101</td>
<td>5.93 (2.77 to 12.7)</td>
<td>6.9×10⁻⁸</td>
<td>4.21 (1.84 to 9.60)</td>
</tr>
<tr>
<td>CHEK2</td>
<td>c.349A>G (p.Arg117Gly)</td>
<td>0.00043</td>
<td>0.00103</td>
<td>2.26 (1.29 to 3.95)</td>
<td>0.003</td>
<td>2.03 (1.10 to 3.73)</td>
</tr>
<tr>
<td></td>
<td>c.538C>T (p.Arg180Cys)</td>
<td>0.00337</td>
<td>0.00370</td>
<td>1.33 (1.05 to 1.67)</td>
<td>0.016</td>
<td>1.34 (1.06 to 1.70)</td>
</tr>
<tr>
<td></td>
<td>c.715G>A (p.Glu239lys)</td>
<td>0.00021</td>
<td>0.00035</td>
<td>1.70 (0.73 to 3.93)</td>
<td>0.210</td>
<td>1.47 (0.60 to 3.64)</td>
</tr>
<tr>
<td></td>
<td>c.1036C>T (p.Arg343Cys)</td>
<td>0.00005</td>
<td>0.00021</td>
<td>5.06 (1.09 to 23.5)</td>
<td>0.017</td>
<td>3.39 (0.68 to 16.9)</td>
</tr>
<tr>
<td></td>
<td>c.1312G>T (p.Asp438Tyr)</td>
<td>0.00078</td>
<td>0.00082</td>
<td>1.03 (0.62 to 1.71)</td>
<td>0.910</td>
<td>0.87 (0.49 to 1.52)</td>
</tr>
<tr>
<td></td>
<td>c.1343T>G (p.Ile448Ser)</td>
<td>0.00002</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ATM</td>
<td>c.7271T>G (p.Val2424Gly)</td>
<td>0.00002</td>
<td>0.00028</td>
<td>11.6 (1.50 to 89.9)</td>
<td>0.0012</td>
<td>11.0 (1.42 to 85.7)</td>
</tr>
</tbody>
</table>

*Proportion of subjects carrying the variant.
†Excluding women from five studies that selected all cases based on family history or bilateral disease and the subset of selected cases from other studies (based on 34 488 unselected cases and 34 059 controls).
‡CHEK2 c.1343T>G (p.Ile448Ser) was only observed in one control and no cases of white European origin.
§PALB2 c.3113G>A (p.Trp1038*) only observed in the UK, Australia, the USA and Canada. PALB2 c.1592delT (p.Leu531Cysfs) only observed in Finland and Sweden.
LRT, likelihood ratio test; OR, OR for carriers of the variant versus common-allele homozygotes, adjusted for study and seven principal components.

Table 3 Summary results from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome studies for white European men* (22 301 prostate cancer cases and 22 320 controls)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Frequency† Controls</th>
<th>Frequency† Cases</th>
<th>OR (95% CI)</th>
<th>LRT p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALB2</td>
<td>c.1592delT (p.Leu531Cysfs)</td>
<td>0.00018</td>
<td>0.00031</td>
<td>2.06 (0.59 to 7.11)</td>
</tr>
<tr>
<td></td>
<td>c.2816T>G (p.Leu939Trp)</td>
<td>0.00354</td>
<td>0.00381</td>
<td>0.95 (0.69 to 1.29)</td>
</tr>
<tr>
<td></td>
<td>c.3113G>A (p.Trp1038*)</td>
<td>0.00045</td>
<td>0.00027</td>
<td>0.49 (0.18 to 1.36)</td>
</tr>
<tr>
<td>CHEK2†</td>
<td>c.349A>G (p.Arg117Gly)</td>
<td>0.00063</td>
<td>0.00081</td>
<td>1.46 (0.71 to 3.02)</td>
</tr>
<tr>
<td></td>
<td>c.538C>T (p.Arg180Cys)</td>
<td>0.00341</td>
<td>0.00296</td>
<td>1.02 (0.73 to 1.44)</td>
</tr>
<tr>
<td></td>
<td>c.715G>A (p.Glu239lys)</td>
<td>0.00018</td>
<td>0.00027</td>
<td>1.47 (0.41 to 5.35)</td>
</tr>
<tr>
<td></td>
<td>c.1036C>T (p.Arg343Cys)</td>
<td>0.00018</td>
<td>0.00022</td>
<td>1.07 (0.28 to 4.07)</td>
</tr>
<tr>
<td></td>
<td>c.1312G>T (p.Asp438Tyr)</td>
<td>0.00049</td>
<td>0.00103</td>
<td>2.21 (1.06 to 4.63)</td>
</tr>
<tr>
<td></td>
<td>c.1343T>G (p.Ile448Ser)</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ATM</td>
<td>c.7271T>G (p.Val2424Gly)</td>
<td>0.00004</td>
<td>0.00027</td>
<td>4.37 (0.52 to 36.4)</td>
</tr>
</tbody>
</table>

*For white European men, unless otherwise indicated.
†Proportion of subjects carrying the variant.
‡CHEK2 c.1343T>G (p.Ile448Ser) was the only variant observed in African men and was identified in two cases and no controls of white European origin.
§Based on data from 623 and 569 African-American cases and controls, respectively.
LRT, likelihood ratio test; OR, OR for carriers of the variant versus common-allele homozygotes, adjusted for study and seven principal components.
CHEK2
c.349A>G (p.Arg117Gly) was identified in 44 cases and 18 controls in studies participating in BCAC; all of these women were of European origin. We found evidence of association with breast cancer (p=0.003), with little change in the OR after excluding selected cases (OR 2.03 (95% CI 1.10 to 3.73)).
CHEK2 c.538C>T (p.Arg180Cys) was identified in 158 breast cancer cases and 142 controls in studies of white Europeans. Evidence of association with breast cancer risk (p=0.016) was observed, with an unbiased OR estimate of 1.34 (95% CI 1.06 to 1.70). A consistent OR estimate was observed for Asian women, based on 45 case and 45 control carriers (OR 1.16 (95% CI 0.75 to 1.76)).
CHEK2 c.715G>A (p.Glu239Lys) was observed in 35 cases and 11 controls, all African, giving evidence of association (OR 1.52 (95% CI 0.95 to 2.43), p=0.083).

None of the above four CHEK2 variants (CHEK2 c.349A>G (p.Arg117Gly); c.538C>T (p.Arg180Cys); c.715G>A (p.Glu239Lys) and c.1036C>T (p.Arg346Cys)) were found to be associated with individual variants, or groups of variants, in each gene. Previous analyses have been largely based on selected families, relying on data on the segregation of the variant. The present report adds to an accumulating body of evidence that at least some rare variants in so-called ‘moderate-risk’ genes are associated with an increased risk of breast cancer that is of clinical relevance.

The present report adds to an accumulating body of evidence that at least some rare variants in so-called ‘moderate-risk’ genes are associated with an increased risk of breast cancer that is of clinical relevance.
Cancer genetics

Align-Grantham Variation Granthan Deviation (Align-GVGD) score and the observed impact on protein function. The estimate for ATM c.7271T>G (p.Val2424Gly) was also consistent with that found by segregation analysis. The substantial increased risk of breast cancer associated with ATM c.7271T>G (p.Val2424Gly) could be due to the reduction in kinase activity (with near-normal protein levels) observed for ATM p.Val2424Gly. Thus, this variant is likely to be acting as a dominant negative mutation.

In contrast, we found no evidence of an association with risk of prostate or ovarian cancer with any of these three variants; however, the confidence limits were wide; based on the upper 95% confidence limit we could exclude an OR of >1.4 for prostate cancer for the loss-of-function PALB2 c.3113G>A and 1.9 for c.1592delT and c.3113G>A combined.

We analysed six rare missense variants in CHEK2. Two of these (CHEK2 c.349A>G (p.Arg117Gly); rs28909982) and c.1036C>T (p.Arg346Cys) had evidence of a significant impact on the protein based on in silico prediction. We proposed these variants for inclusion in the iCOGS design as they had been identified in 3/1242 cases and 1/1089 controls and 3/1242 cases and 0/1089 controls, respectively, in a population-based case-control mutation screening study of CHEK2. In that study, Le Calvez-Kelm et al., estimated an OR of 8.75 (95% CI 1.06 to 72.2) for variants with an Align-GVGD score C65 (based on nine cases and one control). The current analysis provides confirmatory evidence of this association in a much larger sample (OR 2.18 (95% CI 1.23 to 3.85)) including 40 unselected case and 18 control carriers. The evidence that CHEK2 is a breast cancer susceptibility gene is largely based on studies of protein truncating variants, in particular CHEK2 1100delC. Reports of the association of the missense variant I157T, (C15) and breast cancer risk have been conflicting but a large meta-analysis involving 15 985 breast cancer cases and 16 609 controls estimated a modest OR of 1.58 (95% CI 1.42 to 1.75). We also found evidence (p=0.015) of an association for c.538C>T (Align-GVGD C25); OR 1.34 (95% CI 1.06 to 1.70), a risk comparable to I157T.

The p values reported above have not been adjusted for multiple testing. This was not considered appropriate for the associations with breast cancer risk of PALB2 c.1592delT, c.3113G>A and ATM c.7271T>G because these associations had previously been reported; our aim was to more precisely estimate the associated relative risks. All three associations with breast cancer risk reported for CHEK2 variants remained statistically significant after adjusting for the other tests conducted in relation to breast cancer risk, but not after correcting for all tests for all cancers. Nevertheless, the findings for CHEK2 c.349A>G and c.1036C>T confirmed those reported previously, although collectively. The association observed with CHEK2 c.538C>T requires independent replication.

Do this approach and new data have an impact on clinical recommendations for women and families carrying these rare genetic variants? Although age-specific cumulative risks for cancer are more informative for genetic counselling and clinical management of carriers, our study provides information that is relevant to clinical recommendations. As discussed in Easton et al., a relative risk of 4 will place a woman in a ‘high-risk’ category (in the absence of any other risk factor) and a relative risk between 2 and 4 will place a woman in this category if other risk factors are present. Thus, several of the variants included in this report (PALB2 c.1592delT; c.3113G>A and ATM c.7271T>G) would place the carrier in a high-risk group, especially if other risk factors, such as a family history, are present. The high level of breast cancer risk associated with PALB2 c.1592delT and c.3113G>A reported here is consistent with the penetrance estimate reported for a group of loss-of-function mutations in PALB2 and has an advantage in terms of clinical utility that the estimates in this study have been made at a mutation-specific level. Therefore, this work provides important information for risk reduction recommendations (such as prophylactic mastectomy and potentially salpingo-oophorectomy) for carriers of these variants. However, further prospective research is required to characterise these risks and to understand the potential of other risk-reducing strategies such as salpingo-oophorectomy and chemoprevention.

The consistency of the relative risk estimates with those derived through family based studies supports the hypothesis that these variants combine multiplicatively with other genetic loci and familial risk factors; this information is critical for deriving comprehensive risk models. Even with very large sample sizes such as those studied here, however, it is still only possible to derive individual risk estimates for a limited set of variants, and even for these variants the estimates are still imprecise. This internationally collaborative approach also has limited capacity to improve risk estimates for rare variants that are only observed in specific populations. Inevitably, therefore, risk models will depend on combining data across multiple variants, using improved in silico predictions and potentially biochemical/functional evidence to synthesise these estimates efficiently. It will also be necessary to develop counselling and patient management strategies that can accommodate a multifactorial approach to variant classification.

Author affiliations
1Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Australia
2Huntsman Cancer Institute, Salt Lake City, UT, USA
3Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Nordlab Oulu, Oulu, Finland
4Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
5Department of Medical Genetics and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, and the Department of Clinical Genetics, East Anglian Regional Genetics Service, Addenbrooke’s Hospital
6Program in Cancer Genetics, Department of Human Genetics and Oncology, Lady Davis Institute, and Research Institute, McGill University Health Centre, McGill University, Montreal, Canada
7Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge, UK
8Department of Genetics, University of Pretoria, South Africa
9Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
10Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
11Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
12Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
13Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
14The Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
15Australian Breast Cancer Tissue Bank, University of Sydney at the Westmead Institute for Medical Research, NSW, Australia
16Centre for Cancer Research, University of Sydney at the Westmead Institute for Medical Research, NSW, Australia
17Division of Molecular Medicine, Pathology North, Newcastle and University of Newcastle, NSW, Australia
18University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
Copenhagen, Denmark
Research in Epidemiology and Population Health), U1018, Environmental
Heidelberg, Germany
Galway, Galway, Ireland
Headington, OX3 7LE
Guy
London, UK
and Tropical Medicine, London, UK
Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
and Oncology, University of California at Los Angeles, CA, USA
Department of Oncology, University of Melbourne, Victoria, Australia
66Research Department, Peter MacCallum Cancer Centre and The Sir Peter MacCallum
65QIMR Berghofer Medical Research Institute, Brisbane, Australia
64Department of Epidemiology, University of California Irvine, Irvine, California, USA
63Cancer Prevention Institute of California, Fremont, California, USA
62Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto,
Mount Sinai Hospital, Toronto, Ontario, Canada
61Department of Cancer Epidemiology and Genetics, National Cancer Institute,
Rockville, Maryland, USA
59Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Oncology, University of Shef
58Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Oncology, University of Shef
57Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
56Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
55Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland
54Department of Obstetrics and Gynecology, University of Helsinki and Helsinki
53Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter
52Department of Obstetrics and Gynecology, University of Helsinki and Helsinki
51Department of Laboratory Medicine, Hospital Monte Naranco, Oviedo, Spain
50Department of Gynecology and Obstetrics, University Hospital
49Saarland Cancer Registry, Saarbrücken, Germany
48German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ),
47Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Oncology, University of Shef
46Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Oncology, University of Shef
45Cancer Prevention Institute of California, Fremont, California, USA
44Department of Epidemiology, University of California Irvine, Irvine, California, USA
43Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
42Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
41Servicio de Anatomía Patológica, Hospital Monte Naranco, Oviedo, Spain
40Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
39Department of Hematology and Oncology, University Hospital, Leiden, The Netherlands
38Division of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
37Faculty of Medicine, University of Southampton (UoS), Southampton UK
36Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Oncology, University of Shef
35Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital,
34Department of Clinical Oncology, University of Cancer Research, Department of Oncology, University of Shef
33Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
32Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental
31Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
30National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
29Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
28Division of Cancer Genetics, Department of Medicine, University of South Carolina, Columbia, USA
27Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
26Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
25Division of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
24Anatomical Pathology, The Alfred Hospital, Melbourne, Australia
23Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
22Unit of Biostatistics, Department of Gynecology and Obstetrics, University Hospital
21David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, CA, USA
20Department of Obstetrics and Gynecology, University of California at Los Angeles, CA, USA
19Department of Obstetrics and Gynecology, University of California at Los Angeles, CA, USA
18Department of Obstetrics and Gynecology, University of California at Los Angeles, CA, USA
17Department of Obstetrics and Gynecology, University of California at Los Angeles, CA, USA
16Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
15University Hospital Gastroenterology, Leuven, Belgium
14Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
13Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
12Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospital, Oslo, Norway
11Faculty of Medicine (Faculty Division Alhus), University of Oslo (UiO), Norway
10Department of Obstetrics and Gynecology, University of Helsinki and Helsinki
9Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
8Department of Clinical Genetics, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, The Netherlands
7Department of Surgical Oncology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
6Family Cancer Clinic, Department of Medical Oncology, Erasmus MC Daniel den Hoed Cancer Centre, Rotterdam, The Netherlands
4Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Oncology, University of Shef
3Department of Cancer Epidemiology, Prevention, M. Skłodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland
2Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
1Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
0Department of Clinical Genetics, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, The Netherlands

Cancer genetics

111Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
112Roswell Park Cancer Institute, Buffalo, New York, USA
113Molecular Diagnostics Laboratory, IRPP, National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece
114Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
115Division of Breast Cancer Research, Institute of Cancer Research, London, UK
116Centre d’Innovation Genome Quebec et University McGill Montreal Quebec, Canada
117McGill University, Montreal, Quebec, Canada
118Cancer Genetics Laboratory, Centre Hospitalier Universitaire de Quebec Research Center, Laval University, Quebec, Canada
119The Institute of Cancer Research, London, SM2 5NG, UK
120Royal Marder NUS Foundation Trust, Fulham, London, SW3 6II, UK
121University of Warwick, Coventry, UK
122Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
123Department of Medical Biochemistry and Genetics, University of Turku, and Tyks Microbiology and Genetics, Department of Medical Genetics, Turku University Hospital, Turku, Finland
124Institute of Biomedical Technology/BioMediTech, University of Tampere, Tampere, Finland
125Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
126Department of Human Genetics University of Utah, Salt Lake City, UT, USA and Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
127Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
128Surgical Oncology (Uro-Oncology: S4), University of Cambridge, Box 279, Addenbrooke’s Hospital, Hills Road, Cambridge, UK and Cancer Research UK Cambridge Research Institute, U K A Shing Centre, Cambridge, UK
129Professor of Social Medicine, University of Bristol, Camgyle Hall, 39 Whatley Road, Bristol BS8 2PS
130Nuffield Department of Surgical Sciences, Old Road Campus Research Building (off Roosevelt Drive), University of Oxford, Headington, Oxford, OX3 7DQ
131Cambridge Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 2SP, UK
132Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
133Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
134International Epidemiology Institute, 1455 Research Blvd., Suite 550, Rockville, MD 20850
135Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
136Department of Urology, University Hospital Ulm, Germany
137Institute of Human Genetics University Hospital Ulm, Germany
138Brigham and Women’s Hospital/Dana-Farber Cancer Institute, 45 Francis Street-ASB ll-2, Boston, MA 02115
139Washington University, St Louis, Missouri
140International Hereditary Cancer Center, Department of Genetics and Pathology, Pomueranian Medical University, Szeczin, Poland
141Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine
142Division of Cancer Prevention and Control, H. Lee Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, Florida, USA
143Molecular Medicine Center and Department of Medical Chemistry and Biochemistry, Medical University – Sofia, 2 Zdave St, 1431, Sofia, Bulgaria
144Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and Schools of Life Science and Public Health, Queensland University of Technology, Brisbane, Australia
145Department of Genetics, Portuguese Oncology Institute, Porto, Portugal and Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal
146University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
147University Hospital Erlangen, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
148Vealasius Research Center, VIB, Leuven, Belgium
149Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Belgium
150Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
151Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
152Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
153Department of Epidemiology, University of Washington, Seattle, WA, USA
154German Cancer Research Center, Division of Cancer Epidemiology, Heidelberg, Germany
155Department of Obstetrics and Gynecology, University of Ulm, Ulm, Germany
156Department of Gynecological Oncology, Roswell Park Cancer Institute, Buffalo, NY
157Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
158Department of Pathology, Kapiolani Medical Center for Women and Children, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, USA
159Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
160Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
161Department of Gynecology and Obstetrics, Friedrich Schiller University, Jena University Hospital, Jena, Germany
162Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
163Department of Pathology, Helsinki University Central Hospital, Helsinki, 00029 HUS, Finland
164University of Pittsburgh Department of Obstetrics, Gynecology and Reproductive Sciences and Ovarian Cancer Center of Excellence Pittsburgh PA USA
165University of Pittsburgh Department of Epidemiology, University of Pittsburgh Graduate School of Public Health and Womens Cancer Research Program, Magee-Womens Research Institute and University of Pittsburgh Cancer Institute Pittsburgh PA USA
166The University of Texas School of Public Health, Houston, TX, USA
167Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
168Department of Gynecology and Gynecologic Oncology, Klinikken Essen-Mittel/ Evang. Huessens-Stiftung/ Knappschaft GmbH, Essen, Germany
169Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Klinik, Wiesbaden, Wiesbaden, Germany
170Tuebingen University Hospital, Department of Women’s Health, Tuebingen, Germany
171Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
172Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
173Department of Obstetrics and Gynecology, Rigshospitalet, Copenhagen, Denmark
174Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
175Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (IIT), Milan, Italy
176Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), Milan, Italy
177Department of Experimental Oncology, Istituto Europeo di Oncologia (IEO), Milan, Italy and Cogenetech Cancer Genetic Test Laboratory, Milan, Italy
178University of Kansas Medical Center, Kansas City, KS, USA
179Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
180College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
181Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
182Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
183Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
184Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
185Department of Statistical Science, Duke University, Durham, North Carolina, USA
186Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
187Cancer Prevention, Detection & Control Research Program, Duke Cancer Institute, Durham, North Carolina, USA
188Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
189Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School
190Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
191Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ, USA
192Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
193Department of Gynecology and Obstetrics, Hankelund University Hospital, Bergen, Norway
194Centre for Cancer Biomarkers, Department of Clinical Sciences, University of Bergen, Bergen, Norway
Acknowledgements

The authors thank the following for their contributions to this study: Qin Wang (BCAC), Lesley McGuffog, and Ken Olfitt (CIHMB), Andrew Lee, and Ed Dicks and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Memorial Sloan Kettering Cancer Center, New York, New York, USA.

Funding for the iCOGS infrastructure came from: the European Community’s Seventh Framework Programme under grant agreement n° 232117 (HEALTH-F2-2009-232117) (iCOGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C5047/A8384, C5047/A15007, C5047/A10692, CRUK C1819/A10123), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (No. 1 U19 CA148537—the GAME-ON initiative), the Department of Defense (W1B1XHH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, the Ovarian Cancer Research Fund and Susan G Komen (WF).

Competing interests

None declared.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data sharing statement

This would vary for each study—each study is listed in the supplemental material.

Open Access

This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

