
Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1088/1361-648X/aa68c0

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via IOP at http://iopscience.iop.org/article/10.1088/1361-648X/aa68c0#. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 J. Phys.: Condens. Matter 29 225703
(http://iopscience.iop.org/0953-8984/29/22/225703)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 79.66.127.19
This content was downloaded on 29/04/2017 at 18:28

Please note that terms and conditions apply.

You may also be interested in:

Networks under pressure: the development of in situ high-pressure neutron diffraction for glassy and liquid materials
Philip S Salmon and Anita Zeidler

Establishing the structure of GeS2 at high pressures and temperatures: a combined approach using x-ray and neutron diffraction
Anita Zeidler, James W E Drewitt, Philip S Salmon et al.

Structure of glassy AsTe: the effect of adding a small quantity of Cu or Ag
Jonathan C Wasse, Ingrid Petri and Philip S Salmon

Structure of glassy and liquid
Philip S Salmon and Ingrid Petri

Structure of dysprosium and holmium phosphate glasses
Richard A Martin, Philip S Salmon, Henry E Fischer et al.

Mechanisms of network collapse in GeO2 glass: high-pressure neutron diffraction with isotope substitution as arbitrator of competing models
Kamil Wezka, Philip S Salmon, Anita Zeidler et al.

Structure of the liquid semiconductor GeSe
Ingrid Petri, Philip S Salmon and Henry E Fischer

Structure of molten lanthanum and cerium tri-halides by the method of isomorphic substitution in neutron diffraction
Jonathan C Wasse and Philip S Salmon
Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

James W E Drewitt1,2, Philip S Salmon1,3,7, Anita Zeidler1,3, Chris J Benmore4,5 and Alex C Hannon6

1 Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
2 School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1JR, United Kingdom
3 Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America
4 X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, IL 60439, United States of America
5 Intense Pulsed Neutron Source, Argonne National Laboratory, IL 60439, United States of America
6 ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom

E-mail: james.drewitt@gmail.com and p.s.salmon@bath.ac.uk

Received 22 December 2016
Accepted for publication 23 March 2017
Published 28 April 2017

Abstract

The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses \((R_xS_x)_{0.07}(Ga_2X_3)_{0.33}(Ge_2X_2)_{0.60}\) with \(R = \text{La or Ce and } X = \text{S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from GeX_4 and GaX_4 tetrahedra, and give } R–S \text{ and } R–Se coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour } R–R \text{ distance associated with rare-earth clustering is discussed.}

Keywords: glass structure, neutron diffraction, x-ray diffraction, rare-earth clustering

(Some figures may appear in colour only in the online journal)

1. Introduction

Many of the trivalent rare-earth ions exhibit intra–4f shell luminescence that can be exploited to make photonic glasses for, e.g. fibre amplifiers and lasers that operate at wavelengths compatible with fibre communications technology [1–3]. Here, the luminescence of the material will depend, e.g. on the solubility of rare-earth ions in the glass, and on the tendency of rare-earth ions to cluster within their matrix material. The latter leads to a non-uniform distribution of rare-earth ions that can limit the fluorescence lifetime, or lead to the formation of rare-earth compounds that are optically inactive. The luminescence can also be affected by multiphonon relaxation, wherein the probability of non-radiative channels is increased if the phonon energies of the host glass are close to gaps in energy between the 4f electron states of a rare-earth ion. It is therefore desirable to develop glassy materials in which the rare-earth ions are uniformly distributed within a glass matrix having appropriately small phonon energies and low transmission losses at the optical wavelengths of interest.

Chalcogenide glasses, containing one or more of the chalcogen elements (S, Se, Te), have photonic applications that range from digital memory storage to thermal imaging and infrared transmitting media [4–6]. They are also ideal hosts for luminescent rare-earth ions because their maximum phonon energies (e.g. \(\sim 460 \text{ cm}^{-1}\) for Ge–Ga–S versus \(\sim 340 \text{ cm}^{-1}\) for Ge–Ga–Se glasses in which the rare-earth solubility is high [7, 8]) are generally small as compared to silica (\(\sim 1100 \text{ cm}^{-1}\)) and fluoride glasses (\(\sim 400–650 \text{ cm}^{-1}\)) [3, 4, 9], although it is important to avoid an introduction of the vibrational bands associated with impurities to the phonon density of states [9–13]. The high refractive index of these materials (>2.1) helps to increase the cross section for stimulated emission [14, 15]. Even though rare-earth ions are barely soluble in the binary Ge–S system [10], germanium sulphide based...
glasses have attracted much attention because of their transparency in the visible spectrum. Here, the rare-earth solubility can be enhanced by making multicomponent glasses such as R_2S_3–GaS_2–GeS_2 [7, 16–21], in which the ability of Ga to form negatively charged GaS$_4$ tetrahedra helps to balance the positive charge on rare-earth ions. The incorporation of Ga also has a tendency to reduce rare-earth clustering [22–24]. This reduction will either (i) increase the fluorescence lifetime if all of the rare-earth ions initially form a single population of clustered species, or (ii) increase the fluorescence intensity corresponding to the longer fluorescence lifetime if the rare-earth ions initially form two populations of clustered versus dispersed species. Accordingly, there have been many investigations to characterise the physico-chemical, optical and luminescent properties of R_2S_3–GaS_2–GeS_2 glasses to explore their potential for use in, e.g. optoelectronic devices [7, 11, 13, 15–18, 20, 21, 23, 25–42]. There have been comparatively few investigations of the corresponding selenide or mixed sulphide/selenide glasses [9, 40–48].

In this paper, the method of neutron diffraction with isomorphic substitution (NDIS) of the rare-earth element [49–54] was employed to measure the structure of the rare-earth glasses (RX_3)$_{0.07}$(GaX_3)$_{0.33}$(GeX_3)$_{0.60}$, with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The aim is to provide a point of comparison for the effect of different chalcogens on the glass structure. The regions of glass formation in ternary R_2S_3–GaS_2–GeS_2 systems containing large rare-earth ions are described in [16, 18, 20, 21]. The composition chosen for study contains a relatively large atomic fraction of the rare earth species $c_R = 0.0368$ which is necessary for an application of the NDIS method. Here, the assumption is made that the 4f electrons of La$^{3+}$ and Ce$^{3+}$, which characterise the difference between their electronic configurations, are sufficiently removed from the valence shell so that the cations share a common structural chemistry and form isostructural compounds [1, 55]. This premise is supported by the similarity between the ionic radii of these trivalent cations (1.16 versus 1.14 Å for eightfold coordinated cations) [56] and the similarity between the Pettifor chemical parameters for La and Ce (0.705 versus 0.7025) [57]. There is a significant difference, however, between the neutron scattering lengths of La and Ce that will lead to a contrast between the measured neutron diffraction patterns for isostructural glasses containing one or other of these elements. In this way, it is possible to measure difference functions that separate, essentially, the R–R and R–μ pair-correlation functions from the μ–μ pair-correlation functions, where μ (or μ') denotes a matrix atom, i.e. Ge, Ga or X. This simplification in the structural complexity associated with a single diffraction pattern enables the NDIS method to provide the type of site-specific structural information that is required in the development of realistic structural models, a prerequisite for establishing the structure-function relationships for rare-earth chalcogenide glasses.

The paper is organised as follows. The essential diffraction theory is given in section 2, and the experimental methodology is described in section 3. The results for the sulphide and selenide glasses are presented in section 4, and are discussed in section 5 by reference to (i) the structural models that have been proposed and (ii) the presence of rare-earth clustering. Conclusions are drawn in section 6.

2. Theory

In an x-ray or neutron diffraction experiment on (RX_3)$_{0.07}$ (GaX_3)$_{0.33}$(GeX_3)$_{0.60}$ glass, the desired structural information is described by the total structure factor [58]

$$F(Q) = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} c_\alpha c_\beta F_\alpha(Q) F_\beta(Q) [S_{\alpha\beta}(Q) - 1],$$

where α and β denote the chemical species, $n = 4$ is the number of different chemical species, c_α represents the atomic fraction of chemical species α, $F_\alpha(Q)$ and $F_\alpha^*(Q)$ are the scattering length (or atomic form factor) and its complex conjugate for chemical species α, respectively, $S_{\alpha\beta}(Q)$ is a Faber–Ziman [59] partial structure factor, and Q is the magnitude of the scattering vector. $S_{\alpha\beta}(Q)$ is related to the partial pair-distribution function $g_{\alpha\beta}(r)$ by the Fourier transform relation

$$g_{\alpha\beta}(r) = 1 + \frac{1}{2\pi^2 n_0 r} \int_0^\infty dQ \ Q [S_{\alpha\beta}(Q) - 1] \sin(Qr)$$

where n_0 is the atomic number density and r is a distance in real space. The mean coordination number of atoms of type β, contained in a volume defined by two concentric spheres of radii r_i and r_j centred on an atom of type α, is given by

$$n_{\alpha\beta}^i = 4\pi n_0 c_\beta \int_0^{r_i} dr r^2 g_{\alpha\beta}(r).$$

The scattering lengths are independent of Q for the case of neutron diffraction, but not for the case of x-ray diffraction. In order to compensate for this Q dependence, the total structure factor can be rewritten as

$$S(Q) = 1 + \frac{F(Q)}{(\langle F(Q) \rangle)^2}$$

where $\langle F(Q) \rangle = \sum_{\alpha} c_\alpha F_\alpha(Q)$ is the mean scattering length. The corresponding real-space information is contained in the total pair-distribution function

$$G(r) = 1 + \frac{1}{2\pi^2 n_0 r} \int_0^\infty dQ \ Q [S(Q) - 1] \sin(Qr).$$

In x-ray diffraction experiments, the normalisation defined by equation (4) has the advantage that it allows for a better resolution of the peaks in $G(r)$.

Consider a neutron diffraction experiment performed on two samples of R–Ge–Ga–X glass that are identical in every respect, except that R represents La, a 50:50 mixture of La and Ce, or Ce. Let the corresponding total structure factors be denoted by $L^2 F(Q)$, $\text{Max} F(Q)$ and $\text{Ce}^2 F(Q)$, respectively, where $b_{\text{La}} > b_{\text{Max}} > b_{\text{Ce}}$. Then, if the rare-earth elements can be regarded as isomorphic, the contribution to a total structure factor from the μ–μ pair-correlation functions can be eliminated by taking a difference function such as
\[
\Delta F_k^{(i)}(Q) \equiv L_s^k F(Q) - \text{Mc} F(Q) = 2c_{s_{lx}} b_{(l_{sx} - b_{c_{sx}})}[S_{lx}(Q) - 1] + 2c_{s_{mc}} b_{c_{sx}}[S_{mc}(Q) - 1] + \Delta F_{\mu \nu}(Q) - c_{\mu \nu} b_{c_{sx}}[S_{\mu \nu}(Q) - 1] \, . \tag{6}
\]

Related difference functions are defined by \(\Delta F_{k}^{(2)}(Q) \equiv L_s^k F(Q) - \text{Max}_{k} F(Q)\) and \(\Delta F_{k}^{(3)}(Q) \equiv \text{Max}_{k} F(Q) - \text{Mc} F(Q)\). Similarly, it is possible to eliminate the \(R_\mu\) \(\mu\)-pair-correlations by taking a difference function such as

\[
\Delta F_{\mu \nu}^{(i)}(Q) \equiv L_s^{(i)} F(Q) - \text{Max}_{\mu \nu} F(Q) = [b_{l_{sx}}, c_{c_{sx}} F(Q) - \text{Max}_{(l_{sx} - c_{c_{sx}})} L_s^{(i)} F(Q)] / (b_{l_{sx}} - b_{c_{sx}}) = \Delta F_{\mu \nu}(Q) - \sum_{\nu} c_{\mu \nu} b_{c_{sx}}[S_{\mu \nu}(Q) - 1] \, . \tag{7}
\]

where \(\Delta F_{\mu \nu}(Q) \equiv \sum_{\mu} \sum_{\nu} \sum_{\mu} \sum_{\nu} c_{\mu \nu} b_{c_{sx}}[S_{\mu \nu}(Q) - 1]\) contains only the \(\mu\)-\(\nu\) \(\mu\)-pair-correlation functions and \(m = 3\) is the total number of matrix species. Related difference functions are defined by \(\Delta F_{\mu \nu}^{(i)}(Q) \equiv L_s^{(i)} F(Q) - \text{Max}_{\mu \nu} F(Q)\) and \(\Delta F_{\mu \nu}^{(3)}(Q) \equiv \text{Max}_{\mu \nu} F(Q) - \text{Max}_{\mu \nu} F(Q)\).

The coherent neutron scattering lengths are \(b_{l_{sx}} = 8.24(4)\) fm, \(b_{c_{sx}} = 6.54(4)\) fm, \(b_{c_{sx}} = 4.84(2)\) fm, \(b_{c_{sx}} = 8.185(20)\) fm, \(b_{c_{sx}} = 2.847(1)\) fm, and \(b_{c_{sx}} = 7.970(9)\) fm [60]. The ratio of the \(R_\mu\) \(\mu\)-weighting factor \(c_{\mu \nu} b_{c_{sx}}\) to the weighting factors for the \(\mu\)-\(\nu\) \(\mu\)-pair-correlations is small (e.g. in the case of \(\Delta F_{\mu \nu}^{(i)}(Q), 0.285\%\) for the sulphide glass versus 0.087\% for the selendine glass), i.e. the \(\Delta F_{\mu \nu}^{(i)}(Q)\) functions are dominated by the \(\mu\)-\(\nu\) \(\mu\)-pair-correlation functions.

The real-space functions corresponding to \(\Delta F_{\mu \nu}^{(i)}(Q)\) and \(\Delta F_{\mu \nu}^{(i)}(Q)\) \((i = 1\), 2 or 3\) are obtained by Fourier transformation, and are denoted by \(G_{\mu \nu}^{(i)}(r)\) and \(G_{\mu \nu}^{(i)}(r)\), respectively. The equations for, e.g. \(G_{\mu \nu}^{(i)}(r)\) and \(G_{\mu \nu}^{(i)}(r)\) are obtained from equations (6) and (7), respectively, by replacing each \(S_{\mu \nu}(Q)\) function by the corresponding partial pair-distribution function \(g_{\mu \nu}(r)\).

3. Experimental method

3.1. Glass synthesis and characterisation

Each sulphide glass was prepared in 3 g batches by loading high-purity elemental Ge (Aldrich, 99.999\%), Ga (Aldrich, 99.9999\%) and S (Alfa Aesar Puratronic®, 99.9995\%) along with La\(\text{S}_3\) (Alfa Aesar, 99.9\%) or Ce\(\text{S}_3\) (Alfa Aesar, 99.9\%), with the correct mass ratio, into a silica ampoule of 5 mm inner diameter and 1 mm wall thickness that had been etched using a 40 wt\% solution of hydrofluoric acid, rinsed using distilled water then high-purity acetone, and baked dry under vacuum at 750 °C for 2 h. The ampoule was placed in a high-purity argon-filled glove box, isolated using a Young’s tap, and then transferred to a vacuum line where it was sealed under a pressure of 10\(^{-5}\) Torr. The sealed ampoule was placed in a rocking furnace, which was heated at a rate of 1 °C min\(^{-1}\) from ambient to a temperature \(T = 1100\) °C, dwelling for 4 h each at \(T = 112\) °C, \(T = 445\) °C and \(T = 937\) °C, near to the melting and boiling points of S, and the melting point of Ge, respectively. The highest temperature was maintained for \(\geq 24\) h before the rocking motion was stopped, the furnace was placed vertically for 12 h to let the melt collect at the bottom of the ampoule, and the ampoule was then dropped into an ice/water mixture. The selenide glasses were prepared similarly, except that Se (Aldrich, 99.999\%) and either La (Alpha Aesar, 99.9\%) or Ce (Alpha Aesar, 99.9\%) metal were used as starting ingredients, the lowest dwell temperatures were set at \(T = 221\) °C and \(T = 685\) °C, corresponding to the melting and boiling points of Se, and the upper dwell temperature was set to either \(T = 920\) °C or \(T = 795\) °C, corresponding to the melting temperatures of elemental La and Ce, respectively. Each sample was broken out of its ampoule inside a high-purity argon-filled glove box.

The density of each glass was measured using a Quantachrome helium gas pycnometer (table 1). The sulphide glasses were investigated by simultaneous differential scanning calorimetry and thermal gravimetric analysis using a TA Instruments SDT Q600 machine operated with oxygen free nitrogen gas at a scan rate of 10.00 °C min\(^{-1}\). The samples started to lose mass in the vicinity of the crystallisation exotherm, i.e. at a temperature greater than the glass transition temperature \(T_g\) (table 1). For glass (La\(\text{S}_3\), Ga\(\text{S}_3\)) \((\text{GaS}_2)_{0.60}\) \((\text{GeS}_2)_{0.33}\) \((\text{GeS}_2)_{0.60}\), \(T_g\) was taken from the reversible heat flow measured by modulated differential scanning calorimetry using a TA Instruments Q100 machine operated with oxygen free nitrogen gas at a scan rate of 3 °C min\(^{-1}\) and modulation rate of ± 1 °C min\(^{-1}\).

3.2. High energy x-ray diffraction experiments

High energy x-ray diffraction experiments were performed on three \((\text{R}_2\text{S}_5)_{0.07}(\text{GaS}_2)_{0.33}(\text{GeS}_2)_{0.60}\) glasses, with \(R = \text{La}, \text{Mix}\) or Ce, using beamline ID15B at the ESRF, France. Finely powdered samples were sealed between two layers of kapton 77–80 tape, giving a slab geometry with a sample thickness of 1 mm. The incident x-ray energy was 88.76 keV and the diffraction patterns were measured using a MAR345 two-dimensional image plate detector placed at a distance of 303.55 mm from the sample position. Diffraction patterns were measured at room temperature for each sample in its container, an empty kapton container, and the empty instrument. The program FIT2D [61, 62] was used to correct each data set for geometrical effects and polarisation of the incident beam.

Table 1. The measured mass density \(\rho\), atomic number density \(n_0\) and glass transition temperature \(T_g\) for \((\text{R}_2\text{S}_5)_{0.07}(\text{GaS}_2)_{0.33}(\text{GeS}_2)_{0.60}\) glasses.

<table>
<thead>
<tr>
<th>R</th>
<th>X</th>
<th>(\rho) (g cm(^{-3}))</th>
<th>(n_0) (Å(^{-3}))</th>
<th>(T_g) (midpoint) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>S</td>
<td>3.26(1)</td>
<td>0.040(1)</td>
<td>430(2)</td>
</tr>
<tr>
<td>Mix</td>
<td>S</td>
<td>3.27(1)</td>
<td>0.040(1)</td>
<td>444(5)</td>
</tr>
<tr>
<td>Ce</td>
<td>S</td>
<td>3.24(1)</td>
<td>0.040(1)</td>
<td>446(2)</td>
</tr>
<tr>
<td>La</td>
<td>Se</td>
<td>4.79(1)</td>
<td>0.037(1)</td>
<td>403(2)</td>
</tr>
<tr>
<td>Ce</td>
<td>Se</td>
<td>4.79(1)</td>
<td>0.037(1)</td>
<td>—</td>
</tr>
</tbody>
</table>
before integrating over the Debye–Scherrer cones to produce a one dimensional diffraction pattern, which was normalised to the incident beam intensity. The data sets for each sample were then corrected for background and container scattering, taking attenuation effects into account, and were scaled to fit the sum of the Compton scattering [63] and self-scattering \(\sum c_i f_i(Q)^2 \) contributions at high \(Q \) values, where neutral atom form factors \(f_i(Q) \) were taken from [64]. The Compton and self-scattering contributions were then subtracted to obtain \(F_X(Q) \), which was converted to the total x-ray structure factor \(S_X(Q) \) using equation (4).

3.3. Neutron diffraction experiments

Neutron diffraction experiments were performed on three \((R_2)S_3)_0.07(Ga_2S_3)_0.33(\text{GeS}_2)_0.60 \) glasses, with \(R = \text{La, Mix or Ce} \), using the GEM instrument [65] at the ISIS facility. Powdered samples (each of mass \(\sim 6 \)g) were held in a cylindrical vanadium container of 6.8 mm inner diameter and 0.1 mm wall thickness. Diffraction patterns were taken for each sample in its vanadium container, the empty container, the empty instrument, and a cylindrical vanadium rod of diameter 8.36 mm at ambient temperature (\(\approx 25 \)°C). The intensities for each detector group were saved at regular intervals, and no deviation between these intensities was observed outside the statistical variation, which verified the diffractometer stability [66]. The data sets were processed using the GUDRUN analysis program [67], and the data sets for the Ce and Mix samples were also corrected for the paramagnetic scattering from Ce\(^{3+}\) by using the procedure described in [49]. Self-consistency checks were performed to ensure that (i) a measured neutron total structure factor \(S_N(Q) \) obeys the sum-rule relation \(\int_0^{\infty} \frac{dQ}{Q} Q^2 |S_N(Q) - 1| = -2\pi^2 n_0 \) which follows from equation (5) by taking the limit as \(r \to 0 \); (ii) the low-\(r \) features in the corresponding \(G_N(r) \) function oscillate about their theoretical \(G_N(r \to 0) = 0 \) limit; and (iii) the back Fourier transform of \(G_N(r) \), after the low-\(r \) oscillations are set to \(G_N(r \to 0) = 0 \), is in good overall agreement with the measured \(S_N(Q) \) function [68].

Neutron diffraction experiments were also performed on two \((R_2)S_3)_0.07(Ga_2S_3)_0.33(\text{GeS}_2)_0.60 \) glasses, with \(R = \text{La or Ce} \), using the GLAD instrument [69] at the intense pulsed neutron source (IPNS). Powdered samples (each of mass \(\sim 12 \)g) were held in cylindrical vanadium containers of 4.64 mm inner diameter and 0.13 mm wall thickness. The experimental procedure followed that described for GEM, except that a cylindrical vanadium rod of diameter 9.5 mm was used for calibration purposes, and the data sets were processed using the ISAW analysis program [70].

4. Results

4.1. Sulphide glasses

The x-ray total structure factors \(S_X(Q) \) measured for the rare earth sulphide glasses (figure 1(a)) have a first sharp diffraction peak (FSDP) at 1.08(2) Å\(^{-1} \) (table 2) that is indicative of ordering on an intermediate length scale [71]. The atomic form factors for the rare-earth ions are similar because the atomic numbers for La and Ce are \(Z_{\text{La}} = 57 \) and \(Z_{\text{Ce}} = 58 \), respectively. Thus, the close similarity between the measured \(S_X(Q) \) functions (figure 1(b)) is indicative of structural isomorphism.

The first peak in \(G_X(r) \) at 2.25(2) Å (figure 2) is attributed to a superposition of nearest neighbour Ga–S and Ge–S pair-correlations, and its position compares with Ga–S and Ge–S intra-tetrahedral bond distances of 2.19 \(\leq r_{\text{GaS}}(A) \leq 2.37 \) in crystalline Ga\(_2\)S\(_3\) [72–74] versus 2.17 \(\leq r_{\text{GeS}}(A) \leq 2.28 \) in crystalline GeS\(_2\) [75–77]. The atomic form factors for Ga and Ge are similar because their atomic numbers are similar at \(Z_{\text{Ga}} = 31 \) and \(Z_{\text{Ge}} = 32 \). Hence, by converting \(S_X(Q) \) to \(F_X(Q) \) and dividing by \(c_{\text{GaS}} f_{\text{Ga}}(Q) f_{\text{S}}(Q) + c_{\text{GeS}} f_{\text{Ge}}(Q) f_{\text{S}}(Q) \), the \(Q \)-dependent weighting factors on the Ga–S and Ge–S partial structure factors are more-or-less removed. In this way [78], the Fourier transform of the resultant \(Q \)-space function enables the Ga–S and Ge–S coordination numbers to be extracted by direct integration of the first peak. If it is assumed that \(n_{\text{Ga}}^G = 4 \), then \(n_{\text{Ge}}^G = 4.1(1) \) is obtained by integrating over the range 1.90 \(\leq r(\text{Å}) \leq 2.64 \) (table 2). The results are therefore consistent with the formation of both Ga\(_2\)S\(_3\) and Ge\(_2\)S\(_4\) tetrahedra. The second peak in \(G_X(r) \) at 3.03(3) Å is attributed to nearest-neighbour R-S pair-correlations by comparison with the bond lengths found in crystalline R–Ga–Ge–S, R–Ga–S and R–Ge–S materials with \(R = \text{La or Ce} \) (table 3). By converting...
Table 2. First three peak positions Q_{1}–Q_{3}, in the reciprocal-space functions measured for glassy (Ga$_{0.60}$ Ge$_{0.40}$)$_{0.33}$ Nd$_{0.33}$Ge$_{0.60}$, where R represents La, Ce or Mix, and X represents S or Se. The peak positions r_{1}–r_{4} in the corresponding real-space functions are also listed, together with the coordination number n_{R} obtained from the area under the peak at r_{1} by assuming that $n_{Ga}^{X} = 4$, and the coordination number n_{R}^{X} obtained from the area under the peak at r_{2}.

<table>
<thead>
<tr>
<th>X</th>
<th>Function</th>
<th>Q_{1} (Å$^{-1}$)</th>
<th>Q_{2} (Å$^{-1}$)</th>
<th>Q_{3} (Å$^{-1}$)</th>
<th>r_{1} (Å)</th>
<th>n_{Ge}^{X}</th>
<th>n_{R}^{X}</th>
<th>r_{2} (Å)</th>
<th>r_{3} (Å)</th>
<th>r_{4} (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>LaS$_{X}$(Q)</td>
<td>1.08(2)</td>
<td>2.19(2)</td>
<td>3.71(2)</td>
<td>2.25(2)</td>
<td>4.0(1)</td>
<td>3.03(3)</td>
<td>8.5(2)</td>
<td>3.66(5)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>MnS$_{X}$(Q)</td>
<td>1.08(2)</td>
<td>2.19(2)</td>
<td>3.71(2)</td>
<td>2.25(2)</td>
<td>4.1(1)</td>
<td>3.03(3)</td>
<td>8.4(2)</td>
<td>3.66(5)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>CeS$_{X}$(Q)</td>
<td>1.08(2)</td>
<td>2.19(2)</td>
<td>3.71(2)</td>
<td>2.25(2)</td>
<td>4.1(1)</td>
<td>3.03(3)</td>
<td>8.4(2)</td>
<td>3.66(5)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>LaS$_{N}$(Q)</td>
<td>1.05(2)</td>
<td>2.18(2)</td>
<td>3.68(2)</td>
<td>2.25(2)</td>
<td>3.9(1)</td>
<td>3.01(3)</td>
<td>8.8(9)</td>
<td>3.63(5)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>MnS$_{N}$(Q)</td>
<td>1.07(2)</td>
<td>2.19(2)</td>
<td>3.68(2)</td>
<td>2.25(2)</td>
<td>3.9(1)</td>
<td>2.97(3)</td>
<td>11.8(9)</td>
<td>3.62(5)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>CeS$_{N}$(Q)</td>
<td>1.05(2)</td>
<td>2.19(2)</td>
<td>3.68(2)</td>
<td>2.25(2)</td>
<td>3.9(1)</td>
<td>2.94(3)</td>
<td>10.2(9)</td>
<td>3.60(5)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>$\Delta F_{R}^{1}(Q)$</td>
<td>1.05(2)</td>
<td>2.22(2)</td>
<td>3.67(2)</td>
<td>2.24(2)</td>
<td>4.0(1)</td>
<td></td>
<td></td>
<td>3.59(5)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>$\Delta F_{R}^{2}(Q)$</td>
<td>1.05(2)</td>
<td>2.23(2)</td>
<td>3.67(2)</td>
<td>2.25(2)</td>
<td>4.1(1)</td>
<td></td>
<td></td>
<td>3.61(5)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>$\Delta F_{R}^{3}(Q)$</td>
<td>1.05(2)</td>
<td>2.23(2)</td>
<td>3.67(2)</td>
<td>2.24(2)</td>
<td>4.1(1)</td>
<td></td>
<td></td>
<td>3.57(5)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>$\Delta F_{R}^{4}(Q)$</td>
<td>1.05(2)</td>
<td>1.95(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.05(3)</td>
<td>8.0(2)</td>
<td>3.89(5)</td>
</tr>
<tr>
<td>S</td>
<td>$\Delta F_{R}^{5}(Q)$</td>
<td>1.02(2)</td>
<td>1.92(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.16(3)</td>
<td>7.9(2)</td>
<td>3.84(5)</td>
</tr>
<tr>
<td>S</td>
<td>$\Delta F_{R}^{6}(Q)$</td>
<td>1.06(2)</td>
<td>1.97(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.07(3)</td>
<td>8.0(2)</td>
<td>3.85(5)</td>
</tr>
<tr>
<td>Se</td>
<td>LaSe$_{X}$(Q)</td>
<td>1.03(2)</td>
<td>2.08(2)</td>
<td>3.50(2)</td>
<td>2.38(2)</td>
<td>3.9(1)</td>
<td>3.09(3)</td>
<td>8.1(9)</td>
<td>3.82(5)</td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>MnSe$_{X}$(Q)</td>
<td>1.03(2)</td>
<td>2.06(2)</td>
<td>3.50(2)</td>
<td>2.38(2)</td>
<td>3.9(1)</td>
<td>3.14(3)</td>
<td>9.8(9)</td>
<td>3.85(5)</td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>CeSe$_{X}$(Q)</td>
<td>1.03(2)</td>
<td>2.05(2)</td>
<td>3.50(2)</td>
<td>2.37(2)</td>
<td>4.0(1)</td>
<td></td>
<td></td>
<td>3.87(5)</td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>$\Delta F_{R}^{1}(Q)$</td>
<td>1.03(2)</td>
<td>2.46(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.11(3)</td>
<td>8.5(4)</td>
<td>3.84(5)</td>
</tr>
</tbody>
</table>

$S_{X}(Q)$ to $F_{X}(Q)$, dividing by $c_{R}c_{X}$ $\{f_{R}(Q)f_{X}(Q) + f_{R}(Q)f_{X}(Q)\}$, and Fourier transforming into real-space [78], a mean coordination number $n_{R}^{X} = 4.2(2)$ is obtained by integrating over the range $2.70 \leq r(\text{Å}) \leq 3.19$ (table 2).

The neutron total structure factors $S_{N}(Q)$ measured for the rare-earth sulphide glasses are shown in figure 3, and the corresponding total pair-distribution functions $G_{N}(r)$ are shown in figure 4. The positions of the leading peaks in both reciprocal and real space are listed in table 2. There is a small but measurable contrast between the reciprocal-space functions that is particularly marked in the region of the FSDP at ≈ 1.05 Å$^{-1}$, as emphasised by the difference functions $\Delta F_{R}^{i}(Q)$ shown in figure 5(a). As for the x-ray results, the first peak in $G_{N}(r)$ at 2.25(2) Å is attributed to a superposition of nearest neighbour Ga–S and Ge–S pair-correlations. On the assumption that $n_{Ga}^{X} = 4$, integration of this peak over the range 2.02 $\leq r(\text{Å}) \leq 2.64$ gives $n_{Ge}^{X} = 3.9(1)$. The second peak in $G_{N}(r)$ at ≈ 2.94–3.01 Å is attributed to nearest neighbour R–S pair-correlations. The n_{R}^{X} values obtained by integrating this peak over the range 2.76 $\leq r(\text{Å}) \leq 3.19$ are not, however, the same (table 2), which indicates a contribution to the second peak from μ_{Ga}–μ_{Ge} pair-correlations.

The height of the nearest-neighbour R–S peak is more pronounced in $G_{X}(r)$ (figure 2) as compared to $G_{N}(r)$ (figure 4), because the large atomic number of R gives larger weighting factors to the R–R partial-pair-distribution functions.

The difference functions $\Delta F_{R}^{i}(Q)$ and $\Delta F_{R}^{i}(Q)$ are shown in figure 5, and the corresponding real-space functions $\Delta G_{R}^{i}(r)$ and $\Delta G_{R}^{i}(r)$ are shown in figure 6. The first peak in $\Delta G_{R}^{i}(r)$ at ≈ 3.09 Å is attributed to R–S pair-correlations (table 3) and $\Delta G_{R}^{i}(r)$.

Figure 2. The x-ray total pair-distribution functions 1La$G_{X}(r)$, 3M$G_{X}(r)$, and 2Ce$G_{X}(r)$ obtained by Fourier transforming the $S_{X}(Q)$ functions shown in figure 1 after truncating at a maximum scattering vector $Q_{\text{max}} = 3$ Å$^{-1}$. The broken (red) curves indicate the extent of the unphysical low-r oscillations.
its integration over the range $2.76 \leq r(\text{Å}) \leq 3.50$ gives a mean coordination number $n^S_r = 8.0(2)$. This value is smaller than obtained from the second peak in $G_S(r)$ (table 2), which is consistent with a contribution to the latter from $\mu-\mu'$ pair-correlations. The second peak in $\Delta G^{iij}_S(r)$ at $\approx 3.86 \text{ Å}$ is attributed to a superposition of R–Ge and R–Ga pair-correlations (table 3). The third peak in $\Delta G^{iij}_S(r)$ at $\approx 4.65 \text{ Å}$ is expected to have a contribution from nearest neighbour R–R pair-correlations on the basis that the minimum R–R distance is $r_{RR}^\text{min} = 4.02-4.87 \text{ Å}$ for the crystalline sulphides reported in table 3. As in the case of $G_S(r)$, the first peak in $\Delta G^{iij}(r)$ at 2.24(2) Å is attributed to a superposition of Ga–S and Ge–S pair-correlations and, if it is assumed that $n^S_G = 4$, a coordination number $n^S_{Ge} = 4.1(1)$ is obtained by integrating over the range $2.02 \leq r(\text{Å}) \leq 2.64$. The second peak in $\Delta G^{iij}(r)$ at $\approx 3.59 \text{ Å}$ overlaps with the first peak in $\Delta G^{iij}_S(r)$ at $\approx 3.09 \text{ Å}$, which confirms a contribution from $\mu-\mu'$ pair-correlations to the second peak in $G_S(r)$.

It was not possible to extract reliably the R–R partial structure factor from the measured data sets by using difference function methods [51, 68, 94]. This situation is likely to have originated from the small atomic fraction of the rare-earth ions ($c_R = 0.0368$), and the possibility of some residual $\mu-\mu'$ pair-correlations in $\Delta G^{iij}_S(r)$, i.e. the sample compositions may not have matched exactly.

4.2. Selenide glasses

The neutron total structure factors $S_N(Q)$ measured for the rare-earth selenide glasses are shown in figure 7, and the corresponding total pair-distribution functions $G_S(r)$ are shown in Table 3. The Ga–X, Ge–X and R–X coordination numbers n^X_{Ga}, n^X_{Ge} and n^X_R, and corresponding bond distances r_{GaX}, r_{GeX} and r_{RX}, respectively, in crystalline R–Ga–Ge–S, R–Ga–X or R–Ge–X materials, where $R = \text{La or Ce}$ and $X = \text{S or Se}$. In several of these materials, Ga or Ge have both tetrahedral and octahedral coordination environments. Also given are the minimum nearest-neighbour R–Ga, R–Ge and R–R distances $r_{min}^\text{Ga}, r_{min}^\text{Ge}$ and r_{min}^RR, respectively. More information is available on the crystal structures of the sulphides as compared to the selenides.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>n^X_{Ga}</th>
<th>r_{GaX} (Å)</th>
<th>n^X_{Ge}</th>
<th>r_{GeX} (Å)</th>
<th>n^X_R</th>
<th>r_{RX} (Å)</th>
<th>r_{min}^Ga (Å)</th>
<th>r_{min}^Ge (Å)</th>
<th>r_{min}^RR (Å)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>La$_4$Ga$_6$Ge3S${12}$</td>
<td>4</td>
<td>2.24–2.29</td>
<td>4</td>
<td>2.19–2.26</td>
<td>8</td>
<td>2.93–3.12</td>
<td>3.75</td>
<td>4.45</td>
<td>4.87</td>
<td>[79]</td>
</tr>
<tr>
<td>La$_3$Ga$_6$Ge3S${14}$</td>
<td>4</td>
<td>2.20–2.25</td>
<td>4</td>
<td>2.20–2.25</td>
<td>8</td>
<td>2.89–3.28</td>
<td>3.57</td>
<td>3.68</td>
<td>4.42</td>
<td>[80]</td>
</tr>
<tr>
<td>LaGaS$_4$</td>
<td>4</td>
<td>2.09–2.53</td>
<td>—</td>
<td>—</td>
<td>8.3</td>
<td>2.82–3.48</td>
<td>3.50</td>
<td>—</td>
<td>4.33</td>
<td>[81]</td>
</tr>
<tr>
<td>LaGa$_3$S$_7$</td>
<td>4</td>
<td>2.20–2.33</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>2.81–3.59</td>
<td>3.69</td>
<td>—</td>
<td>4.33</td>
<td>[82]</td>
</tr>
<tr>
<td>La$_4$Ga6S${14}$</td>
<td>4</td>
<td>2.23–2.28</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>2.85–3.39</td>
<td>3.56</td>
<td>—</td>
<td>4.44</td>
<td>[83]</td>
</tr>
<tr>
<td>Ce6Ga${3.33}$S$_{14}$</td>
<td>6</td>
<td>2.66–2.86</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>2.82–3.38</td>
<td>3.53</td>
<td>—</td>
<td>4.41</td>
<td>[83]</td>
</tr>
<tr>
<td>Ce6Ga${3.33}$S$_{14}$</td>
<td>4</td>
<td>2.23–2.25</td>
<td>6</td>
<td>2.63–2.84</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>2.86–3.73</td>
<td>3.71</td>
<td>4.05</td>
</tr>
<tr>
<td>La$_4$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>2.19–2.24</td>
<td>9</td>
<td>2.86–3.74</td>
<td>—</td>
<td>3.70</td>
<td>4.03</td>
<td>[89]</td>
</tr>
<tr>
<td>La$_4$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>2.80–2.98</td>
<td>8</td>
<td>2.61–3.89</td>
<td>—</td>
<td>3.82</td>
<td>4.06</td>
<td>[85]</td>
</tr>
<tr>
<td>La$_4$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>2.18–2.25</td>
<td>8.5</td>
<td>2.83–3.32</td>
<td>—</td>
<td>3.76</td>
<td>4.30</td>
<td>[86]</td>
</tr>
<tr>
<td>La$_4$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>2.18–2.26</td>
<td>8.5</td>
<td>2.84–3.33</td>
<td>—</td>
<td>3.77</td>
<td>4.32</td>
<td>[87]</td>
</tr>
<tr>
<td>La$_4$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>2.17–2.22</td>
<td>8</td>
<td>2.85–3.17</td>
<td>—</td>
<td>3.51</td>
<td>4.34</td>
<td>[88]</td>
</tr>
<tr>
<td>La$_4$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>2.63–2.64</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>2.86–3.26</td>
<td>3.56</td>
<td>4.37</td>
</tr>
<tr>
<td>La$_4$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>2.45–2.66</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>2.85–3.46</td>
<td>3.64</td>
<td>4.47</td>
</tr>
<tr>
<td>Ce$_6$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>2.19–2.24</td>
<td>9</td>
<td>2.85–3.72</td>
<td>—</td>
<td>3.70</td>
<td>4.03</td>
<td>[89]</td>
</tr>
<tr>
<td>Ce$_6$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>2.20–2.24</td>
<td>9</td>
<td>2.86–3.72</td>
<td>—</td>
<td>3.69</td>
<td>4.02</td>
<td>[91]</td>
</tr>
<tr>
<td>Ce$_6$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>2.12–2.29</td>
<td>8</td>
<td>2.86–3.25</td>
<td>—</td>
<td>3.58</td>
<td>4.38</td>
<td>[90]</td>
</tr>
<tr>
<td>Ce$_6$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>2.65–2.85</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>2.86–3.26</td>
<td>3.56</td>
<td>4.37</td>
</tr>
<tr>
<td>Ce$_6$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>2.64–2.84</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>2.92–3.36</td>
<td>3.66</td>
<td>—</td>
</tr>
<tr>
<td>Ce$_6$Ge6S${12}$</td>
<td>4</td>
<td>2.33–2.34</td>
<td>6</td>
<td>2.79–2.80</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>2.94–3.38</td>
<td>3.63</td>
<td>—</td>
</tr>
<tr>
<td>Ce$_6$Ge6S${12}$</td>
<td>4</td>
<td>2.27–2.31</td>
<td>6</td>
<td>2.72–2.73</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>3.02–3.27</td>
<td>3.69</td>
<td>4.55</td>
</tr>
<tr>
<td>Ce$_6$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>2.31–2.37</td>
<td>8</td>
<td>3.02–3.35</td>
<td>—</td>
<td>3.72</td>
<td>4.59</td>
<td>[93]</td>
</tr>
<tr>
<td>Ce$_6$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>2.77–2.78</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>3.00–3.27</td>
<td>3.66</td>
<td>4.52</td>
</tr>
<tr>
<td>Ce$_6$Ge6S${12}$</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>2.82–2.86</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>2.99–3.33</td>
<td>3.69</td>
<td>4.56</td>
</tr>
</tbody>
</table>
and Ge–Se pair-correlations, and its position compares with intra-tetrahedral bond distances of 2.32 < r_GeSe (Å) < 2.48 in crystalline GaSe3 [95, 96] versus 2.34 < r_GeSe (Å) < 2.37 in crystalline GeSe2 [97]. On the assumption that \(n^\text{Se}_{\text{Ge}} = 4 \), integration of this peak over the range 2.15 < r (Å) < 2.58 gives \(n^\text{Se}_{\text{Ge}} = 3.9(1) \). The results are therefore consistent with the formation of a network containing both GaSe4 and GeSe4 tetrahedra. The second peak in \(G_N(r) \) at \(\approx 3.09–3.14 \) Å is attributed to nearest-neighbour R–Se pair-correlations by comparison with the bond lengths found in crystalline R–Ga–Se and R–Ge–Se materials with \(R = \text{La} \) or Ce (table 3). The \(n^\text{Se}_R \) values obtained by integrating this peak over the range 2.82 < r (Å) < 3.19 are not, however, identical (table 2), which indicates a contribution to the second peak from \(\mu-\mu' \) pair-correlations.

The difference function \(\Delta F^\text{Se}_R(Q) \) and its Fourier transform \(\Delta G^\text{Se}_R(r) \) are shown in figures 9(a) and 10(a), respectively. The \(\Delta F^\text{Se}_R(Q) \) function is relatively noisy, so the data set was truncated at \(Q_{\text{max}} = 10 \) Å\(^{-1} \) to reduce Fourier transform artifacts in \(\Delta G^\text{Se}_R(r) \). The first and second peaks in \(\Delta G^\text{Se}_R(r) \) at 3.11(3) and 3.84(5) Å are attributed to the nearest-neighbour R–Se and Ge–Se pair-correlations, respectively. As compared to \(\Delta G^\text{Ga}(r) \) for the corresponding sulphide glass (figure 6(a)), the first peak is higher than the second peak because \(b_{\text{Se} \rightarrow \text{Se}} = 2.799 \). The first peak gives a coordination number \(n^\text{Se}_R = 8.5(4) \) by integrating over the range 2.76 < r (Å) < 3.56 to the first minimum, which compares to \(n^\text{Se}_R = 8.9 \) for large rare earth ions in related crystalline materials (table 3). This coordination number is different to those found from the \(G_N(r) \) functions (table 2), which points to an overlap of the the R–Se and \(\mu-\mu' \) pair-correlation functions in \(G_N(r) \), and to the difficulty in extracting \(n^\text{Se}_R \) from the total pair-distribution functions. The third peak in \(\Delta G^\text{Ga}(r) \) at 4.75(5) Å is likely to have a contribution from R–R pair-correlations on the basis that \(r^\text{Ga}_{\text{Ga}} \approx 4.45–4.59 \) Å for the crystalline selenides reported in table 2.

The difference function \(\Delta F^\text{Ga}(Q) \) and its Fourier transform \(\Delta G^\text{Ga}(r) \) are shown in figures 9(b) and 10(b), respectively. As for the case of \(G_N(r) \), the first peak in \(\Delta G^\text{Ga}(r) \) at 2.37(2) Å is attributed to a superposition of Ga–Se and Ge–Se pair-distribution functions and, if it is assumed that \(n^\text{Se}_G = 4 \), a coordination number \(n^\text{Se}_G = 4.0(1) \) is obtained by integrating this peak over the range 2.15 < r (Å) < 0.64. The glass composition can be re-written as \((R_2\text{Se}_3)_{0.07}(\text{Ga}_2\text{Se}_3)_{0.3548}(\text{GeSe}_2)_{0.6452} \) and...
i.e. the base glass is rich in GeSe$_2$. Hence, by comparison with the structure of glassy GeSe$_2$ [98], the shoulder in $\Delta G^{11}(r)$ at ≈ 3.1 Å may have a contribution from the Ge–Ge distances in edge-sharing GeSe$_4$ tetrahedra, the peak at 3.87(5) Å may have a contribution from Se–Se pair-correlations, and the lower shoulder on this peak at ≈ 3.6 Å may have a contribution from the Ge–Ge pair-correlations in corner-sharing tetrahedra. In comparison, Raman and multinuclear (71Ga, 77Se) solid state nuclear magnetic resonance experiments on the base glass-forming system (Ga$_2$Se$_3$)$_x$(GeSe$_2$)$_{1-x}$ with $0.063 \leq x \leq 0.30$ support the formation of a network based primarily on corner-sharing GaSe$_4$ and Ge–Ge homopolar bonds that appear in ethane-like Se$_2$Ge–GeSe$_3$ units [8]. With increasing x, the glass becomes increasingly Se deficient because the Ga:Se ratio is 1:3/2, i.e. less of the Ga and Ge atoms are able to take coordination environments in which they are bound exclusively to four Se atoms. In response, the fraction of homopolar bonds in ethane-like units increases, and Se atoms can also increase their coordination number from two to three by the formation of triclusters in which each higher coordinated Se atom is shared between three (Ga/Ge) Se$_4$ tetrahedra. In this way the Ga and Ge atoms can retain fourfold coordination environments.

5. Discussion

The local structure in R_2S_3–Ga$_2$S$_3$–GeS$_2$ glasses containing La and Ce has been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy [30, 31]. In the case of glassy (La$_2S_3$)$_{0.167}$(Er$_2S_3$)$_{0.083}$(Ga$_2S_3$)$_{0.417}$(GeS$_2$)$_{0.333}$, EXAFS investigations at the Ga and Ge K-edges indicate the formation of Ga$_4$ and Ge$_4$ tetrahedra with bond distances of $r_{GaS} \approx 2.31$ Å and $r_{GeS} \approx 2.21$ Å [30]. Similar observations were made for the Ga and Ge coordination environments for glasses in the La$_2S_3$–Er$_2S_3$–Ga$_2$S$_3$–GeS$_2$ system from other EXAFS investigations at the Ga and Ge K-edges in which the ratio of Ga$_2$S$_3$ to GeS$_2$ was varied [31]. In the case of glassy (R_2S_3)$_{0.25}$(Ga$_2S_3$)$_{0.417}$(GeS$_2$)$_{0.333}$ ($R = $ La or Ce), EXAFS investigations at the R L$_{III}$-edge gave a coordination number $n^S_{La} \approx 10.5$ with a bond distance $r_{LaS} \approx 2.99$ Å or a coordination number $n^S_{Ga} \approx 7.6$ with a bond distance $r_{GaS} \approx 2.96$ Å [30]. In comparison, EXAFS investigations of glasses in the La$_2S_3$–Ga$_2$S$_3$ system at the Ga K-edge and La L$_{III}$-edge indicate a network based on corner-sharing GaS$_4$ tetrahedra with a bond distance $r_{GaS} = 2.26$–2.27 Å, and a coordination number $n^S_{La} \approx 7$ with a bond distance $r_{LaS} = 2.91$–2.93 Å [99].

Raman spectroscopy was used to measure the structure of glassy (La$_2S_3$)$_x$(Ga$_2S_3$)$_{0.4}$(GeS$_2$)$_{0.6}$(1–x) with $0 \leq x \leq 0.35$ [7].
Figure 7. The neutron total structure factors $^{14}S_n(Q)$ and $^{15}S_n(Q)$ for glassy $R(Se)_{0.07}(Ga_2Se_3)_{0.33}(GeSe_2)_{0.60}$, a nearest-neighbour R–S distance of $\approx 4.65 \, \text{Å}$, as estimated from the position of the third peak in $\Delta G^N(R)$ (table 2), compares to a minimum nearest-neighbour R–R distance $r_{RR}^{\text{min}} = 4.02$–$4.87 \, \text{Å}$ in crystalline R–Ga–Ge–S, R–Ga–S and R–Ge–S materials with $R =$ La or Ce (table 3). A shoulder at $\approx 2.55 \, \text{Å}$ does not, however, manifest itself as a notable feature in $\Delta G^N(R)$ (figure 6), i.e. this feature in $G^N(r)$ may have a contribution from Fourier transform artifacts. The coordination number $n^S_R = 8.0(2)$ found from the measured $\Delta G^N(R)$ functions for glassy $R(Se)_{0.07}(Ga_2Se_3)_{0.33}(GeSe_2)_{0.60}$ (table 2) compares to $n^S_R = 8$–9 for large rare earth ions in related crystalline materials (table 3). For glassy $R(Se)_{0.07}(Ga_2Se_3)_{0.33}(GeSe_2)_{0.60}$, a nearest-neighbour R–R distance of $\approx 4.65 \, \text{Å}$, as estimated from the position of the third peak in $\Delta G^N(R)$ (table 2), compares to a minimum nearest-neighbour R–R distance $r_{RR}^{\text{min}} = 4.02$–$4.87 \, \text{Å}$ in crystalline R–Ga–Ge–S, R–Ga–S and R–Ge–S materials with $R =$ La or Ce (table 3). In these crystalline materials, the positive charge on units such as (S$_3$Ge–GeS$_3$)$^{2-}$, where these charges are calculated on the basis of bridging S atoms. Hence, negatively charged tetrahedral units are formed that can balance the positive charge on the added La$^{3+}$ ions. For $x = 0$, the results were interpreted in terms of a network made from corner-sharing GaS$_4$ and GeS$_4$ tetrahedra, in which the S deficiency associated with the Ga:S ratio of 1:3/2 is compensated by the formation of Ga–Ga or Ge–Ge homopolar bonds. It was argued that Ge–Ge bonds predominate on the basis that Ge–S bonds are more easily ruptured than Ga–S bonds, for which the electronegativity difference between the atomic species is greater. Edge-sharing tetrahedral connections are allowed, especially in respect of Ga centered units. For $x = 0$, the results were interpreted in terms of a network made from corner-sharing GaS$_4$ and GeS$_4$ tetrahedra, in which the S deficiency associated with the Ga:S ratio of 1:3/2 is compensated by the formation of Ga–Ga or Ge–Ge homopolar bonds. It was argued that Ge–Ge bonds predominate on the basis that Ge–S bonds are more easily ruptured than Ga–S bonds, for which the electronegativity difference between the atomic species is greater. Edge-sharing tetrahedral connections are allowed, especially in respect of Ga centered units. The negative charge on units such as GaS$_4$ is compensated by the positive charge on units such as (S$_3$Ge–GeS$_3$)$^{2-}$, where these charges are calculated on the basis of bridging S atoms. When La$_2$S$_3$ is introduced, the provision of additional S atoms breaks homopolar bonds to enable all of the Ge and Ga atoms to form corner-sharing GaS$_4$ or GeS$_4$ tetrahedra in which some of the S atoms are non-bridging. In addition, edge-sharing tetrahedra are converted to corner-sharing tetrahedra, and the resultant motifs may also contain non-bridging S atoms. Hence, negatively charged tetrahedral units are formed that can balance the positive charge on the added La$^{3+}$ ions.

The present neutron and x-ray diffraction work on the structure of glassy $R(Se)_{0.07}(Ga_2Se_3)_{0.33}(GeSe_2)_{0.60}$, where the composition can be re-written as $(R(Se)_{0.07}(Ga_2Se_3)_{0.33}(GeSe_2)_{0.60})_{0.45}$, is consistent with the formation of GaS$_4$ and GeS$_4$ tetrahedra as network forming motifs. By contrast, in the crystalline structures of R–Ga–Ge–S, R–Ga–S and R–Ge–S materials with $R =$ La or Ce, the Ga and Ge atoms can form either tetrahedral or octahedral motifs with S atoms, depending on the composition (table 3). The first peak in the measured $G_N(r)$ functions (figure 4) has a small high-r shoulder at $\approx 2.55 \, \text{Å}$, a distance that is longer than typical intra-tetrahedral Ga–S and Ge–S distances (table 3). It may therefore originate from the longer bond lengths found in higher coordinated Ge or Ga centred polyhedra, or from Ga–Ga homopolar bonds, where the Ga–Ga nearest-neighbour distance is $2.45 \, \text{Å}$ in crystalline GaS$_2$ [100], 2.43–2.48 Å in crystalline GaSe [101], or 2.48–2.69 Å in the different polymorphs of crystalline GaS [102–105]. A shoulder at $\approx 2.55 \, \text{Å}$ does not, however, manifest itself as a notable feature in $\Delta G^N(R)$ (figure 6), i.e. this feature in $G^N(r)$ may have a contribution from Fourier transform artifacts. The coordination number $n^S_R = 8.0(2)$ found from the measured $\Delta G^N(R)$ functions for glassy $(R(Se)_{0.07}(Ga_2Se_3)_{0.33}(GeSe_2)_{0.60}$ (table 2) compares to $n^S_R = 8$–9 for large rare earth ions in related crystalline materials (table 3). For glassy $(R(Se)_{0.07}(Ga_2Se_3)_{0.33}(GeSe_2)_{0.60}$, a nearest-neighbour R–R distance of $\approx 4.65 \, \text{Å}$, as estimated from the position of the third peak in $\Delta G^N(R)$ (table 2), compares to a minimum nearest-neighbour R–R distance $r_{RR}^{\text{min}} = 4.02$–$4.87 \, \text{Å}$ in crystalline R–Ga–Ge–S, R–Ga–S and R–Ge–S materials with $R =$ La or Ce (table 3). In these crystalline materials.
The broken (red) curves indicate the \(\Delta G^{(1)}(r) \) and \(\Delta G^{(1)}(r) \) functions shown in figure 10, or (b) \((0.07(Ga_{2}Se_{3})_{0.33(GeSe_{2})_{0.60}}\) and \((0.07(Ga_{2}Se_{3})_{0.33(GeSe_{2})_{0.60}}\) as obtained by Fourier transforming the corresponding \(\Delta F^{(1)}(Q) \) and \(\Delta F^{(1)}(Q) \) functions shown in figure 9 after spline fitting the data and applying a cosine window function over the range 7.5–10 Å\(^{-1}\) for \(\Delta G^{(1)}(r) \) or 18–23 Å\(^{-1}\) for \(\Delta G^{(1)}(r) \). The broken (red) curves indicate the extent of the unphysical low-\(r \) oscillations.

\(r_{min}^{RR} \) corresponds to \(R-S-R \) connections, i.e. two rare-earth ions share a common sulphur atom. By contrast, if the rare-earth ions were uniformly distributed within the glass matrix on a simple cubic lattice in order to optimise their separation, the \(R-R \) distance \(r_{min}^{RR} = (c_{RR}n_{0})^{-1/3} \approx 8.79 \) Å. Hence, there appears to be a clustering of rare-earth ions in the sulphide glass, and a distance \(r_{min}^{RR} \approx 4.0-4.9 \) Å is likely to be representative of \(R_{23}S_{4}G_{3}S_{3}Ge_{2} \) glasses in which this clustering occurs. For glassy \((R_{2}Se_{3})_{0.07(Ga_{2}Se_{3})_{0.33(GeSe_{2})_{0.60}}\) a nearest-neighbour \(R-R \) distance of \(\approx 4.75 \) Å can be estimated from the position of the third peak in \(\Delta G_{R}(r) \) (table 2), which compares to \(r_{min}^{opt} = 9.02 \) Å for the glass and \(r_{min}^{RR} \approx 4.52-4.59 \) Å in crystalline \(R_{2}S_{3}G_{3}S_{3} \) and \(R_{2}S_{3}Ge_{2} \) glasses with \(R = \text{La or Ce} \) (table 3). For the latter, \(r_{min}^{RR} \) corresponds to \(R-S-R \) connections. In rare-earth glassy materials, a distance \(r_{min}^{RR} \) is desirable because it will minimise the non-radiative energy transfer between rare-earth ions, thereby helping to optimise the radiative quantum efficiency [14, 36].

6. Conclusions

The structure of \((R_{2}X_{3})_{0.07(Ga_{2}X_{3})_{0.33(GeX_{2})_{0.60}}\) glasses, where \(R \) denotes \(\text{La or Ce} \) and \(X \) denotes \(S \) or \(Se \), was investigated by using the method of neutron diffraction with isomorphic substitution. X-ray diffraction was also employed to measure the structure of the sulphide glass. The experiments on both the sulphide and selenide glasses reveal structures that are based on networks built from \(Ga_{2}X_{3} \) and \(Ge_{X} \) tetrahedra in which the rare-earth ions reside with an extent of the unphysical low-\(r \) oscillations.

\(\Delta G^{(1)}(r) \) and \(\Delta G^{(1)}(r) \) for glassy \((R_{2}Se_{3})_{0.07(Ga_{2}Se_{3})_{0.33(GeSe_{2})_{0.60}}\) as obtained by Fourier transforming the corresponding \(\Delta F^{(1)}(Q) \) and \(\Delta F^{(1)}(Q) \) functions shown in figure 9 after spline fitting the data and applying a cosine window function over the range 7.5–10 Å\(^{-1}\) for \(\Delta G^{(1)}(r) \) or 18–23 Å\(^{-1}\) for \(\Delta G^{(1)}(r) \). The broken (red) curves indicate the extent of the unphysical low-\(r \) oscillations.

Acknowledgments

We are grateful to Lawrie Skinner, Joan Siewenie and Veijo Honkimäki for their help with the experiments. PSS would like to thank Bruce Aitken (Corning Inc.) and Andrey Tverjanovich (Saint-Petersburg State University) for useful discussions. The Bath group thanks the EPSRC for support via Grant No. EP/C003594/1, and acknowledges use of the EPSRC funded National Chemical Database Service...
hosted by the Royal Society of Chemistry. PSS and AZ are grateful to Corning Inc. for the award of Gordon S Fulcher Distinguished Scholarships during which this work was completed. AZ is supported by a Royal Society—EPSRC Dorothy Hodgkin Research Fellowship. The data sets created during this research are openly available from the University of Bath data archive at https://doi.org/10.15125/BATH-00343.

References

[22] Aitken B G, Ponader C W and Quimby R S 2002 C. R. Chim. 5 865
[59] Faber T E and Ziman J M 1965 Phil. Mag. 11 153