
Peer reviewed version

Link to published version (if available): 10.1109/ISIE.2017.8001373

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via IEEE at http://ieeexplore.ieee.org/document/8001373/. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
A photovoltaic panel modelling method for flexible implementation in Matlab/Simulink using datasheet quantities

J. Kitson¹*, S. J. Williamson¹, P. Harper¹, C. M. McMahon², G. Rosenberg¹, M. Tierney¹, K. Bell¹
¹University of Bristol, Bristol, UK
²DTU Technical University of Denmark, Kongens Lyngby, Denmark
*jk6862@bristol.ac.uk

Abstract—This paper presents a detailed method for creating an embedded Matlab model in Simulink for any solar photovoltaic panel starting with its datasheet values. It links extrinsic functions to the Simulink embedded model to provide fast and simple iterative solving of non-linear equations. It also provides a method sufficiently flexible to produce a model output based on panel current or voltage such that it can be cascaded with different Simulink elements.

Keywords—Solar photovoltaic, embedded Matlab modelling, Simulink, Newton Raphson, simultaneous non-linear equations, Jacobian matrices, extrinsic and anonymous Matlab functions

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Diode quality (ideality) factor</td>
</tr>
<tr>
<td>I_0</td>
<td>Dark saturation current in Standard Test Conditions (STC)</td>
</tr>
<tr>
<td>I_{sc}</td>
<td>Short-circuit current in STC</td>
</tr>
<tr>
<td>I_{mpp}</td>
<td>Current at the Maximum Power Point (MPP) in STC</td>
</tr>
<tr>
<td>k</td>
<td>Boltzman constant (J/K)</td>
</tr>
<tr>
<td>K_i</td>
<td>Temperature coefficient of the short-circuit current</td>
</tr>
<tr>
<td>K_v</td>
<td>Temperature coefficient of the open-circuit voltage</td>
</tr>
<tr>
<td>N_c</td>
<td>Number of cells per module</td>
</tr>
<tr>
<td>P_{mpp}</td>
<td>Power at the MPP in STC</td>
</tr>
<tr>
<td>q</td>
<td>Charge on an electron</td>
</tr>
<tr>
<td>R_s</td>
<td>Panel series resistance</td>
</tr>
<tr>
<td>R_{sh}</td>
<td>Shunt resistance</td>
</tr>
<tr>
<td>T_{stc}</td>
<td>Temperature at STC (°K)</td>
</tr>
<tr>
<td>V_{mpp}</td>
<td>Voltage at the MPP in STC</td>
</tr>
<tr>
<td>V_{oc}</td>
<td>Open-circuit voltage in STC</td>
</tr>
<tr>
<td>V_t</td>
<td>Thermal voltage on photovoltaic cell</td>
</tr>
</tbody>
</table>

I. INTRODUCTION

Solar photovoltaic installations have increased in number dramatically over the past 10 years, with the cost of panels reducing by 80% since 2010, making large solar installations a viable commercial alternative to fossil fuel power plants [1]. New photovoltaic materials continue to improve panel efficiency considerably [2]. This has been coupled with increases in grid-tie inverter efficiency [3] and control improvements to reduce harmonics whilst maintaining fast response [4], making PV increasingly attractive for use in DC or hybrid DC/AC grids.

Where PV panels are to be incorporated in a DC or hybrid DC/AC grid or micro-grid system in development, it is important that a robust but flexible means of simulating modelling a PV panel in software such as Matlab/Simulink is available for system specification, panel sizing and maximum power point tracking design.

Simulink provides in-built models of PV panels with drop down options for different panels; however it may not provide a match for a desired model; built-in model operation tends to be opaque and based on look-up tables. When coupled with other system elements, they can form algebraic loops which are challenging to resolve. They are limited in terms of how they must be connected with other Simulink model parts; this can therefore make them difficult to cascade with other elements of simulated Microgrid systems.

In order to provide simpler, more robust and more flexible solar models, an alternative approach to Simulink in-built models can be used which characterizes the current-voltage behaviour of PV panels from first principles but which can be dropped into a variety of Simulink systems.

This paper provides a step by step process for modeling of any PV panel in embedded Matlab/Simulink from a datasheet with the option of having panel current or voltage as a model output. This comprises an illustration of (1) how equivalent circuit parameters are derived from solving a series simultaneous of non-linear equations for the panel at standard conditions (STC) through Matlab functions (2) how an embedded Matlab function within Simulink can be created to represent the PV panel with the choice of panel output current being a model input or output (similarly with panel voltage); and (3) how the Simulink embedded Matlab function can call extrinsic iterative solvers (e.g. Newton-Raphson) and return values to the embedded function for output into Simulink model. Finally (4), the model outputs are compared with plotted v-i characteristics of panels found in datasheets for a range of solar panel models to verify their agreement with manufacturers’ values over a range of insolation and temperature values.
II. PV EQUIVALENT CIRCUIT MODEL DEVELOPMENT

A. Choice of Equivalent Circuit Model for a PV Panel

There have been a number of modelling options starting from equivalent circuit equations which have been researched for PV cells, trading off accuracy with complexity [9], [10], [11], [12], [13] and [14]. The simplest of these models is based on a single current source and diode, extending to a double exponential model with equivalent series and shunt resistances. This work will use one such model in the range; the option selected is a standard single exponential model with a series and shunt resistance, [8], [11] and [12] shown in Fig 1. The same modelling and iterative solving approaches set out in this paper are equally applicable to other more complex equivalent circuit models, with appropriate alterations in underlying circuit equations.

\[i = I_{ph} - I_0 \left(e^{\frac{V + i R_s}{n V_T}} - 1 \right) - \frac{V + i R_s}{R_{sh}} \]

Equation (6) shows the relationship between thermal voltage at standard conditions \(V_{th} \) and the diode ideality factor, \(A \).

\[V_{th} = \frac{A k T_{sc}}{q} \]

Equations (3)-(6) are used in conjunction with the measurements typically provided solar PV panel datasheets, (TABLE I.). Further equation manipulation via the process outlined in [11] yields three non-linear equations (equations (18), (19 and (22) in [11]) which contain expressions for the known datasheet parameters in TABLE I. but in which three unknowns remain: \(R_s \), \(R_{sh} \) and \(A \).

<table>
<thead>
<tr>
<th>Make and Model of Solar Panel</th>
<th>Make and Model of Solar Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLP020</td>
<td>SLP020</td>
</tr>
<tr>
<td>MSX120 (24V)</td>
<td>MSX120 (24V)</td>
</tr>
<tr>
<td>MSX60</td>
<td>MSX60</td>
</tr>
<tr>
<td>MSX64</td>
<td>MSX64</td>
</tr>
<tr>
<td>KC200GT</td>
<td>KC200GT</td>
</tr>
</tbody>
</table>

C. Solving a set of non-linear simultaneous equations for equivalent circuit parameters using Jacobian Matrices

In order to solve the set of non-linear equations arising to extract the equivalent PV circuit model parameters, \(R_s \), \(R_{sh} \) and \(A \), a number of methods have been proposed. These have been, for example, via a pattern search optimization algorithm [12], nested loops to solve for several circuit variables using an iterative Newton-Raphson or bisection method [11], or by using Lambert w-functions [13]. This work derives circuit parameters by solving the non-linear equations simultaneously with a Newton Raphson method using a Jacobian matrix [15].

\[
\begin{bmatrix}
 f_1(R_{sh}, R_s, A) \\
 f_2(R_{sh}, R_s, A) \\
 f_3(R_{sh}, R_s, A)
\end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \tag{7}
\]

Based on the equation derivation in [11] at the three points of interest in the \(V-I \) output characteristic of the solar panel, the three nonlinear equations (15)-(17) to be solved iteratively in this work, have been rearranged such that they meet the form set out in (7). This iterative solution is reached by using a Newton-Raphson progression with a Jacobian matrix as in (8).
\[x_{n+1} = x_n - J(x_n)^{-1}f(x_n) \]
(8)

The Jacobian matrix is defined as a matrix of partial derivatives of the three equations \(f_1, f_2 \) and \(f_3 \) as in (9).

\[
J = \begin{bmatrix}
\delta f_1 & \delta f_1 & \delta f_1 \\
\delta R_{sh} & \delta R_s & \delta A \\
\delta f_2 & \delta f_2 & \delta f_2 \\
\delta R_{sh} & \delta R_s & \delta A \\
\delta f_3 & \delta f_3 & \delta f_3 \\
\delta R_{sh} & \delta R_s & \delta A
\end{bmatrix}
\]
(9)

The progression in (8) must be initialized with estimates of the three parameters to be solved, as expressed in (10).

\[x_0 = [R_{sh0} \quad R_s \quad A_0]^T \]
(10)

Seed values for these were set where \(R_{sh0} \approx 1000, R_s \approx 0.3 \) and \(A_0 \approx 1.1 \) for the Newton-Raphson iterative process to converge. The solution can either be implemented by writing anonymous functions for \(f(x_n) \) and \(J(x_n) \) in one Matlab file, or by writing separate functions for each of \(f(x_n) \) and \(J(x_n) \) and including those functions as parameters in another function (called ‘newtonPVparam’), Fig 2:

```
function [x, iter] = newtonmPVparam(x0, PVparam, f, J)
N = 100; % define max. number of iterations
epsilon = 1e-7; % define tolerance
xx = x0; % load initial guess
while (N>0) JJ = feval(J, xx, PVparam);
xn = xx - JJ/feval(f, xx, PVparam);
if abs(feval(f, xn, PVparam))<epsilon
    xn = xx - JJ\feval(f, xx, PVparam);
    N = N - 1;
else
    N = N - 1;
end;
end;
ext = 100*N; return; end;
```

Fig 2. Matlab .m file implementation of (8)

This function accepts the initial values of \(x \) (as expressed in (10), together with the datasheet parameters “PVparam” and calls two parameterised functions ‘nonlinearfunctions’ which relates to \(f(x_n) \) and ‘jacob’ which refers to \(J(x_n) \). It returns one vector with the solutions for the three circuit values \(R_{sh}, R_s \) and \(A \); these are shown in TABLE II. \(V_{TSTC} \) (thermal voltage at standard conditions) is directly proportional to \(A \) (see (6)) and has therefore also been included in the same results table.

TABLE II. CALCULATED EQUIVALENT CIRCUIT PARAMETERS AT STC USING VALUES 1-5 FROM TABLE I.

<table>
<thead>
<tr>
<th>Calculate (R_{sh})</th>
<th>Make and Model of Solar Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(449.15)</td>
<td>SLP020 MSX120 MSX60 MSX64 KC200 GT</td>
</tr>
<tr>
<td>(0.0002)</td>
<td>(0.4539) (0.311) (0.196) (0.3279)</td>
</tr>
<tr>
<td>(1.1132)</td>
<td>(1.4707) (1.2265) (1.3271) (0.9821)</td>
</tr>
<tr>
<td>(0.0286)</td>
<td>(0.0378) (0.0315) (0.0341) (0.0253)</td>
</tr>
</tbody>
</table>

D. Dependence of Circuit Equations on Insolation and Temperature

Once ascertained, the parameters \(R_s, R_{sh} \) and \(A \) are assumed to be fixed over a range of panel temperatures and insolation. In other work featuring simpler equivalent circuit models \(R_s \), was recalculated with temperature and insolation [14]. However, it has been illustrated in Section VI that the approach here of using fixed circuit parameters still provides a very good approximation of PV panel behaviour.

Most of these effects of temperature and insolation on photo current \(I_{ph} \), dark saturation current \(I_0 \) and short circuit current \(I_{SC} \) can be considered linear, as can the effect of temperature on open circuit voltage, \(V_{OC} \). These effects have been covered extensively in literature [9], [10], [11], [12], [13], [14], have been accounted for in the embedded Matlab model, Fig 10. However, \(V_{OC} \) varies logarithmically with insolation. As the graph in Fig 8 shows, the effect is observable and therefore must be accounted for, although this has been ignored in some other literature [14]. Therefore as this is a non-linear effect, its solution is dealt with iteratively and it becomes an extrinsic function (Fig 11) to the main embedded Matlab function describing the solar panel in section III.

III. EMBEDDED MATLAB FUNCTION FOR A SOLAR PANEL

The PV panel output voltage and current (as determined by its characteristic \(I-V \) curve) will depend upon the panel’s operating temperature and insolation. A given panel output voltage will give rise to a given output current, and vice versa and these will be determined at what point along the \(I-V \) curve the panel is operating. From the perspective of modelling the PV panel, the choice is to model the output voltage as a function of output current (section IV), or the output current as a function of output voltage (section IV). The former of the two models is more suitable when modules are connected in series and share the same current. The latter model is better suited for the case when modules are connected in parallel and share the same voltage.

IV. ‘VOLTAGE INPUT-CURRENT OUTPUT’ MODEL FOR PV

The embedded Matlab Model is arranged as in Fig 3, where the panel output voltage is an input to the model and the outputs to the model are output current and power. As stated in section III, this model is more suited for cases where modules are connected in parallel and share the same voltage. However, they should also be used where they directly interface with a Simulink model element which has input current as one of its model inputs (e.g. a DC-DC converter performing maximum power point tracking).
The embedded Matlab code for the model in Fig 3 has been set out in Fig 10 and is based on (11) and (12). It must solve the rearranged expression for panel current (11) iteratively which is originally based on (1).

\[f(i) = 0 = I_{ph} - I_0 \left(\frac{v + iR_s}{nV_T} - 1 \right) - v + \frac{iR_s}{R_{sh}} - i \]

(11)

The Newton-Raphson iterative expression also requires the derivative of (11) with respect to panel current, \(i \). This is expressed in (12).

\[f'(i) = -\frac{1}{nV_T}I_0R_s \left(\frac{v + iR_s}{nV_T} - 1 \right) - \frac{R_s}{R_{sh}} - 1 \]

(12)

As an embedded Matlab function is not capable of handling the anonymous functions required for iterative solutions, the Newton-Raphson functions are written as extrinsic functions in a separate “.m” file which is declared in the embedded function and then called from it. The extrinsic function returns a value to the embedded Matlab code. The Matlab anonymous functions are illustrated in Fig 11 and Fig 12. Fig 4 provides an overview of this process between extrinsic files and the embedded Matlab.

The expression in (2) for panel voltage is rearranged and set to zero as in (13) so that it can be solved iteratively using Newton-Raphson, such panel output voltage for a given panel output current can be found.

\[f(v) = 0 = -v - R_{sh} \left(i - I_{ph} + I_0 \left(\frac{v + iR_s}{nV_T} - 1 \right) \right) - iR_s \]

(13)

The Newton-Raphson iterative expression also requires the derivative of (13) with respect to panel voltage, \(v \), (14).

\[f'(v) = -\frac{I_0R_{sh}}{nV_T} \left(\frac{v + iR_s}{nV_T} \right) - 1 \]

(14)

The Newton function is declared as an extrinsic ‘.m’ file (in separate Matlab file) as it contains anonymous functions which are not permitted in an embedded function within Matlab. An extrinsic Newton-Raphson Matlab function is called from within the Embedded Matlab function for this model in order to find the root of (13). An excerpt of this function is in Fig 6.

\[f= @(xx) \, xx-R_{sh}*I_{ph}+I_0*exp((xx+I*Rs)/(Ns*Vt_stc))-1-I*Rs; \]

\[fd= @(xx) \, -(I_0*R_{sh}*exp((xx+I*Rs)/(N_s*Vt_stc)))/(N_s*Vt_stc) - 1; \]

Fig 6. Code from extrinsic Matlab function solving for panel voltage, \(v \) which implements equations (13) and (14)

VI. PV PANEL MODEL VALIDATION

To test the accuracy of the modelling method, PV panel validation is illustrated here on three of the solar panel models whose equivalent circuit parameters were previously calculated in section II.C. Engage Digitizer software was used to extract data points from the datasheets to compare with the simulated \(V-I \) output characteristics of the relevant model. The accuracy of the data from the datasheet graphs for comparison is, however, limited to what can be achieved by extracting that data visually using Engage Digitizer.

Fig 7. MSX120 24V nominal solar panel datasheet and simulated \(V-I \) characteristic at 25/75°C with 1000W/m² insolation [7]

The derived model for the KC200GT is compared with the KC200GT solar panel datasheet curves at different irradiation levels. The agreement between these datasheet and simulated figures is shown at Fig 8.

Fig 8. MSX120 24V nominal solar panel datasheet and simulated \(V-I \) characteristic at 25/75°C with 1000W/m² insolation [7]

The derived model for the KC200GT is compared with the KC200GT solar panel datasheet curves at different irradiation levels. The agreement between these datasheet and simulated figures is shown at Fig 8.
similarly the PV model SLP020 has been verified at different temperatures at standard insolation, based on the V-I output graph available on the SLP020 datasheet, as shown by Fig 9.

Fig 9. SLP020 12V nominal solar panel datasheet and simulated V-I characteristic at 25 and 75ºC with 1000W/m² insolation [5]

VII. CONCLUSIONS

This paper has presented a simple means of producing a flexible embedded Matlab model for use within Simulink to represent a solar panel. Initially it uses simple iterative means of solving non-linear simultaneous equations to find equivalent circuit parameters at standard conditions, which are subsequently used as inputs into the PV model. It has been shown that the embedded Matlab model must call extrinsic functions to solve non-linear equations where anonymous functions are not permitted in embedded Matlab models. Panel current and voltage are interchangeable as inputs and outputs to the model such that it can provide flexibility in modelling with other Simulink elements. This research forms part of ongoing modelling work on hybrid DC and AC network micro grids powered from a range of locally available sources including solar energy. Future work on this project will involve use of these models as part of DC microgrid design, coupling them with converters using maximum power point tracking and power sharing through DC droop control.

ACKNOWLEDGEMENTS

The authors are grateful for the funding of this research provided by a UK EPSRC Institutional Sponsorship Grant.

REFERENCES

APPENDIX

function [I,panel_P] = genericPV(v,Irrad_wmsq,Temp_c,datasheetparam,circuitparam)
%PREVIOUSLY CALCULATED CIRCUIT PARAMETERS ASSIGNED TO VARIABLES HERE Rs=circuitparam (etc.)
%CALCULATED PARAMETERS ASSIGN TO INTERNAL VARIABLES HERE – REMOVED FOR BREVITY
%DATASHEET PARAMETERS = Isc, Voc, Imp, Vmpp, Ns, ki, kv. E.g. Isc=datasheetparam(1)
%DATASHEET PARAMETERS ARE ASSIGNED TO INTERNAL VARIABLES HERE – REMOVED FOR BREVITY
G=Irrad_wmsq/1000;
Tstc = 273 + 25; %temperature in Kelvin at standard operating conditions
Ts=Tstc+273; %T is in Kelvin, not centigrade
Vt_stc=A*k*Tstc/q; %thermal voltage at standard conditions (STC)
\[V_{T}\text{=} \frac{(V_{T\text{stc}}*T)}{T_{\text{stc}}}; \]
\% thermal voltage is scaled for temperature

\[I_{0}\text{=} (I_{sc}- (V_{oc}-I_{sc}*R_{s}))/R_{sh})* \exp (-V_{oc}/(N_{s}*V_{T_{\text{stc}}})); \]
\% DARK SATURATION CURRENT Io AT STANDARD CONDITIONS

\[I_{ph}\text{=} I_{0}* \exp (V_{oc}/(N_{s}*V_{T_{\text{stc}}})); \]
\% PHOTOS CURRENT Iph AT STANDARD CONDITIONS

\[I_{ph_{G}}\text{=} I_{ph}* G; \]
\% SOLVING PANEL CURRENT BASED ON Iph and Io

\[I_{sc_{G}}\text{=} I_{sc}* G; \]
\% TEMPERATURE SCALING OF OPEN CIRCUIT VOLTAGE, Voc

\[I_{oc_{G}}\text{=} I_{oc}* G; \]
\% IRRADIATION SCALING OF OPEN CIRCUIT VOLTAGE, Voc

\[Voc_{T} \text{=} Voc_{G} + kv*(T-T_{stc}); \]
\% TEMPERATURE SCALING OF OPEN CIRCUIT VOLTAGE, Voc

\[Voc_{G} \text{=} 0; Voc_{G} \text{=} extrinsic_{Voc}(Voc, Voc_{param}); Voc_{GT}= Voc_{G} + kv*(T-T_{stc}); \]
\% LIMIT THE INPUT VOLTAGE TO OPEN CIRCUIT VOLTAGE

\[I_{0}\text{G}\text{=} I_{0}* G; \]
\% INITIAL GUESSES OF CURRENTS

\[f_{1}(R_{sh}, R_{sec}, V_{e}) = l_{sc} - \frac{V_{mpp} + l_{mpp}R_{sh} - l_{sc}R_{s}}{R_{sh}} - (l_{sc} - \frac{V_{oc} - l_{sc}R_{s}}{R_{sh}}) e^{\frac{V_{mpp} + l_{mpp}R_{sh} - V_{oc}}{n_{s}V_{e}}} - l_{mpp} = 0 \]
\% NEWTON RAPHSON SOLVING FOR 'XX' I.E. OUTPUT PANEL CURRENT BASED ON PANEL VOLTAGE AS INPUT

\[f_{2}(R_{sh}, R_{sec}, V_{e}) = l_{mpp} + V_{mpp} \frac{-l_{sc}R_{sh} - V_{oc} + l_{sc}R_{s}}{n_{s}V_{e}} e^{\frac{V_{mpp} + l_{mpp}R_{sh} - V_{oc}}{n_{s}V_{e}}} - \frac{1}{R_{sh}} = 0 \]
\% NEWTON RAPHSON SOLVING FOR 'XX' I.E. OPEN CIRCUIT VOLTAGE

\[f_{3}(R_{sh}, R_{se}, V_{e}) = \frac{-l_{sc}R_{sh} - V_{oc} + l_{sc}R_{s}}{n_{s}V_{e}} e^{\frac{l_{sc}R_{sh} - V_{oc}}{n_{s}V_{e}}} + \frac{1}{R_{sh}} \]
\% NEWTON RAPHSON SOLVING FOR 'XX' I.E. OPEN CIRCUIT VOLTAGE