
Peer reviewed version
License (if available):
Other
Link to published version (if available):
10.1109/TCST.2017.2734046

Link to publication record in Explore Bristol Research
PDF-document

(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Abstract—Atomic force microscopes have proved to be fundamental research tools in many situations and in a variety of environmental conditions, such as the study of biological samples. Among the possible modes of operation, intermittent contact mode is one that causes less wear to both the sample and the instrument; therefore, it is ideal when imaging soft samples. However, intermittent contact mode is not particularly fast when compared to other imaging strategies. In this paper, we introduce three enhanced control approaches, applied at both the dither and z-axis piezos that determine the motion of the microscope tip, to address the limitations of existing control schemes. Our proposed practical strategies are able to eliminate different image artefacts, automatically adapt scan speed to the sample being scanned and predict its features in real time. The result is that both the image quality and the scan time are improved.

Index Terms—Atomic force microscope, AFM, intermittent contact mode, IC-AFM, tapping mode, dynamic PID, hybrid PID, scan speed regulator, predictive controller.

I. INTRODUCTION

THE atomic force microscope (AFM) is a device with remarkable precision, used to image hard and soft samples at the nanoscale [1]. The microscope senses sample surfaces by means of a flexible cantilever with an atomically-sharp tip at the end. When operated in intermittent contact mode (IC-AFM, also known as tapping mode) [2], the cantilever’s tip oscillates vertically over the sample surface, driven by a dither piezo while the height of the fixed end of the cantilever is manoeuvred by the z-axis piezo. As shown in Figure 1, when far away from the sample, the cantilever oscillates at its maximum (or free) oscillation amplitude A_f. When the oscillating cantilever comes close to the sample surface, the interaction forces cause the oscillation amplitude A to decrease; a feedback controller adjusts the height $b(t)$ of the base of the cantilever so as to attempt to maintain the current oscillation amplitude $A(t)$ at a constant reference value $A_r < A_f$. The reference amplitude A_r is chosen to balance the need to maximise image quality, while minimising the damage to both the AFM tip and sample resulting from impacts. At the same time, the sample is moved horizontally under the cantilever, generally in a raster pattern, so as to trace the three-dimensional topography of the sample. The oscillation amplitude $A(t)$ is extracted in real time from the tip position signal, typically measured using the optical beam deflection method [3], operated by a device known as demodulator, from which the height of the sample surface can be obtained.

However, although the IC-AFM minimizes damage to the samples while imaging them with great accuracy, the process is hindered by its low speed. As a result, much ongoing research focuses on techniques to reduce the overall scan time (e.g. [4]), and on methods to achieve better image quality. The adoption of such techniques allows to use a higher scan speed while still imaging sample features correctly (e.g. [5, 6]). In this paper, after reviewing the limitation of current control approaches, we present new control schemes to help address these issues. Specifically, these strategies allow us to improve image quality by detecting and managing more kinds of image artefacts with respect to established solutions and by predicting features of the samples, exploiting knowledge of those parts which have already been scanned. Therefore, it is possible to increase scan speed, without worsening image quality. Furthermore, we propose to adapt scan speed dynamically, depending on the characteristics of the sample, allowing for faster scans, with no effect on imaging accuracy.

The rest of the paper is outlined as follows. In Section II we give a detailed explanation of how the IC-AFM works, along with a mathematical formulation. Then, existing control approaches and their disadvantages are discussed. After that, in Section III, original solutions are presented to improve the performance and the scanning speed of the microscope. The novel regulators are validated in Section IV on a set of real test samples. Finally, conclusions are drawn in Section V.
II. AFM: A BRIEF OVERVIEW

A. Cantilever model

The cantilever tip is the core of an atomic force microscope, it can be modeled as a mechanical point mass impact oscillator [7]. Specifically, the model can be given as the hybrid dynamical system

\[
\begin{aligned}
\dot{x}_1 &= x_2, \\
\dot{x}_2 &= -\omega_n^2 x_1 - \frac{\omega_n x_2}{Q} + F(b + x_1 - \sigma),
\end{aligned}
\]

(1)

(2)

\[u = D \sin(\omega_d t), \]

(3)

when the tip is away from the sample, together with the reset law

\[x_2(t^+) = -r x_2(t^-), \quad x_1(t^+) = x_1(t^-) = \sigma(t) - b(t) \]

(4)

that models the impact between the cantilever tip and the sample surface (in terms of a change in state in the infinitesimally short time before and after an impact, at times \(t^- \) and \(t^+ \) respectively). In the above equations (see Figure 2):

- \(x_1 \) is the vertical position of the tip with respect to \(b \);
- \(x_2 \) is its vertical velocity;
- \(\omega_n = \sqrt{k/m} \) is the natural (or resonant) frequency of the first flexural mode of the cantilever, with \(m \) and \(k \) being the mass and the stiffness coefficient of the cantilever, respectively;
- \(Q = m \omega_n / c \) is its quality factor, with \(c \) being the damping coefficient of the cantilever;
- \(u \) represents the action of the dither piezo, with \(D \) being its driving amplitude and \(\omega_d \) its driving frequency;
- \(F \) are the interaction forces normalized to mass depending on the distance \(l \) between the tip and the sample, where \(l = b + x_1 - \sigma r \);
- \(b \) is the height of the base of the cantilever;
- \(\sigma \) is the height of the sample surface to be measured;
- \(r \) is the restitution coefficient.

If the cantilever were infinitely far from the the sample, i.e. assuming \(F = 0 \) and neglecting (4), at steady state the cantilever tip would oscillate in a sinusoidal motion, with

\[x_1(t) = A_t \sin(\omega_d t + \phi), \]

(5)

where \(\phi \) is a phase shift and the free oscillation amplitude \(A_t \) can be computed as

\[A_t = \frac{D}{\sqrt{\omega_n^2 - \omega_d^2 + \frac{\omega_n}{Q} \omega_d}}, \]

(6)

where \(i = \sqrt{-1} \). In reality, the distance between the cantilever and the sample is finite, therefore \(F \neq 0 \) and in ideal operation the reset law (4) triggers once every oscillation period, when the tip impacts the sample surface. As a result, under normal working conditions, with only low velocity impacts, the evolution of tip position in time follows a quasi-sinusoidal motion and can be approximated as

\[x_1(t) \approx A(t) \sin(\omega_d t + \varphi(t)), \]

(7)

with \(A(t) \approx b(t) - \sigma(t) \) and \(A(t) \leq A_t \).

For what concerns the interaction forces \(F \) in (2), we make the approximation that the tip can be modeled as a spherical surface coming in contact with a locally flat sample surface and use the Derjaguin-Muller-Toporov (DMT) model [7, 9, 10], so that

\[
F(l) = \begin{cases}
\frac{-H r_i}{6 l^2} & \text{if } l > l_m, \\
\frac{-H r_i}{6 l_m^2} + \frac{4}{3} \sqrt{r_i(l_m-l)^3} & \text{if } l \leq l_m,
\end{cases}
\]

(8)

with:

- \(l \) being the tip-sample distance;
- \(H \) the Hamaker constant;
- \(r_i \) the tip radius;
- \(l_m \) the intermolecular distance;
- \(E_t \) and \(E_s \) the elastic moduli of the tip and the sample, respectively;
- \(V_t \) and \(V_s \) the Poisson ratios of the tip and the sample, respectively.

When the tip and the sample are not too close, there is a small residual attraction between them. However, when the tip-sample distance is reduced below the intermolecular distance \(l_m \) repulsive forces dominate and the overall repulsive force becomes larger as \(l \) decreases [11].

B. Estimation of the sample surface

For correct operation, the oscillation amplitude \(A \) must attain a certain constant reference value \(A_r \), i.e.

\[\lim_{t \to \infty} A(t) = A_r. \]

(9)
This regulation is fundamental, because, if A becomes too small, the interaction forces will damage the sample; whereas, if it becomes too large, the oscillating cantilever tip might easily lose contact with the sample, causing a highly nonlinear and undesirable phenomenon known as probe loss or parachuting, in which, after the sample surface has decreased rapidly, the cantilever oscillates freely and the measurement is incorrect. Normally, A_f is chosen approximately equal to $0.9A_t$, with the aim of reducing the magnitude of the interaction forces, whose mean value is proportional to $\sqrt{A_r^2 - A_t^2}$ [2]. A_f is commonly chosen as the smallest value that satisfies $A_f \geq \sigma_{max} - \sigma_{min}$, where σ_{max} and σ_{min} are the largest and the smallest values of the sample surface height σ on the same scan line (e.g. [7, 12]). However, since σ_{max} and σ_{min} are unknown before the scan is performed, A_f has to be selected conservatively, considering the nature of the sample to be imaged.

To ensure (9), a feedback controller is used to adjust b, so that an estimate of surface height σ can be computed as

$$\dot{\sigma} = b - A.$$ \hfill (10)

Moreover, at the same time, the sample is moved according to a specific pattern on the horizontal x-y plane, so that the whole specimen is imaged. Here we assume that the pattern is a raster one, with the scan lines being parallel to the x-axis. However, the use of more complex patterns, such as spirals, cycloids, and Lissajous has also been proposed with the aim of removing high-frequency components that might excite the actuator’s mechanical resonance; see e.g. [2].

A schematic diagram showing the key components needed for estimating the sample surface height is depicted in Figure 3.

C. Existing control approaches

Synthesizing a controller and proving its validity analytically is not trivial. Because of this, a relatively simple scheme such as the PID is a well-established solution to the problem of controlling the cantilever base height b in order to achieve (9) [1]. Moreover, two control schemes named Q control [13] and dynamic PID [14] are often employed (even together) with the aim of improving the accuracy of the microscope. For the sake of completeness we briefly describe all of these strategies below.

The PID control law is expressed by

$$b(t) = \text{PID}(e(t)),$$ \hfill (11)

where $e_A(t) = A_t - A(t)$ is the error on the oscillation amplitude and the PID control action is the classical one defined as

$$\text{PID}(\xi(t)) = K_p \xi(t) + K_i \int_0^t \xi(\tau) d\tau + K_D \frac{d\xi(t)}{dt},$$ \hfill (12)

with K_p, K_i, K_D being constant gains. Nevertheless, since the imaging accuracy given by the PID is typically not sufficient, scan speed cannot be too high. Moreover, this simple regulator does not implement any mechanism to correctly deal with probe loss: a highly nonlinear phenomenon that occurs when the tip and sample lose contact.

The purpose of Q control is to mitigate the effect of probe losses by temporarily increasing the speed with which the cantilever reacts. The operation of Q control can be understood by considering the cascade of the cantilever and the demodulator as a first order system, in which the input is the dither piezo driving amplitude D, and the state and output is the cantilever oscillation amplitude A [2]; a system with time constant $\tau_A = 2Q/\omega_n$. Therefore, the cantilever can be made more reactive by reducing the effective quality factor Q.

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantilever</td>
<td>ω_0</td>
<td>$2.85 \cdot 10^5 \cdot 2\pi$ rad/s</td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>k</td>
<td>42 N/m</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>$1.3098 \cdot 10^{-11}$ kg</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>$2.3455 \cdot 10^{-7}$ kg/s</td>
</tr>
<tr>
<td>Interaction forces</td>
<td>H</td>
<td>$1.4 \cdot 10^{-19}$ J</td>
</tr>
<tr>
<td></td>
<td>r_t</td>
<td>2 nm</td>
</tr>
<tr>
<td></td>
<td>l_m</td>
<td>0.42 nm</td>
</tr>
<tr>
<td></td>
<td>E_0, E_s</td>
<td>$1.65 \cdot 10^{11}$ Pa</td>
</tr>
<tr>
<td></td>
<td>V_i, V_f</td>
<td>0.27</td>
</tr>
<tr>
<td>z-axis piezo</td>
<td>ω_p</td>
<td>$1.5 \cdot 10^9 \cdot 2\pi$ rad/s</td>
</tr>
<tr>
<td></td>
<td>Q_p</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>K_{zp}</td>
<td>$1/\omega_p$</td>
</tr>
<tr>
<td>Feedback controller</td>
<td>A_t</td>
<td>variable</td>
</tr>
<tr>
<td></td>
<td>A_r</td>
<td>$0.9A_t$</td>
</tr>
<tr>
<td></td>
<td>K_P, K_D</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>K_I</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>v_s</td>
<td>1 mm/s</td>
</tr>
<tr>
<td>Q control</td>
<td>Q^*</td>
<td>30</td>
</tr>
<tr>
<td>Dynamic/Hybrid PID</td>
<td>K_s</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>ΔQ_{PRL}</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>A_f^*</td>
<td>$0.95A_t$</td>
</tr>
<tr>
<td></td>
<td>A_r^*</td>
<td>$0.94A_t$</td>
</tr>
<tr>
<td></td>
<td>A_f^{RL}</td>
<td>0.5A_t</td>
</tr>
<tr>
<td></td>
<td>α_1</td>
<td>$-400A_t$</td>
</tr>
<tr>
<td>Scan speed regulator</td>
<td>τ_v</td>
<td>0.12 ms</td>
</tr>
<tr>
<td></td>
<td>$V_{s,0}$</td>
<td>variable</td>
</tr>
<tr>
<td></td>
<td>$V_{s,m}$</td>
<td>0.1$V_{s,0}$</td>
</tr>
<tr>
<td></td>
<td>$V_{s,M}$</td>
<td>$V_{s,0}$</td>
</tr>
<tr>
<td></td>
<td>$b_{M,a}$</td>
<td>$K_1(A_f - A_{f,RL})$</td>
</tr>
<tr>
<td></td>
<td>$b_{M,d}$</td>
<td>$K_1(A_f - A_{f}^*)$</td>
</tr>
<tr>
<td></td>
<td>$b_{L,a}$</td>
<td>$0.9b_{M,a}$</td>
</tr>
<tr>
<td></td>
<td>$b_{L,d}$</td>
<td>$0.9b_{M,d}$</td>
</tr>
<tr>
<td></td>
<td>$b_{I,a}$</td>
<td>$0.8b_{M,a}$</td>
</tr>
<tr>
<td></td>
<td>$b_{I,d}$</td>
<td>$0.8b_{M,d}$</td>
</tr>
<tr>
<td>Predictive controller</td>
<td>M_{PC}</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>E_{ref}</td>
<td>$0.1A_t \cdot I_x$</td>
</tr>
<tr>
<td></td>
<td>N_W</td>
<td>$0.01I_x$</td>
</tr>
</tbody>
</table>

Parameters used for the AFM model, in accordance with [7, 8].

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantilever</td>
<td>ω_0</td>
<td>$2.85 \cdot 10^5 \cdot 2\pi$ rad/s</td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>k</td>
<td>42 N/m</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>$1.3098 \cdot 10^{-11}$ kg</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>$2.3455 \cdot 10^{-7}$ kg/s</td>
</tr>
<tr>
<td>Interaction forces</td>
<td>H</td>
<td>$1.4 \cdot 10^{-19}$ J</td>
</tr>
<tr>
<td></td>
<td>r_t</td>
<td>2 nm</td>
</tr>
<tr>
<td></td>
<td>l_m</td>
<td>0.42 nm</td>
</tr>
<tr>
<td></td>
<td>E_0, E_s</td>
<td>$1.65 \cdot 10^{11}$ Pa</td>
</tr>
<tr>
<td></td>
<td>V_i, V_f</td>
<td>0.27</td>
</tr>
<tr>
<td>z-axis piezo</td>
<td>ω_p</td>
<td>$1.5 \cdot 10^9 \cdot 2\pi$ rad/s</td>
</tr>
<tr>
<td></td>
<td>Q_p</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>K_{zp}</td>
<td>$1/\omega_p$</td>
</tr>
<tr>
<td>Feedback controller</td>
<td>A_t</td>
<td>variable</td>
</tr>
<tr>
<td></td>
<td>A_r</td>
<td>$0.9A_t$</td>
</tr>
<tr>
<td></td>
<td>K_P, K_D</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>K_I</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>v_s</td>
<td>1 mm/s</td>
</tr>
<tr>
<td>Q control</td>
<td>Q^*</td>
<td>30</td>
</tr>
<tr>
<td>Dynamic/Hybrid PID</td>
<td>K_s</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>ΔQ_{PRL}</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>A_f^*</td>
<td>$0.95A_t$</td>
</tr>
<tr>
<td></td>
<td>A_r^*</td>
<td>$0.94A_t$</td>
</tr>
<tr>
<td></td>
<td>A_f^{RL}</td>
<td>0.5A_t</td>
</tr>
<tr>
<td></td>
<td>α_1</td>
<td>$-400A_t$</td>
</tr>
<tr>
<td>Scan speed regulator</td>
<td>τ_v</td>
<td>0.12 ms</td>
</tr>
<tr>
<td></td>
<td>$V_{s,0}$</td>
<td>variable</td>
</tr>
<tr>
<td></td>
<td>$V_{s,m}$</td>
<td>0.1$V_{s,0}$</td>
</tr>
<tr>
<td></td>
<td>$V_{s,M}$</td>
<td>$V_{s,0}$</td>
</tr>
<tr>
<td></td>
<td>$b_{M,a}$</td>
<td>$K_1(A_f - A_{f,RL})$</td>
</tr>
<tr>
<td></td>
<td>$b_{M,d}$</td>
<td>$K_1(A_f - A_{f}^*)$</td>
</tr>
<tr>
<td></td>
<td>$b_{L,a}$</td>
<td>$0.9b_{M,a}$</td>
</tr>
<tr>
<td></td>
<td>$b_{L,d}$</td>
<td>$0.9b_{M,d}$</td>
</tr>
<tr>
<td></td>
<td>$b_{I,a}$</td>
<td>$0.8b_{M,a}$</td>
</tr>
<tr>
<td></td>
<td>$b_{I,d}$</td>
<td>$0.8b_{M,d}$</td>
</tr>
<tr>
<td>Predictive controller</td>
<td>M_{PC}</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>E_{ref}</td>
<td>$0.1A_t \cdot I_x$</td>
</tr>
<tr>
<td></td>
<td>N_W</td>
<td>$0.01I_x$</td>
</tr>
</tbody>
</table>
which, in turn, may be achieved by changing the input from the dither piezo in (3) to
\[u(t) = D \sin(\omega_d t) - K_Q x_2. \] (13)
In so doing, the new effective \(Q \), called \(Q' \), becomes
\[\frac{\omega_n}{Q} + K_Q = \left(Q + \frac{K_Q}{\omega_n} \right)^{-1}. \] (14)
Thus, given a desired \(Q' \), the gain of the \(Q \) control law must be chosen as
\[K_Q = \omega_n \left(\frac{1}{Q'} - \frac{1}{Q} \right). \] (15)
Furthermore, since \(A_t \) depends on \(Q \) (see (6)), to avoid changing \(A_t \), a new value \(D' \) must be set as
\[D'(Q') = A_t \left[\omega_n^2 + \frac{\omega_n}{Q} \omega_d + (i \omega_d)^2 \right]. \] (16)
With the same aim of reducing the detrimental effect of probe losses, the dynamic PID addresses the problem of the error \(e_A \) saturating to the value \(A_t - A_s \). Specifically, the control law (11) is modified as follows. The occurrence of a probe loss is inferred by inspecting the oscillation amplitude \(A \); if it exceeds a threshold \(A_t > A_s \), this means that the cantilever is not being limited by proximity with the sample surface and thus a probe loss has occurred. When this happens, part of the error is multiplied by a gain \(K_s \) and the control input \(b \) is selected according to the switched control law
\[b = \begin{cases}
\text{PID}(A_t - A), & A \leq A_t, \\
\text{PID}[(A_t - A_s) + K_s(A_t - A)], & A > A_t,
\end{cases} \] (17)
where the PID control action is defined as in (12). Typically the threshold \(A_t \) is chosen to be slightly larger than \(A_s \) [8].

D. Open problems and imaging artefacts

While probe loss is extensively studied in the literature (e.g., [1]), there exist two other subtler image artefacts that can equally deteriorate image quality but are less investigated: we shall term them as recoil and recovery. Both are illustrated in Figure 4, which shows the result of a numerical simulation that includes both \(Q \) control and dynamic PID.

Recoil happens when the sample to be imaged presents a steep upward step (see Figure 4, \(t \approx 0.6 \) ms). In that case, the cantilever-sample separation \(b - \sigma \) suddenly decreases and the interaction forces increase; as a consequence, the oscillation amplitude \(A \) decreases quickly to a value smaller than \(b - \sigma \) and the oscillating cantilever loses contact with the sample. During this time, the feedback controller is ineffective, because the value of \(A \) is not representative of the actual distance between the cantilever and the sample. When the undershoot of \(A \) is finished, \(A \) returns to depend solely on the current cantilever-sample distance \(b - \sigma \) and recoil is completed. The effect of a recoil on surface estimation is an image artefact shaped like a bump, because \(\sigma = b - A \) is larger if \(A \) is smaller, during the undershoot.

Recovery occurs after dynamic PID has brought back the cantilever close to the surface, following a probe loss. In this situation there is a very short time in which the regulator keeps decreasing \(b \), even if the cantilever is close to the sample surface; this delay is caused by the finite bandwidth of the feedback controller and the demodulator. As a result the interaction forces cause the oscillation amplitude to decrease to a value smaller than \(b - \sigma \), and the cantilever detaches from the sample surface until the undershoot on \(A \) finishes. The phenomenon is observable in Figure 4 for \(t \approx 0.25 \) ms, and the artefact it generates is a false bump, just as for recoil.

Note that neither recoil nor recovery is caused by the presence of the reset law (4). In fact, as Figure 5 shows, the phenomena can happen even when \(A_t \) is so small that the reset law is never triggered.

III. IMPROVED AFM CONTROLLERS

In this section, we describe three new practical control schemes designed to overcome the limitations of existing approaches. Firstly, a hybrid PID strategy is used to deal with recovery and recoil, allowing for higher image quality. Secondly, a scan speed regulator is proposed that automatically adapts the scan velocity to the features of the sample, resulting in smaller scan time and greater accuracy. Lastly, a predictive controller is presented that achieves the same result by estimating the upcoming features of the specimen exploiting information obtained from the specimen area that was previously scanned.
The controller has 4 possible modes, as shown in Figure 6, dither piezo — which causes the oscillation of the cantilever. The use of the -axis piezo — which varies b - with the dither piezo — which causes the oscillation of the cantilever. The controller has 4 possible modes, as shown in Figure 6, of which only one is active at any time; the discrete variable \(q \in \{1, 2, 3, 4\} \) identifies the current mode. In all modes, the z-axis piezo output is determined by the control law

\[
b = \begin{cases}
\text{PID}(A_t - A_t^+), & A \leq A_t^+ \\
\text{PID}(A_t - A_t^+) + K_t^q(A_t^+ - A_t), & A > A_t^+
\end{cases}
\]

while the dither piezo output is chosen as

\[
u = D^q \sin(\omega_d t) - K_Q^q v_2,
\]

where variables \(K_t^q, D^q \) and \(K_Q^q \) depend on the current mode. Normally — i.e. in absence of probe loss, recovery and recoil — Regular \((q = 1)\) is the active mode. If, at a certain point, a probe loss (with subsequent recovery) or a recoil are detected, the controller switches to a different mode and the behaviors of the piezos change accordingly. Specifically,

\[
K_t^q = \begin{cases}
1, & q = 1, 3, 4 \\
2, & q = 2
\end{cases}
\]

which simply means that Regular, Recovery and Recoil modes \((q = 1, 3, 4, \text{ respectively})\) use a regular PID, while ProbeLoss mode \((q = 2)\) employs a dynamic PID. Also, the mode-dependent control parameters \(D^q \) and \(K_Q^q \) are defined to be

\[
D^q = \begin{cases}
D', & q = 1, 2 \\
A_t \omega_d^2 + \frac{\omega_n}{Q_{PL}(A)} d \omega_d + (i \omega_d)^2, & q = 3 \\
A_t \omega_d^2 + \frac{\omega_n}{Q_{RL}(A)} d \omega_d + (i \omega_d)^2, & q = 4
\end{cases}
\]

with the probe loss (PL) and recoil (RL) \(Q \) values being set as

\[
Q_{PL}(A) = Q' - \Delta Q_{PL} \min \left \{ \frac{A_t - A_t^+}{A_t}, 1 \right \},
\]

\[
Q_{RL}(A) = Q' - \Delta Q_{RL} \min \left \{ \frac{A_t - A_t^+}{A_t}, 1 \right \},
\]

\[\Delta Q_{PL}, \Delta Q_{RL} > 0.\]

That is to say, Regular and ProbeLoss mode utilize a regular \(Q \) control, whereas Recovery and Recoil modes employ a dynamic damping mechanism, where the further \(A \) is from its reference value \(A_t \), the more the cantilever is damped. This is to rapidly extinguish the phenomenon of the undershoot of the oscillation amplitude that happens during recoveries and recoils.

TABLE II

GUARDS FOR THE TRANSITIONS IN HYBRID PID. BRACES CONTAIN ACTIONS PERFORMED DURING THE TRANSITIONS.

<table>
<thead>
<tr>
<th>Name</th>
<th>Condition, [action]</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_{1,2})</td>
<td>(A \geq A_t^+)</td>
<td>threshold</td>
</tr>
<tr>
<td>(g_{2,1})</td>
<td>(A \leq A_t^+)</td>
<td>threshold</td>
</tr>
<tr>
<td>(g_{2,3})</td>
<td>(A < \alpha_t) ((\rho \to \text{false}; t_0 = t))</td>
<td>impact</td>
</tr>
<tr>
<td>(g_{3,3})</td>
<td>(A > 0 \land \rho \to \text{false}) ((\rho \to \text{true}))</td>
<td>wait</td>
</tr>
<tr>
<td>(g_{3,1})</td>
<td>((A < 0 \land \rho \to \text{true}) \lor (t - t_0 \geq K_t^q t_A))</td>
<td>impact or timeout</td>
</tr>
<tr>
<td>(g_{4,1})</td>
<td>(A \geq A_t_{RL}) ((\rho \to \text{false}; t_0 = t))</td>
<td>threshold</td>
</tr>
<tr>
<td>(g_{4,4})</td>
<td>(A > 0 \land \rho \to \text{false}) ((\rho \to \text{true}))</td>
<td>wait</td>
</tr>
<tr>
<td>(g_{4,1})</td>
<td>(\rho \to \text{true} \lor (t - t_0 \geq K_t^q t_A))</td>
<td>impact or timeout</td>
</tr>
</tbody>
</table>

Fig. 6. Hybrid PID scheme. The arrow starting from a black dot represents the initial state. Guards \(g_{1,j} \) are described in Table II.
The guards that govern the transitions from one mode to another are reported in Table II and Figure 6, and may be divided into four categories:

- **Threshold conditions.** These are activated when probe losses ($g_{1.2} : A(t) > A^+_t$) and recoils ($g_{1.4} : A(t) < A_{RL}$) are detected, and **ProbeLoss** mode ($g_{2.1} : A(t) < A^+_t$) must be exited if a recovery is not detected immediately after probe loss. While probe loss is associated with an excessively large oscillation amplitude, the beginning of recoil is detected when an unusually small amplitude is achieved; therefore, the thresholds have to be set so that $A^+_t > A_t$ and $A_{RL} < A_t$. Moreover, in order to obtain a controller which is less subject to noise on A, A^+_t must be selected so that $A^+_t < A^+_t$, creating a sort of hysteresis between **Regular** and **ProbeLoss** modes.

- **Impact conditions.** These depend on dA/dt and are employed to detect the beginning and end of recovery and the end of recoil. In fact, recovery begins after probe loss when the oscillating cantilever impacts the sample surface ($g_{2.3}$), then the cantilever briefly detaches from the sample and the phenomenon ends after a second impact with the surface ($g_{3.1}$). Similarly, recoil terminates when the cantilever oscillating in free air impacts the sample surface ($g_{4.1}$). A threshold a_1 is included in $g_{2.3}$ and $g_{4.1}$ to account for signal noise on dA/dt, whereas it is absent in $g_{3.1}$, where the impact is expected to happen gently and dA/dt is monotone;

- **Wait conditions.** These guards are used as self-loops to remain in **Recovery** ($g_{3.3}$) and **Recoil** ($g_{4.3}$) modes with the purpose of waiting for a change in the sign of dA/dt, in order to allow for the correct detection of impacts; the completion of such event is signalled by the Boolean variable ρ;

- **Timeout conditions** are set along with the impact conditions in $g_{3.1}$ and $g_{4.1}$ for those cases where impacts are not detected.

B. Scan speed regulator

We present next an additional control scheme aimed at reducing scan time, which can be achieved by employing at all times the largest scan speed that allows for a correct imaging. Ideally, the best way to accomplish this would be to adjust the scan speed v_x dynamically, according to the rate of change of the sample surface, $|d\sigma/dt|$, so that when the latter is large (small), the former is small (large). However, $|d\sigma/dt|$ is not easily measurable, therefore we propose that v_x may be varied depending on the time-derivative $|db/dt|$ of the z-axis piezo input generated by the PID controller, since, if $|db/dt|$ is large (small), $|d\sigma/dt|$ is likely to be large (small) as well. Furthermore, $|d\sigma/dt|$ is actually a function of v_x, in the sense that if $v_x \to 0$, the surface height σ does not change under the cantilever and $|d\sigma/dt| \to 0$ too. Thus, v_x must be set so that $|d\sigma/dt|$ (i.e. $|db/dt|$) is kept within some acceptable range. The thresholds can be chosen considering that, adopting a hybrid PID strategy, the most critical values of $|db/dt|$ are $b_{Ma} = K_I(A_t - A_{RL})$ and $b_{M,d} = K_I(A_t - A^+_t)$. The former, b_{Ma} (“maximum ascending”), is the positive value of db/dt that, when reached, causes the hybrid PID to switch to **Recoil** mode, whereas the latter, $b_{M,d}$ (“maximum descending”), is the negative value of db/dt that causes the switch to **ProbeLoss** mode. Both should be avoided, in order not to trigger recoil or probe loss. In light of this, a set of four parameters, $b_{r,a}$, $b_{r,d}$, $b_{l,a}$, and $b_{l,d}$, have to be selected. Specifically:

- $b_{r,a} < b_{M,a}$ (“limit ascending”) is the positive upper bound for db/dt. The scan speed regulator is set so that db/dt is kept below $b_{L,a}$, in order to ensure $db/dt < b_{M,a}$ at all times;
- $b_{r,a} < b_{L,a}$ (“reference ascending”) is the positive reference value for db/dt attained by the regulator when $db/dt > 0$;
- $b_{l,a} > b_{M,a}$ (“limit descending”) is the negative lower bound for db/dt, with the purpose of guaranteeing $db/dt > b_{M,d}$;
- $b_{l,d} > b_{L,d}$ (“reference descending”) is the negative reference value for db/dt when $db/dt < 0$.

The result is that the parameters are ordered as follows:

$$b_{M,d} < b_{L,d} < b_{r,d} < b_{r,a} < b_{L,a} < b_{M,a}. \quad (26)$$

We propose to set scan velocity v_x adaptively as the solution of the following first order piecewise-smooth adaptation law:

$$\begin{align*}
\dot{v}_x &= \begin{cases}
\frac{1}{\tau_v} \left[-v_x + \left(V_{x,M} - K_{v,a} \frac{db}{dt} - b_{r,a} \right) \right], & \frac{db}{dt} > b_{r,a} \\
\frac{1}{\tau_v} \left[-v_x + V_{x,M} \right], & b_{r,d} \leq \frac{db}{dt} \leq b_{r,a} \\
\frac{1}{\tau_v} \left[-v_x + \left(V_{x,M} - K_{v,d} \frac{db}{dt} - b_{r,d} \right) \right], & \frac{db}{dt} < b_{r,d}
\end{cases}
\end{align*}$$

$$K_{v,a} = \frac{V_{x,M}}{p_{L,a} - b_{r,a}}, \quad K_{v,d} = \frac{V_{x,M}}{p_{L,d} - b_{r,d}}. \quad (27)$$

Here, $V_{x,M}$ is the (arbitrary or physical) maximum speed of the piezo maneuvering the x-axis and τ_v is a time constant that must be compatible with the time response of the piezo. The difference between the three cases in 27 is the input: it drives v_x to the maximum value $V_{x,M}$ if db/dt is between its reference values $b_{r,d}$ and $b_{r,a}$; otherwise, it reduces v_x all the way down to zero as db/dt approaches $b_{L,a}$ or $b_{L,d}$. However, since for practical reasons it is better not to arrest the piezo completely, a limit is set on minimum velocity as well, so that, at any time,

$$V_{x,m} \leq v_x \leq V_{x,M}. \quad (29)$$

The initial value of the scan speed, $V_{x,0}$, may be set either close to $V_{x,m}$, if there is a desire to act more conservatively and privilege image accuracy, or close to $V_{x,M}$, if a fast scan is the priority. Among the advantages of this control technique is the use of different scan speeds for the ascending and descending parts of the samples, since only the latter threaten probe loss and thus require greater care.

Note that this is by no means the only controller to propose use of the local surface slope; see, for example, [6] — in which it is used to dynamically change the orientation of the oscillation of the tip — and [5] — where it is employed to make a local prediction of the sample features.
We suggest to extend the PID controller by adding a term to the
\[\dot{\sigma}(i_x, i_y^k) \]\nwhere the suffix \(k\) version of the original, i.e.
\[L_{i_x} \] not to estimate \(\sigma \) \(M \) feedback controller the necessary time to adjust
\(b \) the oscillation amplitude \(B \) because, in a proper scan,
\(\hat{\sigma}(i_x, i_y^k) \) is a filtered version of the estimation of the \((k - j)\)-th line and \(K_{\sigma, j} \) are adaptive gains. Converting information derived from scanned lines into a feedforward action for \(\hat{\sigma} \) coordinate of a point \(i_x, i_y \) \(\xi \) \(0 \) \(\omega \) \(\omega_n \) \(E_{\sigma} \) \(\omega_n \) \(\omega_n \). This filtering is \(1 / \omega_n \).
\[(33) \]
where it is assumed that \(\hat{\sigma}(\xi, i_y^k) = \hat{\sigma}(0, i_y^k), \xi \in [-N_W, 0) \) and \(\hat{\sigma}(\xi, i_y^k) = \hat{\sigma}(I_x, i_y^k), \xi \in (I_x, I_x + N_W]. \) This filtering is necessary because only the general shape of the scan lines is likely to recur in the following ones. In addition, the adaptive gains are selected according to the law
\[K_{\sigma, j} = \begin{cases} 1 & \frac{E_{\sigma} - E_{\sigma, j}}{E_{\sigma}}, j \in [1, M_{PC} - 1] \\ 1 & \frac{E_{\sigma} - E_{\sigma, j}}{E_{\sigma}}, j = M_{PC} \\ \frac{1}{2(j - 1)} & \frac{E_{\sigma} - E_{\sigma, j}}{E_{\sigma}}, j = M_{PC} \end{cases} \]
(32)
where
\[e_{\sigma, j} = \int_0^{i_x} \left| \sigma'(i_x, i_y^k) - \hat{\sigma}'(i_x, i_y^{k-j}) \right| \, di_x. \]
(33)
Note that the gains \(K_{\sigma, j} \) are normalized by the factors \(1/2j \) and \(1/(2(j - 1)) \), so that their sum is, at the most, unity. Moreover, the more recent a line (smaller \(j \)), the higher the coefficient. The results of the “max” operations span from \(0 \) to \(1 \). In particular, when \(e_{\sigma, j} \), which represents how much a line is different from the previous one, is equal to or greater than a threshold \(E_{\sigma} \), the result is 0. Hence, the line is too different from the previous one to be used as a predictive tool and the gain \(K_{\sigma, j} \) is set to zero, switching off the predictive term in the controller (30).

IV. Numerical Validation

A. Settings and Samples

To validate the new control strategies, we make the following assumptions regarding the AFM:

- The dynamics of the dither piezo are much faster than that of the system, i.e. the largest time constant of the former is significantly smaller than \(1/\omega_n \).
- The z-axis piezo can be modeled as a second order system [8], with gain \(K_{zp} \), natural frequency \(\omega_n \) and quality factor \(Q_{zp} \) (see Table I).
- \(Q \) control is always employed and tip velocity \(x_2 \) is assumed measurable.

Validation will be performed on five samples: two ideal, purely numerical ones, and three real ones, previously acquired with a custom built contact mode high-speed AFM at the University of Bristol Centre for Nanoscience and Quantum Information Low Noise Labs.

These are:

- An ideal calibration grid, with 28 nm tall steps and a spatial period of 1 µm, with each period having one downward and one upward step;
- A real titanium disulphide sample (see Figure 8a);
- An ideal quasi-sinusoidal sample, which is the sum of a sine having a spatial period of 4 µm and an amplitude of 80 nm and a triangular waveform having amplitude and period each a tenth of those of the sine;
- A real calibration grid sample (see Figure 8b);
- A real uranium oxide sample (see Figure 8c).

All simulations were run in Matlab Simulink [15], using Stateflow toolbox that uses an event-driven solver to simulate the reset law (4) correctly. This is coupled with a variable-step Dormand-Prince (ode45) solver, with maximum step size \(10^{-7} \), minimum step size \(10^{-13} \) and relative tolerance \(10^{-8} \). In addition, all parameters which are not expressed explicitly are taken from Table I, unless stated otherwise.

B. Validation of hybrid PID

Figure 9 represents the scan of the ideal calibration grid, performed with a hybrid PID. Compare it with Figure 4, where the classical dynamic PID is used on the same sample: in the former, the bump at time \(t \approx 0.25 \) ms, associated with the recovery phenomenon, has practically disappeared; also,
recoil decays much faster when employing the hybrid PID. Note that the dynamics of the z-axis piezo, represented as the blue line in Figures 4 and 9, does not change significantly, because it depends on the gains K_P, K_I, and K_D which are not varied in the Recovery and Recoil modes. Table III reports the results of four different cases of scans of a 10-period-long ideal calibration grid. In the table, the variable σ_{\max}^{RV} indicates the maximum height of the bump observed during a recovery. The comparison between the third rows in the first two sub-tables shows that the hybrid PID reduces the root mean square value of σ_{\max}^{RV} by 58.9%. Furthermore, the fact that the impact velocity v_i — i.e. the value of x_2 when the reset law is triggered — does not increase points out that the new controller achieves this result without increasing the effect of the interaction forces. The third case shows that a hybrid PID that uses Recoil mode gives an error 6.5% smaller than that of an hypothetical hybrid PID that does not employ it. However, if the error is computed only during recoils, where the mode is active, the error reduction is about 20%. Finally, a similar result is represented in the fourth case, with noise on the position signal x_1, having a magnitude that is 1% that of A_f and $\alpha_t = -600A_f$ (while in absence of noise $\alpha_t = -400A_f$).

Figures 10a and 10b report the surface estimations of the titanium disulfide sample on the scan line corresponding to $i_y = 1.3 \mu m$ when using the dynamic PID and the hybrid PID, respectively. Table IV reports quantitative findings, showing that the root mean square error decreases by 18.2%, when using the new scheme.

C. Validation of scan speed regulator

When scanning the ideal quasi-sinusoidal sample with constant scan speed $v_s = 1$ mm/s and using the hybrid PID, the AFM is not able to image the sample properly and probe losses happen during the descending part of the surface, as shown in Figure 11a. Instead, a nearly perfect scan is achieved when adding the scan speed regulator, with $V_{x,s} = V_{x,0} = 1$ mm/s and $V_{x,m} = V_{x,0}/10$, as depicted in Figure 11b (see also Figure 11c). The comparison between the sub-tables in Table V shows that, when using the scan speed regulator, the root mean square error decreases by 18.2%, when using the new scheme.
error decreases by 86%. To obtain the same level of accuracy without the scan speed regulator, it would be necessary to reduce the scan speed to \(v_x = 0.421\) mm/s, as in case 3, having however the scan time increased by 10.6% with respect to case 2. For the sake of completeness, Figure 12 shows the evolution of \(v_x\) and \(db/dt\) with and without scan speed regulator, corresponding to the scans shown in Figure 11.

To further validate these findings, compare the results of a scan of the first line \((i_y = 0\) µm\) of the real calibration grid without the scan speed regulator, reported in Figure 13a, with a scan performed while employing it, depicted in Figure 13b; quantitative results are in Table VI. In particular, when using the scan speed regulator the error decreases by 47% and the scan time by 3%.

D. Validation of predictive controller

The predictive controller has been tested together with the scan speed regulator on the uranium oxide sample; Figure 14 depicts a scan of the whole surface, which may be compared with the original in Figure 8c. In addition, the results of a series of comparative tests are reported in Table VII. In these simulations the first 100 lines of the sample are scanned \((i_y = \cdots)\).
0 μm to $i_y = 0, 46$ μm), in four different configurations, given by the possible combinations of the predictive controller and the scan speed regulator. In a scenario where the scan speed regulator is not used, adding the predictive controller reduces the error by 39.4% (cases 1 and 2). In contrast, when using an AFM which implements the speed regulator ($V_{x,0} = 2$ mm/s); scan line $i_y = 0$ μm, $A_y = 300$ nm. The green solid line is the real sample surface height σ and the orange dotted line is the estimated sample surface height $\hat{\sigma}$. (c) Percentage of the absolute value of the estimation errors e_σ in the cases with hybrid PID (dashed red line) and with hybrid PID and scan speed regulator (solid blue line); 100% corresponds to the maximum error of the hybrid PID, 30.26 nm.

V. CONCLUSIONS

In this paper we have introduced three original controllers that achieve two fundamental goals: improving the accuracy and reducing the scan time of the intermittent contact mode atomic force microscope. Firstly, a hybrid PID scheme was introduced which is able to deal with image artefacts such as recoils and recoveries. Secondly, an adaptive scan speed regulator is proposed to set scan speed dynamically, depending on the characteristics of the sample surface. As a result, scan time decreases, accuracy being equal. Finally, a predictive controller is used to improve both the image quality and the
TABLE VI
RESULTS OF SCANS OF THE REAL CALIBRATION GRID.

<table>
<thead>
<tr>
<th>Case</th>
<th>Variable</th>
<th>RMS</th>
<th>SD</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hybrid PID ((v_x = 1 \text{ mm/s}))</td>
<td>(e_r)</td>
<td>5.43</td>
<td>5.76</td>
<td>30.26</td>
</tr>
<tr>
<td></td>
<td>(v_i)</td>
<td>29.66</td>
<td>13.86</td>
<td>-107.49</td>
</tr>
<tr>
<td></td>
<td>(T_s)</td>
<td>2.915</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Hybrid PID and speed regulator ((v_x = 0 \text{ mm/s}))</td>
<td>(e_r)</td>
<td>2.88</td>
<td>2.98</td>
<td>15.05</td>
</tr>
<tr>
<td></td>
<td>(v_i)</td>
<td>29.98</td>
<td>14.75</td>
<td>-91.30</td>
</tr>
<tr>
<td></td>
<td>(T_s)</td>
<td>2.827</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 14. Surface estimation of the uranium oxide sample with hybrid PID, scan speed regulator and predictive controller; \(A_t = 200 \text{ nm}\).

Further research will focus on the experimental implementation of the proposed strategies and the investigation of the implications of the use of the presented controllers in combination with the most recent developments, such as multifrequency AFM [16], which would require more detailed models of the cantilever dynamics.

VI. ACKNOWLEDGMENTS

The authors wish to thank Davide Fiore at the University of Naples Federico II for the insightful comments and discussions and for helping MC during the initial stages of the research. Moreover, they would also like to thank Chris Howard and Anna Adamska for providing some of the samples for the simulations. MC wishes to thank the University of Naples Federico II for supporting his visit at the Department of Engineering Mathematics of the University of Bristol from 16/01/2016 to 20/02/2016. MH wishes to acknowledge funding from Rete di Eccellenza MASTRI that supported his visit to Naples in 2015, and helped initiate this collaboration. OP wishes to thank Loren Picco at the University of Bristol for helping to collect the images in Figure 8.

TABLE VII
RESULTS OF SCANS OF URANIUM OXIDE. \(T_s\) [ms] IS THE SCAN TIME OF A SINGLE LINE AND \(T_{s,\text{tot}}\) [ms] IS THE TOTAL SCAN TIME.

<table>
<thead>
<tr>
<th>Case</th>
<th>Variable</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. w/o predictive controller, w/o speed regulator</td>
<td>RMS(e_r)</td>
<td>5.82</td>
<td>7.79</td>
</tr>
<tr>
<td></td>
<td>SD(e_r)</td>
<td>5.06</td>
<td>6.87</td>
</tr>
<tr>
<td></td>
<td>(K_{e_r})</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(T_s)</td>
<td>4.600</td>
<td>4.600</td>
</tr>
<tr>
<td></td>
<td>(T_{s,\text{tot}})</td>
<td>460.000</td>
<td>-</td>
</tr>
<tr>
<td>2. w/ predictive controller, w/ speed regulator</td>
<td>RMS(e_r)</td>
<td>3.53</td>
<td>5.83</td>
</tr>
<tr>
<td></td>
<td>SD(e_r)</td>
<td>2.83</td>
<td>5.01</td>
</tr>
<tr>
<td></td>
<td>(K_{e_r})</td>
<td>0.886</td>
<td>0.927</td>
</tr>
<tr>
<td></td>
<td>(T_s)</td>
<td>4.600</td>
<td>4.600</td>
</tr>
<tr>
<td></td>
<td>(T_{s,\text{tot}})</td>
<td>460.000</td>
<td>-</td>
</tr>
<tr>
<td>3. w/o predictive controller, w/ speed regulator</td>
<td>RMS(e_r)</td>
<td>4.06</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td>STD(e_r)</td>
<td>3.56</td>
<td>4.95</td>
</tr>
<tr>
<td></td>
<td>(K_{e_r})</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(T_s)</td>
<td>6.248</td>
<td>6.810</td>
</tr>
<tr>
<td></td>
<td>(T_{s,\text{tot}})</td>
<td>624.770</td>
<td>-</td>
</tr>
<tr>
<td>4. w/ predictive controller, w/ speed regulator</td>
<td>RMS(e_r)</td>
<td>3.31</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td>STD(e_r)</td>
<td>2.71</td>
<td>3.96</td>
</tr>
<tr>
<td></td>
<td>(K_{e_r})</td>
<td>0.888</td>
<td>0.927</td>
</tr>
<tr>
<td></td>
<td>(T_s)</td>
<td>5.004</td>
<td>6.455</td>
</tr>
<tr>
<td></td>
<td>(T_{s,\text{tot}})</td>
<td>500.359</td>
<td>-</td>
</tr>
</tbody>
</table>

Marco Coraggio received the Laurea (B.Sc.) and Laurea Magistrale (M.Sc.) in Automation Engineering from the University of Naples Federico II, Italy in 2013 and 2016, respectively. He is a Ph.D. student in Information Technology and Electrical Engineering at the University of Naples. His research focuses on discontinuous dynamical systems, in particular on both piecewise smooth and hybrid ones, and complex networks of smooth and discontinuous systems.

Martin Homer received the B.A. degree in Mathematics from the University of Oxford, U.K. in 1994, and the M.Sc. and Ph.D. degrees from the University of Bristol, U.K. in 1995 and 1999 respectively. He is a Senior Lecturer in the Department of Engineering Mathematics in the University of Bristol. His research focuses on mathematical modelling of real-world systems, in a wide range of application areas from engineering to the life sciences.
Oliver D. Payton is a Royal Academy of Engineering Research Fellow at the University of Bristol, U.K. Sitting jointly in the schools of Engineering and Physics, Dr. Payton researches the development of new scanning probe microscope imaging modes. In particular he develops high-speed contact mode AFMs thousands of times faster than conventional AFMs and carries out analysis of microcantilever dynamics.

REFERENCES

Mario di Bernardo (SM’06–F’12) received the Ph.D. degree from the University of Bristol, Bristol, U.K. in 1998. He is currently a Full Professor of Nonlinear Control and Dynamics with the University of Naples Federico II, Naples, Italy. Since August 2007, he is also a Professor of Nonlinear Systems and Control with the University of Bristol, and a Honorary Professor of Control with Fudan University, Shanghai, China. His current research interests include analysis, synchronizaton and control of complex network systems, analysis and control of hybrid and piecewisemooth dynamical systems, nonlinear dynamics, and nonlinear control theory and applications to engineering and synthetic biology. Prof. di Bernardo was a recipient of the funding from several institutions, including the E.U., the Italian Ministry of University and Research, the U.K. Research Councils and Industry for a total amount of over 8M Euros.

