Abstract

Context. End-of-life care (EoLC) communication skills training for generalist palliative care providers is recommended in policy guidance globally. Although many training programs now exist, there has been no comprehensive evidence synthesis to inform future training delivery and evaluation.

Objectives. To identify and appraise how EoLC communication skills training interventions for generalist palliative care providers are developed, delivered, evaluated, and reported.

Methods. Systematic review. Ten electronic databases (inception to December 2015) and five relevant journals (January 2004 to December 2015) were searched. Studies testing the effectiveness of EoLC communication skills training for generalists were included. Two independent authors assessed study quality. Descriptive statistics and narrative synthesis are used to summarize the findings.

Results. From 11,441 unique records, 170 reports were identified (157 published, 13 unpublished), representing 160 evaluation studies of 153 training interventions. Of published papers, eight were of low quality, 108 medium, and 41 high. Few interventions were developed with service user involvement (n = 7), and most were taught using a mixture of didactics (n = 123), reflection and discussion (n = 105), and role play (n = 86). Evaluation designs were weak: <30% were controlled, <15% randomized participants. Over half (n = 85) relied on staff self-reported outcomes to assess effectiveness, and 49% did not cite psychometrically validated measures. Key information (e.g., training duration, participant flow) was poorly reported.

Conclusions. Despite a proliferation of EoLC communication skills training interventions in the literature, evidence is limited by poor reporting and weak methodology. Based on our findings, we present a CONSORT statement supplement to improve future reporting and encourage more rigorous testing. J Pain Symptom Manage 2017;54:417 e425. © 2017 The Author(s). Published by Elsevier Inc. on behalf of American Academy of Hospice and Palliative Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Key Words
Education, communication, review, terminal care, palliative care
Introduction

Global demographic aging means providing end-of-life care (EoLC) is now increasingly the responsibility of generalist as well as specialist palliative care providers.\(^1\)\(^–\)\(^3\) This includes communication with patients facing the end of life, which many health care providers find challenging.\(^4\)–\(^9\) Absent or poor-quality communication results in confusion, reduced satisfaction, poor quality of life, and inadequate symptom relief for patients and families.\(^10\) Furthermore, health and social care professionals who feel insufficiently trained in communication skills are more likely to report depersonalized care and burnout.\(^11\),\(^12\) Consequently, training in communication is advocated internationally as essential for all those working in EoLC.\(^15\)–\(^18\)

Following Maguire’s work in the field of communication skills training\(^19\)–\(^21\) and Fallowfield et al.’s\(^22\)–\(^26\) pioneering workshops teaching communication skills to oncologists, research in this field has been increasing. This includes teaching and evaluating communication skills specific to EoLC,\(^27\)–\(^29\) in which clinicians face specific difficulties, including discussing imminent mortality, limited treatment options, and EoLC preferences.\(^3\) However, there remains little consensus regarding optimal training strategies, the most effective teaching methods, and what constitutes an adequate “dose” of communication skills training. Although there has been some evidence synthesis in relation to EoLC communication training for specific staff groups (e.g., oncology,\(^30\)–\(^35\) noncancer care in acute settings\(^27\)), there has been no comprehensive consideration of the evidence regarding training interventions for all those involved in the delivery of generalist palliative care. This is required not just as a resource for clinical educators and researchers, but also to enable research in this field to progress.

The aim of this systematic review was therefore to identify and appraise the development, delivery, evaluation, and reporting of EoLC communication skills training interventions for generalist palliative care providers. Specifically, our objectives were to 1) identify and describe existing training interventions in relation to their development, content, duration, and teaching methods, 2) appraise how these interventions have been evaluated for effectiveness, and 3) assess the quality of reporting of interventions and their evaluation.

Methods

The protocol for this systematic review was prospectively registered with PROSPERO (CRD42014014777).\(^34\) The methods are summarized below and reported in full in a partner paper in which we synthesize data from randomized controlled trials (RCTs) assessing the effect of communication skills training for generalists on patient outcomes and clinician behavior.\(^35\)

Search Strategy

The following 10 databases were searched from inception until December 2015: MEDLINE, EMBASE, and PsycINFO (via Ovid), CENTRAL (via Wiley), Web of Science (Science Citation Index Expanded, Social Sciences Citation Index, Arts & Humanities Citation Index, Conference Proceedings Citation Index: Science, Social Science & Humanities), ERIC and CINAHL (via EBSCOhost), WHO International Clinical Trials registry, CORDIS, and OpenGrey. Free text terms for searching titles, abstracts, and key words were combined with database-specific subject heading terms, following the structure of [end of life care] AND [communication skills] AND [training](see online supplementary material Box S1 for the full search strategy). Reference lists of six relevant published reviews,\(^28\),\(^32\),\(^33\),\(^36\)–\(^38\) and five relevant journals (Journal of Palliative Medicine, American Journal of Hospice and Palliative Medicine, Palliative Medicine, Journal of Cancer Education, and Palliative and Supportive Care) were hand-searched from January 2004 to December 2015. Where only conference abstracts were available, e-mails were sent to at least two authors requesting recently published or unpublished reports of the research for inclusion in the review.

Study Selection

Titles and abstracts were screened for inclusion by one author (L. J. B./A. H.). To be included, reports had to test the effectiveness of a training intervention designed to improve EoLC communications skills. Training was defined as any planned, systematic effort to develop knowledge, skills, or attitudes through a learning experience.\(^39\) Interventions included EoLC training with communication skills training components, and communication skills training with EoLC components. EoLC communication was defined broadly to include the range of issues related to progressive, incurable illness and EoLC, for example: advance care planning, discussing transition to palliative care, and/or talking about dying. Training participants could not have (or be in the process of obtaining) specialist palliative care qualifications but must work or expect to work with patients with advanced, progressive, incurable illness. Generalist providers of palliative care include, for example, general practitioners, oncologists, social workers, and hospital volunteers.

Studies were not excluded by language, year, publication status, design, or outcomes measured. Studies were excluded if the training intervention
was not assessed for effectiveness
• did not include EoLC communication skills
• had >20% participants with (or undertaking) specialist palliative care qualifications AND generalist course participant results could not be separated
• was aimed at pediatrics
• focused on communication with individuals other than the patient
• was for patients or family members themselves
• was a “train the trainer” intervention
• occurred alongside extensive system intervention (e.g., change in clinic structure and patient records), meaning the effect of training alone was unclear.

Full papers were obtained for studies that could not be excluded based on the information in the title and abstract. Each paper was then assessed for eligibility by two authors (L. J. B., A. H., C. M., S. O.), with disagreements resolved through discussion with a third author (L. E. S./J. K.).

Data Extraction and Analysis
Data were extracted to a digital form and double-checked by a second author (L. J. B., A. H., C. M., S. O.). A full list of extracted information can be found in the review protocol.41 Quality was assessed independently by two authors (L. J. B., A. H., C. M., S. O.) using the “checklist for both randomized and nonrandomized studies.”40 Statistical power was scored 0 or 1 (rather than 0–5), where 1 point was awarded for presence of power calculation and 0 for no evidence of power calculations.41 This gave a total possible score of 28, grouped into low (≤33.3%), medium (33.4–66.6%), and high (≥66.7%).42 Total scores were not calculated for unpublished work because of the substantial reporting component in the criteria (11/28 points). Descriptive statistics and narrative synthesis were used to summarize training development, delivery, evaluation, and reporting quality.

Results
Study Selection
A total of 11,441 unique records were identified. Of these, 845 full texts were screened and 170 judged eligible for inclusion (Fig. 1). The majority (n = 89, 52%) reported studies in the U.S., followed by the U.K. (n = 28, 17%), Germany (n = 8, 5%), and Japan (n = 8, 5%). There were 166 papers available in English, three in German, and one in Spanish. Out of the 170 papers, 157 were published and 13 were unpublished, submitted or in-press. A summary of all training and study details can be found in the online supplementary material, Table S1.

Risk of Bias
The mean total quality score for the 157 published papers was 16.88 (SD 3.88). There were eight low-quality, 108 medium-quality, and 41 high-quality papers.

Developing and Delivering Training
Training Development. Information on how the intervention was developed was available for 110 (72%) of the identified training interventions. This most commonly included reference to existing literature (n = 87), particularly training interventions reported by others (n = 29) or specific theories (n = 27). Integration of staff or “expert” views was also common (n = 54), including local needs assessments (n = 11). Other authors referred to their own previous work or pilot projects (n = 19). Few (n = 7) reported including patient or family views in their development. The reporting of development strategies varied widely, from single sentences to whole papers describing training development. For 43 (28%) training interventions, no information regarding training development was reported.

Teaching Methods. Information on the teaching methods used was available for 148 (97%) of the training interventions, with the number of methods reported ranging from 1 to 10 (median 4; n = 112 [73%] reported 3–5). The most common teaching methods reported were didactics (i.e., lectures, presentations; n = 123), reflection and discussion (n = 105), role play (n = 86), and group work (n = 66). Many also used case studies (n = 52), self-study (n = 44), clinical experiences or visits (n = 31; e.g., to hospices), e-learning (n = 22), and personalized audio and/or video feedback (n = 12). A minority reported using a communication model (e.g., SPIKES,44 PREPARED;45 n = 27). No clear information on teaching methods was available for five interventions (3%).

Duration and Training Hours. Course duration ranged from 40 minutes66 to 16 months47. This included seven interventions with a total training time of an hour or less, 51 lasting 2–10 hours, 27 lasting 11–20 hours, 16 lasting 21–30 hours, and 11 lasting
31 hours or more. Information on duration and/or total training hours was missing or unclear for 57 (37%) training interventions.

Staff Group. Seventy-five percent of interventions focused on teaching one staff group (n = 115): most often junior doctors (i.e., interns, residents, registrars, fellows, n = 32), medical students (n = 32), nurses (n = 22), and doctors (n = 16). Multidisciplinary groups were taught in 33 (22%) courses, and members of the same discipline but with different levels of training were taught in five (3%) courses.

Cost. For almost all interventions, there was no clear information on the costs associated with running the training (97%, n = 148). Those that did specify cost generally provided costs in terms of hours and resources needed to run the course. One study specified a monetary cost.48

Evaluating Training Effectiveness

Design. The included reports represented 160 unique studies. The majority relied on weak study designs subject to bias: the most common were quasi-experimental pre-post studies, without (n = 96) and with (n = 16) control groups (total 70%), followed by cross-sectional post-only studies (without control, n = 13; with control, n = 6). Twenty-one (13%) papers reported RCTs. Three studies used postcourse and retrospective precourse measurements (no control group), and five studies used a combination of designs (e.g., pre-post, use of a control group for selected outcomes only). Some papers (n = 2) reporting a previously published study did not present results in line with the original study design (e.g., reporting pre-post data for the intervention group, although the original study was an RCT).

Outcomes. Subjective staff self-reported outcomes (e.g., confidence, attitudes, burnout) were the most frequently measured across studies (n = 150, 94%), and in most studies (n = 85, 53%) were the only type of outcome measured. Objective knowledge (n = 42, 26%), observed behaviors, including researcher- and colleague-rated behaviors (n = 32, 20%), and process outcomes (n = 6, 4%) were assessed less frequently. Few studies assessed the impact of staff training on patient or family outcomes (n = 10, 6%). Seventy-nine studies (49%) did not appear to use any measures that had been psychometrically tested (or this information was missing/
unclear). Most studies \((n = 96, 60\%)\) measured outcomes within one month after intervention.

Study Participants. Staff sample sizes (based on number of trainees and controls reflected in the primary analyses) ranged from 6 to 487. Some studies with fewer trainees/controls had a greater number of patient participants (e.g., Fukui et al., 200849: eight staff, represented by 89 patients). Papers differed greatly in which Ns were reported (e.g., started the course, completed the course, completed the outcome measures) and often failed to distinguish between attrition due to missing data or participants having not completed the training. For the majority of studies \((61\%, n = 97)\), the flow of study participants was unclear, due to unexplained attrition, or inability to determine the number of dropouts.

Reporting Quality

Reporting quality across the 157 published papers as rated using the Downs and Black Checklist ranged from 1 to 11, with a median of eight. In 52 papers (31\%), the characteristics of study participants were inadequately described, and in 53 papers, no estimates of random variability were provided for their main outcomes (31\%). Nearly all \((n = 154, 91\%)\) papers failed to report monitoring for adverse events in relation to training (e.g., dropouts due to emotional content of the courses). The data-extraction process also highlighted the variability in reporting a number of variables that are critical when interpreting results; for example, training duration and participant flow (see Table 1).

Discussion

This is the first comprehensive systematic review of EoLC communication skills training for generalist palliative care providers. We identified a wide range of training interventions for this population. Most were based on existing literature, ranging from published evidence and guidance to broader theoretical approaches. However, patient and family involvement in training development was rare. EoLC communication was most commonly taught in the context of broader palliative or EoLC training courses, using a mixture of didactics, reflection and discussion, and role play. Three-quarters of the training courses were focused on teaching a single staff group, particularly medics at various stages in their careers. In testing the effect of training interventions, methodologically weaker designs (e.g., lacking control groups) were common. Outcome assessment was usually subjective and self-reported by staff, and used unvalidated measures and short-term follow-up. Few studies assessed how training impacted patients and/or families. Poor reporting hindered data extraction in relation to the specifics of both interventions and study design; for example, training hours, training costs, and study participant recruitment and attrition.

Our findings build on those of previous reviews. Pulsford et al.’s37 review of EoLC training for health and social care staff noted the lack of patient and family input in training development and few multidisciplinary learning groups. More recently, Walczak et al.’s29 review of EoLC communication interventions, Lord et al.’s27 review of EoLC communication training in noncancer acute settings, and Chung et al.’s29 review of EoLC communication skills training specific to decision making commented on the methodological weakness of studies evaluating training interventions. This weakness relates to the use of uncontrolled, nonrandomized study designs and a wide range of self-reported outcome measures, many of which were unvalidated. It is noteworthy that Fallowfield et al.’s32 workshop for oncologists still remains one of a small number of training interventions evaluated using a randomized controlled design and both staff- and patient-reported outcomes. Developing and evaluating training is challenging, but recommendations for developing and evaluating complex interventions,50 including those with an EoLC focus,51 should inform research in this field. These recommendations include guidance on involving patients and members of the public in designing and evaluating interventions. Considering the patient-focused drivers of communication skills training initiatives, patients and family members are still infrequently involved from training development through to evaluation. International expert consultation may also be useful to develop more specific guidance on consistent outcome measurement using validated tools. However, investment of funders in more rigorous (and often more lengthy and therefore costly) research studies will also be essential to improve the state of the science.

Although poor reporting of outcome measurement27 and study results32 have previously been
identified in this field, our comprehensive data-extraction process across 170 unique records details the extent of inadequate reporting of interventions and their evaluations (Table 1). Lack of transparency in reporting is problematic, hindering progression in the field in two ways. First, poor reporting of evaluation studies prevents critical appraisal of training effectiveness. For example, claims to effectiveness evidenced by increased staff confidence and improved staff behaviors are misleading when assessed outcome measures lacking adequate psychometric properties, or when only 50% of trainees completed the full course. Second, poor reporting hinders identification of the “active ingredients” of complex interventions that contribute to their effectiveness; for example, the number of contact hours, whether the course is taught by palliative care specialists, or whether the intervention is delivered offsite on a retreat. If clinical educators and researchers are to provide evidence-based, effective training in EoLC communication skills, the quality of reporting must be improved. In response to this crucial issue and on the basis of our findings, we recommend a supplement to the CONSORT reporting guidance, specifically for training interventions (Table 2). We suggest further face-to-face expert consultation on this supplement (as recommended by members of the EQUATOR network and CONSORT executive when developing reporting guidelines and that authors of all studies evaluating training interventions, regardless of design, complete this checklist to ensure comprehensive reporting.

Internationally, government initiatives and national reports continue to promote the importance of communication skills training interventions when providing palliative and EoLC. The large numbers of training interventions across the globe demonstrate a commitment to this goal. However, without rigorous and comparable evaluations, it will be impossible to identify the optimal “dose,” structure, and methods for delivering teaching in these skills. This review, including our partner paper synthesizing data on effectiveness, provides a consolidated resource for clinician educators and researchers who are seeking to source evidence-based training or examine the current levels of evidence for different types of EoLC communication skills training interventions. Going forward, however, it is clear that development of additional training interventions with weak levels of evidence will not help advance this field. Although an RCT might not always be feasible, using a nonrandomized controlled design would have improved many of the studies we identified. While not without its challenges, more rigorous testing of training effectiveness using patient- and family-reported outcome measures must also become the priority for clinical educators, researchers, and funders. Doubts have been cast over the ability to measure the impact of training using untrained patients and families, but there are examples that show this is possible (e.g., Fukui et al. and Tulsky et al.).

Crucial here is the selection of measureable outcomes relevant to the aims and content of the intervention. Such evidence is essential to provide consensus on what works best not only for trainees but also for recipients of their care. Researchers also have a responsibility to ensure such training and study findings are reported with detail, clarity, and transparency.

This systematic review has both strengths and limitations. The review was inclusive in terms of study design, outcomes, language, and publication status. Although the unpublished studies included may not have been

Table 2

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Checklist Item</th>
<th>Description or Cite Where the Following Can Be Found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.01</td>
<td>Development</td>
<td>How was the training intervention developed? For example, based on a literature review, focus groups with stakeholders, published guidelines.</td>
</tr>
<tr>
<td>5.02</td>
<td>Intended trainees</td>
<td>Who is the training intervention intended for? For example, for student nurses in their final year.</td>
</tr>
<tr>
<td>5.03</td>
<td>Recruitment</td>
<td>How were trainees recruited? For example, mandatory part of medical degree, advertised online to approx. 2000 nursing staff.</td>
</tr>
<tr>
<td>5.04</td>
<td>Content</td>
<td>What topics are covered? For example, theories, symptoms, communication, teamwork.</td>
</tr>
<tr>
<td>5.05</td>
<td>Methods</td>
<td>What teaching methods are used? For example, presentations, role play, group work. Mention any specific equipment needed.</td>
</tr>
<tr>
<td>5.06</td>
<td>Structure</td>
<td>How long is the training? State total number hours of training, across how many sessions, and over what time period.</td>
</tr>
<tr>
<td>5.07</td>
<td>Teachers</td>
<td>Who taught the course? Specifically, what were their qualifications, and were they the same for each course?</td>
</tr>
<tr>
<td>5.08</td>
<td>Location</td>
<td>Where was the course run? For example, university building, teaching room at the hospital, hotel retreat.</td>
</tr>
<tr>
<td>5.09</td>
<td>Adverse events</td>
<td>How were adverse events considered and monitored? For example, dropouts due to sensitive topics.</td>
</tr>
<tr>
<td>5.10</td>
<td>Cost</td>
<td>How much did the course cost to run? This should consider materials and staffing.</td>
</tr>
</tbody>
</table>
subjected to peer review, we considered it important to capture relevant gray literature. First, not all educational initiatives seek academic publication, and second, this allowed inclusion of recent projects that had not yet reached publication stage. However, as our search strategy focused on academic resources, we may have missed gray literature outside these areas (e.g., reports on medical education web sites). Initial screening was carried out by one author in the first instance because of the large number of studies identified; however, the inclusion criteria were applied broadly at this stage, and two authors assessed the eligibility and quality of full papers. Our description of the training interventions was limited by unclear and missing information in the study reports. For example, as data on development were missing for 43 of the training interventions and reported to a highly variable extent for the remainder, our results might underestimate use of patient and family input in course development. This paper does not provide evidence on the effectiveness of each of the training interventions identified; this is explored with a subset of studies (RCTs) in a partner publication.35 Finally, we included studies of interventions focused on communication with patients, which will have excluded critical care EoLC communication skills training interventions targeted at communication with relatives.

Conclusion

Based on our findings, it is clear that testing of communication skills training effectiveness using stronger research designs and validated outcome measures must be the priority for clinical educators, researchers, and funders. Our review also highlights the need for improved clarity and consistency regarding the reporting of training interventions focusing on EoLC communication and their effectiveness. Our synthesis of the evidence and suggested guidelines for reporting are intended to contribute to future improvements in this field.

Disclosures and Acknowledgments

The authors thank the members of their service user advisory group for their contribution to the Transforming End of Life Care study, of which this review is a component. The authors are also grateful to colleagues at the Cicely Saunders Institute for their comments on a previous draft of this paper.

This systematic review was funded by Health Education South London as part of the Transforming End of Life Care project. The funders played no role in study design, the conduct of the review, analysis and interpretation of data, the writing of the article, or the decision to submit it for publication. The authors have no competing interests.

Supplementary Data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jpainsymman.2017.04.008.

References

47. Ray RA, Fried O, Lindsay D. Palliative care professional education via video conference builds confidence to deliver palliative care in rural and remote locations. BMC Health Serv Res 2014;14:272.

