Supporting Information

C(5) Site-Selective Functionalization of (S)-Cotinine

Hugo Rego Campello and Timothy Gallagher*

School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom

Contents:

Page 2: 1H NMR of crude borylation reaction mixture comprising cotinine 2 and boronate ester 3

Page 3-12: 1H and 13C NMR spectra of compounds 4 and 5a-h.
5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)cotinine (3).

1H-NMR (400 MHz): 1H NMR of the crude borylation reaction mixture arising from Ir-catalysed borylation of ($-$)-cotinine 2 leading to 3. 1H NMR of ($-$)-cotinine 2 (starting material and marked by #) is shown for comparison alongside the reaction mixture containing the borylated product 3 with residual 2. The aromatic region shown inside the blue circle has been amplified for clarity. Crude 3 was converted directly, without any purification, to 4, which was then subjected to chromatography.
(–)-5-Bromocotinine (4).

1H-NMR (500 MHz), 13C-NMR (125 MHz): CDCl$_3$
(−)-S-Aminocotinine (5a).

1H-NMR (500 MHz), 13C-NMR (125 MHz): CDCl$_3$
(-)-5-(4-Tolyl)cotinine (5b).

1H-NMR (500 MHz), 13C-NMR (125 MHz): CDCl$_3$
(−)-5-Cyanocotinine (5c).

1H-NMR (500 MHz), 13C-NMR (125 MHz): CDCl$_3$
(-)-5-(E-2-Phenylethenyl)cotinine (5d).

1H-NMR (500 MHz), 13C-NMR (125 MHz): CDCl$_3$
(-)-5-(2-Trimethylsilylethynyl)cotinine (5e).

1H-NMR (500 MHz), 13C-NMR (125 MHz): CDCl$_3$
(-)-S-Ethynylcotinine (5f).

1H-NMR (500 MHz), 13C-NMR (125 MHz): CDCl$_3$
(+)-Methyl cotinine-5-carboxylate (5g).

1H-NMR (500 MHz), 13C-NMR (125 MHz): CDCl$_3$
(+)-5-(Cotinin-5-yl)-cotinine (5h).

1H-NMR (500 MHz), 13C-NMR (125 MHz): CDCl$_3$