
Peer reviewed version

Link to published version (if available): 10.1039/C7EM00585G

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Royal Society of Chemistry at http://pubs.rsc.org/en/Content/ArticleLanding/2018/EM/C7EM00585G#!divAbstract. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Criegee Intermediates and their impacts on the troposphere

M. A. H. Khan, a C. J. Percival, b R. L. Caravan, c C. A. Taatjes d and D. E. Shallcross a, †

Criegee intermediates (CIs), carbonyl oxides formed in ozonolysis of alkenes, play key roles in the troposphere. The decomposition of CIs can be a significant source of OH to the tropospheric oxidation cycle especially during nighttime and winter months. A variety of model-measurement studies have estimated surface-level stabilized Criegee intermediate (sCI) concentrations on the order of \(1 \times 10^4 \) cm\(^{-3}\) to \(1 \times 10^5 \) cm\(^{-3}\), which makes a non-negligible contribution to the oxidising capacity in the terrestrial boundary layer. The reactions of sCI with the water monomer and the water dimer have been found to be the most important bimolecular reactions to the tropospheric sCI loss rate, at least for the smallest carbonyl oxides; the products from these reactions (e.g. hydroxymethyl hydroperoxide, HMHP) are also of importance to the atmospheric oxidation cycle. The sCI can oxidise SO\(_2\) to form SO\(_3\), which can go on to form a significant amount of H\(_2\)SO\(_4\) which is a key atmospheric nucleation species and therefore vital to the formation of clouds. The sCI can also react with carboxylic acids, carbonyl compounds, alcohols, peroxy radicals and hydroperoxides, and the products of these reactions are likely to be highly oxygenated species, with low vapour pressures, that can lead to nucleation and SOA formation over terrestrial regions.

Environmental Significance

Criegee intermediates (CI) have been elusive moieties in the gas-phase until recently but have extremely interesting kinetic and mechanistic properties. The paper reviews the concentrations of stabilized CI on regional and global scales, the unimolecular decomposition of CI and bimolecular reactions of stabilized CI with a series of compounds. The potential role of the products of these reactions in atmospheric chemistry have been discussed which can alter our thinking about the oxidising capacity of the Earth’s atmosphere and the rate of generation of secondary organic aerosol (SOA).

a. School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK.
b. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109, USA.
c. Combustion Research Facility, Mailstop 9055, Sandia National Laboratories, Livermore, California, 94551 USA.
† Author to whom correspondence should be sent
E-mail: d.e.shallcross@bristol.ac.uk, Phone: +44 (0) 117 928 7796
Formation of Criegee Intermediates

The ozonolysis of alkenes proceeds via carbonyl oxide intermediates; Rudolph Criegee first proposed this scheme in 1949 in the aqueous phase. The reaction proceeds in two distinct steps; the first being a 1,3-cycloaddition of ozone across a double bond to form a primary ozonide, followed by decomposition to a carbonyl and a carbonyl oxide (Figure 1), otherwise known as a Criegee intermediate (CI). This mechanism is also followed in the gaseous phase, and therefore in the atmosphere.

Figure 1. Formation of a primary ozonide followed by decomposition to a carbonyl and Criegee intermediate

The primary ozonide formed from the reaction of ozone with an alkene is very energy rich, and dissociates into a stable carbonyl compound and a vibrationally excited Criegee intermediate (CI*). The CI* can then either undergo unimolecular decomposition or can form a stabilised Criegee intermediate (sCI) via collisional relaxation.

sCI can also be formed in the troposphere through radical-radical reactions (e.g. CH₃O₂ + BrO₄, CH₃O₂ + OH, and CH₃O₂ + Cl), but their contribution to the total sCI is negligible.

Unimolecular decomposition of Criegee Intermediates and formation of OH

The reaction of the alkenes with ozone can be the major chemical sink of alkenes in heavily polluted areas, depending on conditions. OH radicals can be produced from the ozonolysis of alkenes via either prompt formation from CI* or formation from the decomposition of sCIs at different species-dependent rates (Table 1). There has been an increasing amount of interest in CI chemistry in recent years after the realisation that the decomposition of the CI species can result in significant production of OH and HO₂ radicals which affects the oxidising capacity of the atmosphere. Experimental measurement of OH radical yields from alkene ozonolysis through CI formation has historically proved to be difficult, because the OH radical formed quickly reacts with the original alkene or other decomposition products. In the past this has been circumvented by adding OH scavenger molecules (e.g. alkanes) to the reaction mixture, so that the rate of scavenger decay is indicative of OH concentration. However, newer experimental methods employ direct measurement by laser-induced fluorescence (LIF) spectroscopy. Production of the OH radical via the CI decomposition is thought to occur mainly through the syn-conformation. This proceeds via isomerisation to a vinyl hydroperoxide, followed by the cleavage of the O-OH bond. The OH production from the anti-conformation is also possible via isomerization of the molecule to a carboxylic acid followed by cleavage of the C-OH bond.
Day-time OH radical production is dominated by the photolysis of ozone, but it has been widely documented in research that CI decomposition is one of the important sources of atmospheric OH.27,30,37 The decomposition of CI can be a major source of night-time OH and up to ~24% of daytime OH production.38 The PUMA campaign37 (an intensive field study in Birmingham, UK) has also shown that CI decomposition is of large significance in OH winter concentrations. A 15-fold decrease in OH production should be expected in the winter months at higher latitudes compared with the summer months, due to low UV intensity retarding the ozone photolysis pathway, but only a 2-fold decrease in OH concentration is seen due to the formation of OH through the efficient ozonolysis of alkenes.37 Elshorbany et al.39 also reported a significant daytime OH formation (24%) through ozone-alkene reactions in the urban area of Santiago, Chile. The ozonolysis of the alkenes increases with increasing temperature,40 thus the largest production of OH through the formation of CIs is expected over tropical regions and alkenes-abundant areas. We estimated the OH formation from the decomposition of CIs using a global atmospheric chemistry and transport model, STOCHEM-CRI (model description can be found in our previous publications41-46 and found that in the terrestrial rainforest and boreal forest regions, up to 13% of OH radicals were formed via CI unimolecular decomposition (Figure 2). Thus, the amount of OH radicals produced from CI reactions in these areas can have a significant impact on the oxidizing capacity in the troposphere.

![Figure 2. Estimation of the annual average percentage of OH formed from the CIs, simulated by the STOCHEM-CRI model.](image-url)
Bimolecular reactions of Criegee Intermediates

Only a fraction of Cl* (termed as sCIs) formed survive to undergo bimolecular reaction. These occur when either the initial Cl* does not have sufficient energy to undergo unimolecular reaction or isomerisation, or the Cl* are stabilised by collisions with a bath gas, M, (e.g. N2 in the atmosphere).11-12,47 sCIs can react with a variety of secondary compounds, 'Criegee scavengers', including: NOx, SO2, CO, water, water dimer, alcohols, aldehydes and carboxylic acids. However, in the atmosphere it is likely that only water, SO2 and NOx are of any appreciable concentration to act as sCI sinks. Historically, research has focused on the reaction of sCIs with water and it was assumed that HCOOH production was the major reaction pathway.48 However, recent findings21,23,24,25,31,34,49 have shown that rate constants for reaction with NO2, SO2 and carboxylic acids are significantly higher than previously thought. The direct measurements (through photolytic generation of Criegee intermediates using diiodoalkanes), indirect determinations (via ozonolysis measurements), and computational calculations give a wide range of the rate coefficient values for the bimolecular reactions (see Tables 2-6). Gaining a quantifiable understanding of the products and their distributions from these bimolecular reactions are important as they may have significant impacts on the troposphere.42,50,51

<table>
<thead>
<tr>
<th>Species</th>
<th>Rate coefficient (cm$^{-1}$ s$^{-1}$)</th>
<th>Temperature (K)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$OO</td>
<td>2.4 \times 10$^{-16}$</td>
<td>298</td>
<td>Long et al.49</td>
</tr>
<tr>
<td></td>
<td>3.7 \times 10$^{-16}$</td>
<td>298</td>
<td>Lin et al.50</td>
</tr>
<tr>
<td></td>
<td>3.1 \times 10$^{-16}$</td>
<td>298</td>
<td>Anglada et al.53</td>
</tr>
<tr>
<td></td>
<td>5.9 \times 10$^{-16}$</td>
<td>298</td>
<td>Ryzhkov and Ariya54</td>
</tr>
<tr>
<td></td>
<td>8.2 \times 10$^{-16}$</td>
<td>298</td>
<td>Weiz et al.49</td>
</tr>
<tr>
<td></td>
<td>< 4 \times 10$^{-16}$</td>
<td>298</td>
<td>Ouyang et al.49</td>
</tr>
<tr>
<td></td>
<td>(2.5 \times 10$^{-16}$)</td>
<td>298</td>
<td>Stone et al.55</td>
</tr>
<tr>
<td></td>
<td>(1.3 \times 10$^{-16}$)</td>
<td>298</td>
<td>Newland et al.27</td>
</tr>
<tr>
<td></td>
<td>(1.5 \times 10$^{-16}$)</td>
<td>298</td>
<td>Chao et al.56</td>
</tr>
<tr>
<td></td>
<td>(3.2 \times 10$^{-16}$)</td>
<td>298</td>
<td>Bhardwaj et al.57</td>
</tr>
<tr>
<td></td>
<td>(2.4 \times 10$^{-16}$)</td>
<td>298</td>
<td>Sheps et al.58</td>
</tr>
<tr>
<td></td>
<td>5.7 \times 10$^{-16}$</td>
<td>298</td>
<td>Long et al.50</td>
</tr>
<tr>
<td></td>
<td>2.0 \times 10$^{-16}$</td>
<td>298</td>
<td>Lin et al.50</td>
</tr>
<tr>
<td></td>
<td>2.1 \times 10$^{-16}$</td>
<td>298</td>
<td>Anglada et al.53</td>
</tr>
<tr>
<td></td>
<td>4.2 \times 10$^{-16}$</td>
<td>298</td>
<td>Ryzhkov and Ariya54</td>
</tr>
<tr>
<td></td>
<td>1.2 \times 10$^{-16}$</td>
<td>298</td>
<td>Taatjes et al.59</td>
</tr>
<tr>
<td>CH$_3$CHO</td>
<td>6.3 \times 10$^{-16}$</td>
<td>298</td>
<td>Long et al.50</td>
</tr>
<tr>
<td></td>
<td>3.4 \times 10$^{-16}$</td>
<td>298</td>
<td>Lin et al.50</td>
</tr>
<tr>
<td></td>
<td>1.7 \times 10$^{-16}$</td>
<td>298</td>
<td>Anglada et al.53</td>
</tr>
<tr>
<td></td>
<td>2.5 \times 10$^{-16}$</td>
<td>298</td>
<td>Ryzhkov and Ariya54</td>
</tr>
<tr>
<td></td>
<td>6.7 \times 10$^{-16}$</td>
<td>298</td>
<td>Newland et al.27</td>
</tr>
<tr>
<td></td>
<td>2.9 \times 10$^{-16}$</td>
<td>298</td>
<td>Taatjes et al.59</td>
</tr>
<tr>
<td></td>
<td>1.8 \times 10$^{-16}$</td>
<td>298</td>
<td>Sheps et al.58</td>
</tr>
<tr>
<td>(CH$_3$)$_2$CO</td>
<td>3.8 \times 10$^{-17}$</td>
<td>298</td>
<td>Anglada et al.53</td>
</tr>
<tr>
<td></td>
<td>7.5 \times 10$^{-18}$</td>
<td>298</td>
<td>Ryzhkov and Ariya54</td>
</tr>
<tr>
<td></td>
<td>2.9 \times 10$^{-18}$</td>
<td>286-303</td>
<td>Newland et al.27</td>
</tr>
<tr>
<td></td>
<td>(2.1 \times 10$^{-18}$)</td>
<td>298</td>
<td>Huang et al.60</td>
</tr>
</tbody>
</table>

Note: 1The values are from direct monitoring of the sCI decay, 2The values are from indirect sCI measurements. 3The values from the experiments could not distinguish between the reaction with the water monomer or the dimer reaction.
Table 5: Rate coefficients for the reaction of sCIs with SO$_2$

<table>
<thead>
<tr>
<th>SO$_2$</th>
<th>Rate coefficient (cm3 molecule$^{-1}$ s$^{-1}$)</th>
<th>Temperature (K)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH$_3$)$_2$COO</td>
<td>(1.0 ± 0.1) \times 10$^{-11}$</td>
<td>290</td>
<td>Berndt et al.</td>
</tr>
<tr>
<td>(CH$_3$)$_2$COO</td>
<td>(4.0 ± 0.1) \times 10$^{-11}$</td>
<td>290</td>
<td>Liu et al.</td>
</tr>
<tr>
<td>(CH$_3$)$_2$COO</td>
<td>(1.4 ± 0.3) \times 10$^{-11}$</td>
<td>290</td>
<td>Chhantyal-Pun et al.</td>
</tr>
<tr>
<td>(CH$_3$)$_2$COO</td>
<td>(6.0 ± 0.3) \times 10$^{-11}$</td>
<td>290</td>
<td>Stone et al.</td>
</tr>
<tr>
<td>(CH$_3$)$_2$COO</td>
<td>(8.0 ± 0.3) \times 10$^{-11}$</td>
<td>290</td>
<td>Liu et al.</td>
</tr>
<tr>
<td>(CH$_3$)$_2$COO</td>
<td>(1.4 ± 0.4) \times 10$^{-11}$</td>
<td>290</td>
<td>Berndt et al.</td>
</tr>
<tr>
<td>CIOO$_2$</td>
<td>(2.9 ± 0.3) \times 10$^{-11}$</td>
<td>290</td>
<td>Tanjun et al.</td>
</tr>
<tr>
<td>CIOO$_2$</td>
<td>(3.2 ± 0.3) \times 10$^{-11}$</td>
<td>290</td>
<td>Shen et al.</td>
</tr>
<tr>
<td>CIOO$_2$</td>
<td>(2.2 ± 0.3) \times 10$^{-11}$</td>
<td>290</td>
<td>Shen et al.</td>
</tr>
<tr>
<td>(CH$_3$)$_2$COO + CO$_2$</td>
<td>(2.2 ± 0.2) \times 10$^{-11}$</td>
<td>290</td>
<td>Berndt et al.</td>
</tr>
<tr>
<td>CH$_3$ + HCHO</td>
<td>(2.3 ± 0.1) \times 10$^{-11}$</td>
<td>290</td>
<td>Liu et al.</td>
</tr>
<tr>
<td>CH$_3$ + HCHO</td>
<td>(3.1 ± 0.1) \times 10$^{-11}$</td>
<td>290</td>
<td>Liu et al.</td>
</tr>
<tr>
<td>CH$_3$ + HCHO</td>
<td>(2.5 ± 0.1) \times 10$^{-11}$</td>
<td>290</td>
<td>Liu et al.</td>
</tr>
<tr>
<td>CH$_3$ + HCHO</td>
<td>(5.0 ± 0.1) \times 10$^{-11}$</td>
<td>290</td>
<td>Liu et al.</td>
</tr>
<tr>
<td>CH$_3$ + HCHO</td>
<td>(1.1 ± 0.1) \times 10$^{-11}$</td>
<td>290</td>
<td>Liu et al.</td>
</tr>
<tr>
<td>CH$_3$ + HCHO</td>
<td>(1.2 ± 0.1) \times 10$^{-11}$</td>
<td>290</td>
<td>Liu et al.</td>
</tr>
<tr>
<td>CH$_3$ + HCHO</td>
<td>(8.0 ± 0.1) \times 10$^{-11}$</td>
<td>290</td>
<td>Liu et al.</td>
</tr>
<tr>
<td>CH$_3$ + HCHO</td>
<td>(3.3 ± 0.1) \times 10$^{-11}$</td>
<td>290</td>
<td>Liu et al.</td>
</tr>
<tr>
<td>CH$_3$ + HCHO</td>
<td>(6.0 ± 0.1) \times 10$^{-11}$</td>
<td>290</td>
<td>Liu et al.</td>
</tr>
</tbody>
</table>

Note: 1) The values are from direct monitoring of the sCI decay. 2) The values are from indirect sCI measurements.

The high concentration of water vapour in the lower troposphere (1.3 \times 1017 to 8.3 \times 1017 molecule cm$^{-3}$) makes it likely that the reaction of water with sCIs will be a dominant chemical sink. The energy barrier of the
sCI + H₂O reaction is reduced dramatically when interacting with a water dimer, as opposed to a monomer. Even though these dimers make up a small percentage (<1%) of water vapour, the reduced activation energy significantly increases the rate of the reaction.⁵²,⁵⁵ Using the tropospheric water concentration estimated by Huang et al.⁶¹, the tropospheric water dimer concentrations at 298 K are calculated to be in the range of 3.5 × 10¹³ to 1.4 × 10¹⁵ molecule cm⁻³. The median rate coefficients for reaction with water and water dimer extracted from the reported values in Tables 2 and 3 are 3.2 × 10⁻¹⁶ and 5.4 × 10⁻¹² cm³ s⁻¹ leading to loss rates at the surface of 40-270 s⁻¹ and 190-7780 s⁻¹ by water and water dimer, respectively.

One of the main products of the reaction, sCI + water or water dimer is found to be hydroxymethyl hydroperoxide (HMHP).⁵⁰,⁸⁵,⁸⁶ The global atmospheric chemistry and transport model study estimated the levels of HMHP in the range of 10-200 ppt (Figure 3) with the highest peak found in terrestrial rain-forest regions.⁵⁰ However, HMHP itself can undergo decomposition to formic acid contributing to the acidity of precipitation.⁸⁷ It is known that HMHP has various toxic effects on plant cells and enzymes.⁸⁸-⁸⁹ sCI formed from large functionalized or cyclic alkenes can react with water to form lower vapour pressure products (e.g. production of pinic acid from β-pinene suggested by Docherty and Ziemann⁹ that are thought to be important species acting as Cloud Condensation Nuclei (CCN).

A theoretical study⁹⁰ showed that, for CH₂OO and anti-CH₃CHOO, reaction with water and water dimer dominated the loss processes, even in a relatively low humidity environment such as Mexico City. Literature has shown that the rate coefficients for the reaction of sCI + water have a large dependence on the conformation of the sCI being considered, anti-sCIs are thought to react up to 5 orders of magnitude faster than syn-sCIs (see Table 2). Despite the slow reaction of syn-sCIs, they can go on to provide a source of OH radicals.⁵⁴ Alkene ozonolysis favours syn-formation and therefore these reactions can provide an essential source of atmospheric OH, and recent work⁵³,⁹¹ confirms this OH production pathway. For anti-CH₃CHOO, the median rate coefficient for reaction with water is 1.31 × 10¹⁴ cm³ s⁻¹ leading to loss rate coefficients near Earth’s surface of between (1.7-10.8) × 10¹ s⁻¹, which greatly exceeds all estimates of the rate coefficient for unimolecular loss. For syn-CH₃CHOO the median rate coefficient for reaction with water is 2.0 × 10⁻¹⁹ cm³ s⁻¹ leading to loss rates at the surface between...
approximately 2.6×10^{-2} and 1.7×10^{-1} which is far smaller than estimates of the rate coefficients for unimolecular loss. For (CH$_3$)$_2$COO, the median rate coefficient for reaction with water is 3.8×10^{-17} cm3 s$^{-1}$ leading to loss rates at the surface between 10-30 s$^{-1}$ which is similar to the rate coefficients for unimolecular loss, making both loss processes comparable. Therefore, for the few sCIs where data have been collected for both reactions, reaction with either the water monomer or dimer seems to be a dominant loss process. However, a much larger dataset, with larger sCIs, is needed to establish a more general prediction.

Although reactions with the water monomer and dimer may dominate removal of sCI, and thus other reaction pathways are of marginal importance in determining atmospheric sCI concentration, sCI can be substantial contributors to formation or removal of other species, particularly if sCI reactions can compete with reactions of OH. The oxidation of NO via sCIs to NO$_2$ is slow (6.0×10^{-14} cm3 s$^{-1}$), which, along with the low tropospheric concentrations relative to water vapour, mean that this pathway is rarely considered to be of major importance.90 This is supported in the work by Welz et al.56 that shows even with [NO] = 5×10^{15} cm$^{-3}$ no increase in the decay rate of the CH$_2$OO was observable. However, the oxidation of NO$_2$ via sCIs was found to be much faster than the reaction of NO + sCI (Table 4). Experiments have struggled to accurately ascertain information about the oxidation products of the reaction. Indirect kinetic measurements35,92 suggested NO$_3$ formation from sCl + NO$_2$ under ambient atmospheric boundary layer conditions. However, Caravan et al.67 demonstrated the formation of a Criegee-NO$_2$ adduct and found limited evidence for the NO$_3$ production channel (upper limit of 30%) in their direct measurement technique. The adduct formation as a competitor of NO$_3$ production makes the reaction of sCl + NO$_2$ a small contribution on NO$_3$ concentration, unless the adduct in turn generates NO$_3$ on longer kinetic timescales or through subsequent reactions.67

Oxidation of SO$_2$ by sCIs was believed to be of little tropospheric importance until relatively recently. Measurement of sCI oxidation of SO$_2$ can be difficult because the OH radicals resulting from Cl decomposition can also compete. However, recently the direct kinetic measurement studies21,23,31,34,56,57 showed that reaction rate constants for these reactions are up to 4 orders of magnitude larger than previously thought33 and an order of magnitude larger than those reported for NO$_2$ for all sCIs studied (Table 5). The global atmospheric chemistry and transport model STOCHEM-CRI has been integrated showing that the oxidation of SO$_2$ by sCl is more significant (by up to 100%) in the terrestrial rain-forests and high latitude boreal forests compared with its oxidation by OH (Figure 4). The values are comparable with the study93 who predicted up to 75% gas phase formation of H$_2$SO$_4$ from sCl + SO$_2$ relative to OH + SO$_2$ in the equatorial region. However, the modelling study of Sarwar et al.94 showed that the oxidation of SO$_2$ by sCI has little impact on H$_2$SO$_4$ formation but decreasing the rate coefficient of the reaction of sCl with H$_2$O in the model can enhance the H$_2$SO$_4$ formation. The model has a limited number of alkenes producing limited sCIs, the loss processes detailed in Table 2-3 may play different roles for more complex sCIs. Thus, the main challenges facing accurate model predictions of steady state sCI
and its impact on the troposphere is the many decades of uncertainty associated with the rate coefficients for water vapour.

![Figure 4](image_url)

Figure 4. The estimated percent contribution of the gas phase oxidation process of SO$_2$+sCl compared with the gas phase oxidation process of SO$_2$ +OH simulated by the STOCHEM-CRI model.

The SO$_3$ formed in these reactions31,56,71 reacts with water vapour on very fast time-scales to form H$_2$SO$_4$.$^{32,95-97}$ Mauldin et al.98 inferred the presence of sCl by investigating H$_2$SO$_4$ produced from the reaction, sCl+SO$_2$, this formation path had significance to reduce the discrepancy between measured and model H$_2$SO$_4$. Further study has shown that the oxidation of SO$_2$ by sCIs can rival the OH oxidation pathway in heavily polluted urban environments,42 accounting for as much as 33-46% of H$_2$SO$_4$ production at ground level.99

Recent direct kinetic studies of the reaction of Criegee intermediates with organic acids have identified rate coefficients that are substantially higher,$^{73-75,100}$ than previous estimates based on theoretical calculations and/or end-product analysis (see Table 6), high enough that these reactions can potentially have significant impacts on the loss of sCl. The first order rate coefficient ratio of the reactions sCl + acids is found to be one order magnitude higher relative to the reaction sCl + SO$_2$. It has been noted$^{30,101-103}$ that because of the very fast reaction of organic acids with sCl, they can be used to trap sCl in laboratory and field experiments. Recently, Chhantyal-Pun et al.74 reported structure-specific rate coefficients for the reactions of various Criegee intermediates with different organic acids. Chhantyal-Pun et al.75 also found that these reactions show relatively small temperature dependence over the temperature range found in lower troposphere. Incorporating these reactions of Criegee intermediates with organic acids (e.g. CH$_3$COOH, CF$_3$COOH) in the STOCHEM-CRI model75,104 shows that loss of acids by sCl exceeds 60% of their total loss in South America, South Africa, Australia and parts of south East Asia resulting in large reductions of the life-time and burden of organic acids in these regions (Figure 5).

![Figure 5](image_url)

Figure 5. The estimated annual average CF$_3$COOH loss contribution by sCl simulated by the STOCHEM-CRI model (Adapted from Chhantyal-Pun et al.75)

The rate coefficients for reactions of sCl with methanol and ethanol (Table 6) are ~ 1000 times smaller than...
those for carboxylic acid reactions. In terms of loss of methanol and ethanol, the reactions with sCI are of minor importance, but they may be significant in the formation of gas-phase species e.g. \(\alpha \)-alkoxyalkyl hydroperoxides (AAAH).\(^{51}\) The STOCHEM-CRI model study suggests that up to 20 ppt of AAAH may be formed in terrestrial regions (Figure 6) where there are large emissions of alcohols and the precursors to sCIs. The formation of larger, more functionalized organic hydroperoxides derived from the reactions of more complicated sCIs, alcohols, or the secondary oxidation of primary AAAHs may be significant in terms of the formation of secondary organic aerosol (SOA) in the troposphere.\(^{51}\)

Figure 6. The estimated \(\alpha \)-alkoxyalkyl hydroperoxide (AAAH) level from the reaction of sCI with methanol for the month of June, simulated by STOCHEM-CRI (Adapted from McGillen et al.\(^{51}\)).

Estimation of regional and global sCI

sCIs are difficult to measure in the atmosphere due to their low steady state concentration, which is controlled by the slow rate of formation by ozonolysis and fast rate of destruction by various reactions (bimolecular or unimolecular). However, because the trace gases (e.g. \(\text{O}_3 \), unsaturated VOCs) that contribute to formation of sCI have been measured (National Environmental Technology Centre (NETCEN) data archive, http://uk-air.defra.gov.uk), a reasonable estimate of sCI can be made using the steady state approximation.\(^{105}\) The levels of VOCs are high in the urban atmosphere because of their emissions from transport and other combustion sources, and these VOCs can then take part in photochemical ozone production in the downwind urban plume.\(^{106-107}\) The elevated concentrations of ozone and increased levels of VOCs (e.g. alkenes) can lead to the formation of substantial sCI in the urban environment. The ozonolysis reactions of available 9 alkenes in the NETCEN data set, and an additional 43 alkenes modelled using information given by the Air Quality Improvement Research Program (AQIRP), give estimates of sCI concentrations of UK environments (e.g. \(660 \pm 650 \text{ cm}^{-3} \) for London Eltham, \(1960 \pm 2390 \text{ cm}^{-3} \) for London Marylebone Road and \(590 \pm 440 \text{ cm}^{-3} \) for Harwell). The estimated sCI concentrations have a diurnal cycle with peaks during the afternoon, yearly cycle with peaks in Spring and weekly cycle with peaks on Sunday (see Figure 7). The sCI levels are predicted to be larger in the day time due to higher levels of VOCs, \(\text{O}_3 \) and higher temperature throughout the day. Moreover, the increased levels of \(\text{O}_3 \) along with higher temperature in spring months lead to an overall increase in sCI production in Spring. The variation of sCI between weekdays and weekend is not significant, although slightly higher levels are expected in the weekend because the lower traffic (i.e., low \(\text{NO}_x \) emissions) increases the VOC/\(\text{NO}_x \) ratio resulting in higher \(\text{O}_3 \) production. Using the estimated levels of urban sCI, the oxidation rate of \(\text{SO}_2 + \text{sCI} \) (37.6 Gg/yr) in urban areas is
non-negligible compared with the most conventional oxidation rate of SO₂ + OH (0.64 Tg/yr) in urban areas.105

Thus, these sCI reactions can alter the oxidizing capacity of the urban troposphere.

Figure 7. The hourly, monthly, and daily estimated sCI concentrations in the two urban sites and one rural site of UK (Adapted from Khan et al.105). The error bars represents ± 1 SD of the whole data series.

In the 3-D chemistry and transport model STOCHEM-CRI study, the Criegee field was generated using ozonolysis reactions of six alkenes (ethene, propene, trans-but-2-ene, isoprene, α-pinene and β-pinene) and their losses by water, water dimer and unimolecular decomposition. Based on the availability of experimental measurements and quantum calculations of the loss processes of different sCIs,51 the Criegee field was created where the levels of sCI range from near zero up to levels approaching 6.0 × 10⁵ cm⁻³, with the highest levels predicted to be over regions of high biogenic emissions of reactive (unsaturated) hydrocarbons, e.g. the Amazon rain forest (see Figure 8a). A similar spatial distribution of sCI was shown by Vereecken et al.93 with the peak sCI concentrations below 1.0 × 10⁵ cm⁻³. The Criegee chemistry used in STOCHEM-CRI is different from that of Vereecken et al.93 (e.g. Vereecken et al. assigned rapid 1,5-ring closure for the isoprene-derived Criegee intermediates, MVKOO and MACROO during unimolecular decomposition) which can explain the higher sCI concentration estimation in our study. The zonal plot from STOCHEM-CRI study shows that sCI levels estimated are highest (up to 7.0 × 10⁴ cm⁻³) in the tropics and fall dramatically with altitude (Figure 8b). The ozone levels are higher in the upper troposphere, but the alkene levels decrease with altitude because of their short lifetimes (typically days to hours). In addition, the decreased rate coefficients of the ozonolysis reactions because of the decreasing temperature further from the surface reduce the formation of sCI in the upper troposphere.

Figure 8. An estimate of annual average (a) surface levels (b) zonal levels of sCI derived using the global model, STOCHEM-CRI.
A variety of theoretical and field studies have also estimated levels of sCI using available measurements of alkenes and ozone. Vereecken et al. estimated isoprene and monoterpene derived sCIs to be 1.2×10^4 cm$^{-3}$ and 7.1×10^2 cm$^{-3}$, respectively at the tropical forest of Surinam using the steady state approximation. An indirect measurement, where the oxidation of SO$_2$ to H$_2$SO$_4$ in the presence of an OH scavenger is used to quantify the oxidant, gave sCI concentrations of $\sim5.0 \times 10^4$ cm$^{-3}$ (with an order of magnitude uncertainty) for the boreal forest and rural environments of Finland and Germany. However, the wall loss of sCI was not considered in their study which gives their estimate as a lower limit. Kim et al. estimated peak sCI levels of $\sim5.5 \times 10^4$ cm$^{-3}$ at 5 pm downwind of the Dallas-Fort Worth, Texas conurbation, which are very similar to the study who predicted sCI levels up to $\sim5 \times 10^4$ cm$^{-3}$ in Hyytiälä, Finland, and Hohenpeissenberg, Germany. Bonn et al. found sCI levels in the range of 2×10^4 cm$^{-3}$ to 4×10^5 cm$^{-3}$ during the day over the period August to September in the Mt. Kleiner Feldberg region in central Germany. In all cases, the oxidation of SO$_2$ by sCI at these calculated levels form an additional amount of H$_2$SO$_4$ which brings models into better agreement with measurements. However, Berresheim et al. potentially detected sCI in the atmosphere at Mace Head in Ireland, using a CIMS-HO (HO instrument using Chemical Ionisation Mass Spectrometry) and found that the oxidation of SO$_2$ by sCI at Mace Head, Ireland can increase the H$_2$SO$_4$ concentrations by only 5-30% which is very small with respect to the average factor of 4.7 required to match the observed H$_2$SO$_4$ concentration. Analysis of all reported estimated sCIs levels gives a reasonable amount of sCI $\sim (1-5) \times 10^4$ cm$^{-3}$ over the terrestrial boundary layer. However, direct measurements of sCI would be required for quantifying the changes of the tropospheric oxidizing capacity due to sCIs; failing that, more complete in situ measurements of the available alkene concentration can be used to calculate the sCI levels in different environments. Detection of sCI in the atmosphere may soon become possible by direct measurement techniques such as near-UV cavity ringdown spectroscopy, UV-Vis spectroscopy, IR spectroscopy, Proton transfer reaction time of flight mass spectrometry (PTR-TOF-MS), or chemical ionisation mass spectrometry (CIMS). However, it should be noted that direct measurements will represent a significant analytical challenge as a result of the low concentration of sCIs that are predicted in the atmosphere.

Potential importance of sCI on the troposphere

sCIs are important in the oxidative capacity and aerosol formation in the troposphere, and the high reactivity of sCI towards many key trace gas species (e.g. water vapour, SO$_2$, NO$_2$ and carboxylic acids) implies a greater role of sCIs in atmospheric chemistry than thought a decade ago. If we consider the level of sCI in the terrestrial boundary layer of the order of 1×10^4 cm$^{-3}$ and the level of OH is of 1×10^6 cm$^{-3}$, \sim10-fold larger k_{sCI} than k_{OH} is sufficient for the loss rate via reaction with sCI to compete with the loss by reaction with OH. The ratio of loss rates (Table 7) shows that some of the species (e.g. HNO$_3$, HCOOH, CH$_3$COOH, CF$_3$COOH, CF$_3$COCF$_3$, and pyruvic acid) where k_{sCI} is more than 100-
fold higher than \(k_{OH} \) resulting in the dominance of removal by sCI over OH. Thus, sCI makes a significant contribution to the oxidising capacity in the terrestrial boundary layer by reducing the estimated lifetime of these species and may lead to products that are condensable.49

For species such as HCl and SO\(_2\), loss via reaction with OH and sCI are found to be comparable (Table 6). However, in the presence of higher sCI production, e.g., because of increased alkenes levels and increased temperature, oxidation of SO\(_2\) by sCI can be of greater significance. Both field studies98-100,108,116 and modelling studies42,117-119 suggest that sCI could make a significant contribution (10-70%) to SO\(_2\) oxidation (i.e., H\(_2\)SO\(_4\) formation), but the extent of that contribution varies from study to study because of the different environmental conditions. The formation of H\(_2\)SO\(_4\) from sCIs is atmospherically important because it can act as a CCN through the formation of secondary organic aerosol (SOA)120 and can also acidify rain. The conversion of SO\(_2\) into H\(_2\)SO\(_4\) has been the focus of many research works, and understanding how H\(_2\)SO\(_4\) influences cloud and SOA formation is of vital importance when modelling the direct and indirect effect of sCI.121

Table 7: Relative oxidation rates of some selected species by OH and sCI considering the concentrations of OH and sCI are 1×10\(^{6}\) and 1×10\(^{4}\) cm\(^{-3}\) respectively. Note: only CH\(_2\)OO is considered in the calculation.

<table>
<thead>
<tr>
<th>Species</th>
<th>Rate coefficient of the reaction (\text{species}/\text{OH}, k_{OH}) (cm(^{-3}) s(^{-1}))</th>
<th>Rate coefficient of the reaction (\text{species}/\text{sCI}, k_{sCI}) (cm(^{-3}) s(^{-1}))</th>
<th>(k_{sCI}/k_{OH})</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO (_3)</td>
<td>1.5 × 10(^{-5}) (Atkinson et al.123)</td>
<td>5.4 × 10(^{-5}) (Freznel et al.122)</td>
<td>3.6</td>
</tr>
<tr>
<td>HCOOH</td>
<td>4.5 × 10(^{-5}) (Atkinson et al.123)</td>
<td>1.1 × 10(^{-5}) (Welz et al.11)</td>
<td>4.1</td>
</tr>
<tr>
<td>CH(_3)OOH</td>
<td>5.0 × 10(^{-5}) (Atkinson et al.123)</td>
<td>1.3 × 10(^{-5}) (Welz et al.11)</td>
<td>2.6</td>
</tr>
<tr>
<td>CF(_3)OOH</td>
<td>1.4 × 10(^{-5}) (Atkinson et al.123)</td>
<td>1.4 × 10(^{-5}) (Chhantyal et al.123)</td>
<td>1.0</td>
</tr>
<tr>
<td>HCl</td>
<td>9.0 × 10(^{-10}) (Atkinson et al.123)</td>
<td>3.0 × 10(^{-12}) (Rasoul et al.123)</td>
<td>3.0 × 10(^{2})</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>4.1 × 10(^{-10}) (Atkinson et al.123)</td>
<td>7.0 × 10(^{-10}) (Welz et al.122)</td>
<td>0.002</td>
</tr>
<tr>
<td>SO(_2)</td>
<td>1.3 × 10(^{-10}) (Atkinson et al.123)</td>
<td>4.8 × 10(^{-10}) (Rasoul et al.123)</td>
<td>3.6</td>
</tr>
<tr>
<td>CH(_2)CH(_2)OH</td>
<td>1.6 × 10(^{-10}) (Atkinson et al.123)</td>
<td>3.0 × 10(^{-10}) (Stone et al.122)</td>
<td>0.001</td>
</tr>
<tr>
<td>CH(_2)O(_2)OH</td>
<td>2.2 × 10(^{-10}) (Atkinson et al.123)</td>
<td>2.2 × 10(^{-10}) (Freznel et al.11)</td>
<td>1.0</td>
</tr>
<tr>
<td>CH(_2)OH</td>
<td>5.9 × 10(^{-10}) (Atkinson et al.123)</td>
<td>7.9 × 10(^{-10}) (Atkinson et al.123)</td>
<td>0.001</td>
</tr>
<tr>
<td>CH(_3)CHO</td>
<td>3.2 × 10(^{-10}) (Atkinson et al.123)</td>
<td>2.3 × 10(^{-10}) (Atkinson et al.123)</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

For some other species (e.g. CH\(_3\)OH, C\(_2\)H\(_3\)OH, CH\(_3\)CHO), \(k_{OH} \) is higher than \(k_{sCI} \) resulting in the dominance of removal by OH over sCI. However, this type of species, especially with a C=O, C-O-H, C-O-H and C-O-O moieties, can react with sCI to form adducts.35 Synchrotron-based photoionization mass spectrometry measurements demonstrate that the adduct products formed from the reactions of sCI and organic acids, such adducts will have low vapour pressures and high O:C ratios which may lead to condensation of organic species and secondary organic aerosol (SOA) formation.69,74 Therefore, even though these reactions only represent a small fraction of the loss compared with the loss by OH, it may be important because of its contribution to SOA formation, with associated impacts on air quality and climate.

There are laboratory124-125 and chamber studies126 that showed that reactions between sCI and RO\(_2\) (peroxy
radicals) and organic hydroperoxides (ROOH) can form addition products (Figure 9).

Figure 9. Mechanism for the sequential addition of sCl to (a) peroxy radical and (b) an organic hydroperoxide

Global model studies suggest that the highest concentrations of RO₂ up to 50 pptv⁴⁴ and ROOH up to 8 ppbv⁴⁵ are found in Amazon rainforest region, where the concentration of sCl is also found to be greatest. So, the oxidations of RO₂ and ROOH by sCl may be prominent in these regions, and if the products of these reactions are the adducts shown in Figure 9, these reactions may be significant for SOA formation. However, the large uncertainties of both rate coefficients and the product branching make quantification of these reaction channels difficult. Nevertheless, global model estimates of the distribution of [sCl][RO₂] and [sCl][ROOH] shows that elevated [sCl][RO₂] and [sCl][ROOH] exist over the tropical regions (Figure 10 and 11). In summary, the oxidation of VOCs by sCIs is likely to yield highly oxygenated species which can lead to nucleation and the formation of SOA and the extent to which these reactions are affecting the regional and global climate is still to be determined.

Figure 10. Annual average surface estimate of the product [sCIs][RO₂] using fields derived from the STOCHEM-CRI global model.

Figure 11. Annual average surface estimate of the expression [sCIs][ROOH] using fields derived from the STOCHEM-CRI global model.

Conclusions

The oxidation of alkenes via reaction with ozone act as a major sink for alkenes in the troposphere and has been established to yield Criegee intermediates. The unimolecular decomposition of these species is thought to be contributed to the formation of OH which is significant in the tropospheric oxidation cycle during nighttime and winter months. A variety of model-
measurement studies estimated the surface levels of the Criegee intermediates in the order of 10^4 to 10^5 cm3, the peak level was found over regions of high biogenic emissions e.g. the Amazon rain forest. The direct detection of Criegee intermediate and measurements of the reaction kinetics of Criegee with several important tropospheric species, NO$_2$, SO$_2$, water, water dimer, carboxylic acid, alcohols, aldehydes, ketones suggest that Criegee reactions are important in terms of the product information and their tropospheric distribution. The potential role of these intermediates in atmospheric chemistry is significant, altering our thinking about the oxidising capacity of the Earth’s atmosphere and the rate of formation of SOA. Currently, the steady state estimation of sCIs and its impact on the troposphere is a complex task because of the underlying uncertainties of the unimolecular and bimolecular rate coefficients of larger and more complicated sCIs especially biologically important species (e.g. isoprene and terpenes) derived sCIs. Future research should be focused on the direct measurement of the unimolecular and bimolecular rate co-efficient of the loss processes of sCIs with longer alkyl chain in order to predict the global burden of sCI and also on the experimental determination of sCIs which will be beneficial to validate the model results.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
We thank NERC (grant code NE/K004905/1) and Bristol ChemLabS under whose auspices various aspects of this work was funded. The participation of CAT and RLC is supported by the Office of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. All flight and field measurement datasets used in this paper are properly cited and referred to in the reference list.

Notes and references

[111] H. Berresheim, M. Adam, C. Monahan, C. O’Dowd, J. M. C. Plane, B. Bohn and F. Rohrer. Missing SO2 oxidant in the missing SO2 oxidant in the...

