
Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1038/s41598-017-01674-8
10.1038/s41598-017-06409-3

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Nature at https://doi.org/10.1038/s41598-017-01674-8. Please refer to any applicable terms of use of the publisher.
A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

Dong Li, Xiao Chang, John J. Connolly, Lifeng Tian, Yichuan Liu, Elizabeth J. Bhoj, Nora Robinson, Debra Abrams, Yun R. Li, Jonathan P. Bradford, Cecilia E. Kim, Jin Li, Fengxiang Wang, James Snyder, Maria Lemma, Cuiping Hou, Zhi Wei, Yiran Guo, Haijun Qiu, Frank D. Mentch, Kelly A. Thomas, Rosetta M. Chiavacci, Roger Cone, Bingshan Li, Patrick A. Sleiman, Eating Disorders Working Group of the Psychiatric Genomics Consortium*, Price Foundation Collaborative Group* & Hakon Hakonarson

We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P = 2.04 x 10^-7; OR = 0.7; 95% confidence interval (CI) = 0.61–0.8) with independent replication (P = 0.04), suggesting a variant-mediated dysregulation of leptin signaling may play a role in AN. Multiple SNPs in LD with the variant support the nominal association. This demonstrates that although the clinical and etiologic heterogeneity of AN is universally recognized, further careful sub-typing of cases may provide more precise genomic signals. In this study, through a refinement of the phenotype spectrum of AN, we present a replicable GWAS signal that is nominally associated with AN, highlighting a potentially important candidate locus for further investigation.

Anorexia nervosa (AN) is a complex and often chronic eating disorder characterized by inability to maintain a normal healthy body weight and a persistent fear of weight gain, resulting in extreme emaciation and even death in some cases. Previous genetic and epidemiological studies have indicated a multifactorial etiology, where both genetic and environmental factors contribute to disease risk.

As sample sizes have increased, genome-wide association studies (GWASs) of AN have begun to identify risk variants. To further elucidate the genetic architecture of AN, we performed a GWAS using data from our previously published study consisting of 1,033 AN cases by excluding 212 patients with AN who experienced diagnostic crossover during the course of their illness. Specifically, we excluded patients who migrated from or to binge-eating disorder (BED) or bulimia nervosa (BN) as assessed with the Structured Interview for Anorexic and Bulimic Disorders. Although a previous study indicated women with BN were rarely to cross over to AN, we observed ~43% of AN/BN crossover cases falls into this category in our cohort, suggestive of a confounding factor. We hypothesized that this reduction in phenotypic heterogeneity, despite the fact that AN and BN may share some genetic risk factors, would enhance gene discovery.

Results

Our discovery cohort included a total of 692 female AN cases of non-Hispanic European (NHE) descent. Cases were included if they were diagnosed with restricting type and binge eating/purging type of AN as defined by
DSM-IV. Both types are characterized by below-normal weight and restricted food intake. Individuals diagnosed as restricting type do not experience binge-eating episodes and do not engage in purging, such as vomiting or use of laxatives. Standard quality controls measures were applied, specifically, excluding potential cryptic relatedness and checking for population stratification (details described elsewhere). The average age of onset of the case subjects was 16.3 years with a standard deviation (SD) of 3 years (Interquartile Range; IQR = 16(14–18)). The control group included 3,570 female matched healthy adolescents of NHE ancestry that had an average age of 18.3 years at the time of data analysis (SD = 5.7; IQR = 19(13–23)) (Supplementary Table 1). Associations were assessed with 507,999 SNPs genotyped on either Illumina HumanHap550 or Human610-Quad BeadChips in an additive model using logistic regression analyses with principal components adjustment, based on the principal component analysis of cases and controls (Supplementary Figure 1), resulting in significantly low level of genomic control inflation factor of 1.03 (Supplementary Figure 2). The analysis yielded one SNP (rs929626) with a P value of 2.04 × 10−7 and 4 other SNPs with marginally larger P values that are in strong linkage disequilibrium (r² > 0.8); these SNPs were selected for further analysis (Supplementary Figure 3; Supplementary Table 2).

Using imputation analysis based on data from the 1000 Genomes Project (Phase I integrated variant set, v2, March 2012), we subsequently tested associations with SNPs (imputed info > 0.5, minor allele frequency (MAF) > 0.05) located in a 200-kb window centered on the SNP rs929626. We observed association with a series of markers around this region, of which 34 SNPs supported suggestive associations (P < 1.0 × 10−6) with both imputed and genotyped SNPs, which were in high LD with AN (Fig. 1; Supplementary Table 3). This suggests that the single markers demonstrating nominal association in the GWAS are likely to be true positives.

We further explored this finding using the meta-analysis results from 15 previously reported AN cohorts. Interestingly, two SNPs were also nominally significant (rs929626 with P = 0.037 and rs17543752 with P = 0.05) in the same direction as in the GWAS (Table 1). Meta-analysis results in a P value of 1.52 × 10−7.

Using imputation analysis based on data from the 1000 Genomes Project (Phase I integrated variant set, v2, March 2012), we subsequently tested associations with SNPs (imputed info > 0.5, minor allele frequency (MAF) > 0.05) located in a 200-kb window centered on the SNP rs929626. We observed association with a series of markers around this region, of which 34 SNPs supported suggestive associations (P < 1.0 × 10−6) with both imputed and genotyped SNPs, which were in high LD with AN (Fig. 1; Supplementary Table 3). This suggests that the single markers demonstrating nominal association in the GWAS are likely to be true positives.

For the association with the marker rs929626, we observed significant effects on the expression level of the gene EBF1 in nine independent subjects (the FPKM).

Table 1. Association results for the lead genotyped SNP. Abbreviations: MA, minor allele; OR, odds ratio; SE, standard error; L95, lower 95% confidence interval; U95, upper 95% confidence interval; P, P-value.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Study</th>
<th>MA</th>
<th>OR</th>
<th>SE</th>
<th>L95</th>
<th>U95</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs929626</td>
<td>CHOP</td>
<td>C</td>
<td>0.7004</td>
<td>0.06855</td>
<td>0.6123</td>
<td>0.8011</td>
<td>2.04E-07</td>
</tr>
<tr>
<td></td>
<td>PGC-ED</td>
<td>C</td>
<td>0.938252</td>
<td>0.027953</td>
<td>0.883465</td>
<td>0.996437</td>
<td>0.037887</td>
</tr>
</tbody>
</table>

Figure 1. Region of genome-wide nominal association at 5q33.3. Regional plot of the EBF1-associated interval for the imputation analysis. Foreground shows scatter plot of the −log₁₀ P values plotted against physical position of human reference hg19. Background shows estimated recombination rates plotted to reflect the local LD structure. The color of the dots represents the strength of LD between the top SNP (rs929626) and its proxies (red, r² ≥ 0.8; orange, 0.8 > r² ≥ 0.6; green, 0.6 > r² ≥ 0.4; blue and navy; r² < 0.4). Genes, position of exons, and direction of transcription from ucsc genome browser (http://genome.ucsc.edu) are noted.
value for TT homozygotes (3 subjects) versus C allele carriers (6 individuals) is 5.0 versus 6.4) with both whole genome sequencing data of blood and corresponding RNA-Seq data of heart right ventricle selected from the Pediatric Cardiac Genomics Consortium cohort (dbGaP Study Accession: phs000571.v3.p2). By using the Genotype-Tissue Expression Portal database (http://www.gtexportal.org), we also observed nominally significant expression quantitative trait loci (eQTLs) association ($P = 0.0024$, tested in 97 samples) in the putamen for rs929626 in the same direction. A few comorbid psychiatric disorders have been linked with the function of the putamen, such as anxiety, obsessive-compulsive disorder and attention deficit-hyperactivity disorder$^{16-18}$. Taken together, these suggest the minor allele C carriers have relatively higher EBF1 expression.

Discussion

EBF1 encodes a transcription factor that originally thought to function as necessary for the development of the immune system19, but it has since been shown to regulate the development of both osteoblast and adipocyte lineages$^{20-22}$. Two EBF1 variants, rs11953630-T and rs9313772-T, showed significant association at genome-wide level ($P < 5 \times 10^{-8}$) in a study testing blood pressure in European whites23,24. In addition, rs17056278-C was also identified as a metabolic risk allele, interacting with psychosocial stress to contribute to increased hip circumference ($P = 3 \times 10^{-5}$)25. However none of these is in LD with any markers in our identified locus. In animal studies, Ebf1–/– mice showed increased adipose tissue within marrow, whereas peripheral white adipose tissue was severely reduced. Circulating levels of leptin, a hormone released by adipocytes and one of the major players in food intake regulation, were also decreased in Ebf1–/– mice compared with controls26. This concurs with the reported generalized loss of accumulation of subcutaneous and visceral adipose accompanied by significant increases in yellow marrow in AN patients27,28. Also notable is the finding that circulating levels of leptin are very low in AN patients29,30 and a decline in levels of circulating leptin can lead to changes in brain activity in areas involved in regulatory, emotional, and cognitive control of appetite5.

Understanding the genetics of AN is currently a major within-field initiative, in parallel to other neuropsychiatric/neurodevelopmental disorders such as schizophrenia, bipolar disorder, and autism spectrum disorders. Although the clinical and etiologic heterogeneity is universally recognized, in practice, many studies still failed to account for sample heterogeneity. In this study, by focusing on individuals with AN who have not crossed over to BN or BED, we have identified a marginally replicating GWAS signal that approached genome-wide significance. One limitation of our study is that all participants may not yet have experienced the full course of their eating disorder (The average duration of follow-up was 8.6 years with a SD of 7.0 years in the discovery cohort, while the average crossover time was 2.8 years with a SD of 2.6 years for the excluded AN patients), and a portion of the sample may develop BN or BED at later stages of illness. This would represent a conservative bias and underscores the importance of further investigation of this locus in the future focusing on individuals with lifetime AN who have never crossed over to other eating disorder presentations.

Methods

Discovery data set and quality control. We conducted a GWAS using data from our previously published study5 consisting of 1,033 AN cases by excluding 212 patients with AN who experienced diagnostic crossover during the course of their illness (i.e. migrated from or to binge-eating disorder (BED) or bulimia nervosa (BN) as assessed with the Structured Interview for Anorexic and Bulimic Disorders11) plus 100 patients without such information. A total of 692 female AN cases and 3,570 female matched controls that were carefully selected from Center for Applied Genomics (CAG) database were included in the analysis after Standard quality controls, namely, excluding potential cryptic relatedness and checking for population stratification by using the PLINK software31 version 1.90a. The Research Ethics Board of CHOP and other participating centers approved the study. Informed consent was obtained from all adult participants and from a parent or legal guardian in the case of children and all work was followed in accordance with an IRB-approved protocol.

Association tests. For the genome-wide association analysis for SNPs, we utilized the PLINK software31 version 1.90a, through Cochran–Armitage trend test.

Expression studies. The extended locus around associated SNP was then defined by identification of all SNPs showing $r^2 > 0.5$. Linkage disequilibrium (LD) was defined with the HaploReg v4.1 (ref. 15) based on Phase I of the 1000 Genomes project. Variants showing evidence of LD with associated AN variants were explored for impact on gene function via regulatory analysis (including eQTLs) by HaploReg v4.1, which both collate data from the Encyclopedia of DNA Elements (ENCODE)14. We also referred to the Genotype-Tissue Expression Portal database (http://www.gtexportal.org) for eQTLs analysis.

References

Acknowledgements

We gratefully thank all the patients and their families who were enrolled in this study, as well as all the control subjects who donated blood samples to The Children's Hospital of Philadelphia (CHOP) for genetic studies. Dong Li is funded in part by 2012–2015 Davis Foundation Postdoctoral Fellowship Program in Eating Disorders Research Award. Bingshan Li was partially supported by Klarman Family Foundation for eating disorders. All genome-wide genotyping for controls was funded by an Institute Development Award to Center for Applied Genomics from CHOP. We thank the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) for providing summary results data for the replication analysis.

Author Contributions

D.L. and H.H. were leading contributions in the design, analysis and writing; D.L., X.C., Y.L., J.P.B. and P.S contributed to data analysis. J.C., L.T., N.R., D.A., Y.R.L. contributed samples and phenotypes. C.E.K., J.L., F.W., J.S., M.L., C.H., Z.W., Y.G., H.Q., F.M., K.T., R.C., B.L., and R.C. provided assistance with samples and data processing. Eating Disorders Working Group of the Psychiatric Genomics Consortium and Price Foundation Collaborative Group provided data for the replication and helped with the discussion; D.L. drafted the manuscript. D.L., J.C., E.J.B. and H.H. revised the manuscript. All authors approved final version of manuscript.

Additional Information

Supplementary information accompanies this paper at doi:10.1038/s41598-017-01674-8

Competing Interests: The authors declare that they have no competing interests.

Change History: A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

4
and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland. 32Department of Adolescent Psychiatry, Helsinki University Central Hospital, Helsinki, Finland. 33Center for Eating Disorders Ursula Leiden, The Netherlands. 34Leiden University Medical Centre, Department of Psychiatry, Leiden, The Netherlands. 35Leiden University Medical Centre, Molecular Epidemiology Section (Department of Medical Statistics), Leiden, The Netherlands. 36Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA.

37Department of Genetics, Environment and Mental Health, Norwegian Institute of Public Health, Oslo, Norway. 38Institute of Clinical Medicine, University of Oslo, Oslo, Norway. 39Department of Psychiatry, University of Naples SUN, Naples, Italy. 40Chair of Psychiatry, University of Salerno, Salerno, Italy. 41Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada. 42Department of Psychiatry, University of Toronto, Toronto, Canada. 43Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria. 44Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA. 45Department of Molecular and Experimental Medicine and The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA, USA. 46Department of Psychosomatic Research, National Institute of Mental Health, NCNP, Tokyo, Japan.

47Department of Molecular Life Sciences, Tokai University School of Medicine, Kanagawa, Japan. 48Estonian Genome Center, University of Tartu, Tartu, Estonia. 49Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. 50Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland. 51Seattle University College of Nursing, Seattle, WA, USA. 52Kartini Clinic, Portland, OR, USA. 53Centre de Psychiatrie et Neurosciences – Inserm U894, Paris, France. 54Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

55Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK. 56UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK. 57Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Clinics RWTH Aachen, Aachen, Germany. 58Department of Psychiatry, Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Charité, Berlin, Germany. 59Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hanover, Germany. 60Department of Psychosomatic Medicine and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany. 61Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Medical School Würzburg, Würzburg, Germany. 62Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany. 63Massachusetts General Hospital/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Psychiatric Neuroimaging Research Program, Charlestown, MA, USA. 64Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Clinics RWTH Aachen, Aachen, Germany. 65Departments of Psychosocial and Internal Medicine, Heidelberg University, Heidelberg, Germany. 66Parklandklinik, Bad Wildungen, Germany. 67Institute for Medical Informatics, Biometry and Epidemiology, Universitätssäklinikum Essen, University of Duisburg-Essen, Essen, Germany. 68Department of Internal Medicine VI, Psychosomatic Medicine and Psychotherapy, University Medical Hospital Tübingen, Tübingen, Germany. 69Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands. 70Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA. 71Brain Center Rudolf Magnus, Department of Psychiatry, Medical University Center Utrecht, Utrecht, The Netherlands. 72Department of Social Sciences, Utrecht University, Utrecht, The Netherlands. 73Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Padova, Italy. 74M. Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland. 75Department of Epidemiology, Institute of Occupational Medicine, Department of Epidemiology, Lodz, Poland. 76Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland. 77Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, Leiden, The Netherlands.

78Department of Nutrition and Diabetics, Harokopio University, Athens, Greece. 79Department of Psychiatry, Athens University Medical School, Athens, Greece. 80Eating Disorders Unit, 1st Department of Psychiatry, Athens University Medical School, Athens, Greece. 81Adolescent Health Unit (AHU), 2nd Department of Pediatrics – Medical School, University of Athens 'P & A Kyriakou' Children's Hospital, Athens, Greece. 82Department of Psychiatry, 1st Faculty of Medicine, Charles University, Prague, Czech Republic. 83Department of Pediatrics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic. 84Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 85Institute of Human Genetics, Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany. 86Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany. 87Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland. 88Martin-Luther-Universität Halle-Wittenberg, Klinikum der Medizinischen Fakultät, Halle/Saale, Germany. 89Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany. 90Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. 91Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany. 92CNRS 8090-Institute of Biology, Pasteur Institute, Lille, France. 93McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada. 94Division of Nephrology, Department of Internal Medicine and Medical Specialties, Columbus-Gemeinschaftshospitals, Catholic University, Rome, Italy. 95Unitat de Recerca de Reumatologia (URR), Institut de Recerca Hospital Universitari Vall d’Hebron, Barcelona, Spain. 96Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France. 97Vienna Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Virginia, VA, USA. 98The Finnish Institute of Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland. 99The Program for Human and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA. 100Finnish Institute of Occupational Health, Province of Southern Finland, Helsinki, Finland. 101NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway. 102Department of Psychology, University of Oslo, Oslo, Norway. 103Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway. 104Kavli Research Centre for Aging and Dementia, Haraldsplass Deaconess Hospital, Bergen, Norway. 105KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway. 106KG Jebsen Centre for
Psychosis Research, Norwegian Centre For Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway. 107Dr Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway. 108Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic. 109Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic. 110Palacky University, Olomouc, Czech Republic. 111University Health Network and Mount Sinai Hospital, Toronto General Hospital, and Samuel Lunenfeld Research Institute, Toronto, ON, Canada. 112Departments of Psychiatry, and Genetics and Genomic Sciences, Seaver Autism Center, and the Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, USA. 113The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada. 114Department of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria. 115The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 116Rheumatology Unit, Department of Medicine at the Karolinska University Hospital, Solna, Sweden. 117Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Price Foundation Collaborative Group

118Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA. 119Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA. 120Roseneck Hospital for Behavioral Medicine, Prien, Germany. 121Department of Psychiatry, University of Munich (LMU), Munich, Germany. 122New York Presbyterian Hospital, Westchester Division, Weill Medical College of Cornell University, White Plains, NY, USA. 123Laureate Psychiatric Clinic and Hospital, Tulsa, OK, USA. 124Center for Addiction and Mental Health, Toronto, Canada. 125Department of Psychiatry, Toronto General Hospital, University Health Network, Toronto, Canada. 126Neuropsychiatric Research Institute, Fargo, ND, USA. 127Department of Clinical Neuroscience, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA. 128Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA. 129Neuropsychiatric Research Biotechnologies, University of Pisa, Pisa, Italy. 130Eating Disorders Section, Institute of Psychiatry, King’s College, University of London, London, England. 131Department of Psychology, Florida State University, Tallahassee, FL, USA. 132Department of Psychology, Georgia State University, Atlanta, GA, USA. 133Center for Health Sciences, SRI International, Menlo Park, CA, USA. 134Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA. 135Department of Psychiatry, University of California at San Diego, San Diego, CA, USA. 136Department of Psychiatry, Brain Mind Institute EPFL—Lausanne, Center for Psychiatric Neuroscience, University of Lausanne Medical School, Lausanne, Switzerland.