Reminders and Repetition of Misinformation: Helping or Hindering its Retraction?

Ullrich K. H. Ecker¹, Joshua L. Hogan¹, & Stephan Lewandowsky²,¹

¹School of Psychology, University of Western Australia, Australia
²School of Experimental Psychology, University of Bristol, UK

Word count: 4,719 (excluding title page, abstract, general summary, references, and online supplement)

Word count of Introduction and Discussion: 2,085

Corresponding Author: Ullrich Ecker, School of Psychology, University of Western Australia
(M304), 35 Stirling Hwy, Perth 6009, Australia; telephone: +618 6488 3257;
e-mail: ullrich.ecker@uwa.edu.au
RETRACTIONS, REMINDERS AND MISINFORMATION

Abstract

People frequently rely on information even after it has been retracted, a phenomenon known as the continued-influence effect of misinformation. One factor proposed to explain the ineffectiveness of retractions is that repeating misinformation during a correction may inadvertently strengthen the misinformation by making it more familiar. A common recommendation derived from this theoretical notion is that practitioners are therefore often encouraged to design corrections that avoid misinformation repetition. The current study tested this recommendation, investigating whether retractions become more or less effective when they include reminders or repetitions of the initial misinformation. Participants read fictional reports, some of which contained retractions of previous information, and inferential reasoning was measured via questionnaire. Retractions varied in the extent to which they served as misinformation reminders. Retractions that explicitly repeated the misinformation were more effective in reducing misinformation effects than retractions that avoided repetition, presumably because of enhanced salience. Recommendations for effective myth debunking may thus need to be revised.

Keywords: continued-influence effect; misinformation; myth debunking; reconsolidation; familiarity
General Audience Summary

Information that is thought to be true but then turns out to be incorrect—so-called misinformation—can affect people’s thinking and decision making even after it has been clearly corrected by a credible source, and even if people understand and later remember the correction. It has been proposed that one reason why corrections are so ineffective is that a myth is often repeated when it is corrected—explaining that vaccines do not cause autism almost necessarily repeats the association between vaccines and autism. This repetition can make the myth more familiar such that it comes to mind more easily in the future. Based on this notion, one recommendation to “myth debunkers” has been to avoid myth repetition in a correction. The present study directly tested this recommendation. We presented participants with news reports that did or did not contain corrections; these corrections did or did not repeat the to-be-corrected misinformation explicitly. We found—contrary to the popular recommendation—that corrections were more effective when they explicitly repeated the myth. Thus, it seems “safe” and even beneficial to repeat the myth once explicitly when debunking it.
Reminders and Repetition of Misinformation: Helping or Hindering its Retraction?

Information that is initially presented as true but later identified as false and explicitly retracted often continues to influence people’s cognition. This phenomenon is known as the continued-influence effect (CIE) of misinformation (H. Johnson & Seifert, 1994; Wilkes & Leatherbarrow, 1988). Research on the CIE has traditionally used a paradigm in which individuals read a (fictional) news report or scenario that includes a piece of critical information that subsequently is or is not retracted. The typical finding is that people’s inferential reasoning, as for example measured through questionnaire, continues to be affected by the critical information despite clear and credible retractions, and even when individuals demonstrably understand and later remember the retraction (H. Johnson & Seifert, 1994, and Wilkes & Leatherbarrow, 1988; for reviews, see Lewandowsky, Ecker, Schwarz, Seifert, & Cook, 2012, and Seifert, 2002; for more recent work, see Ecker, Lewandowsky, & Apai, 2011a; Ecker, Lewandowsky, E. P. Chang, & Pillai, R., 2014; Ecker, Lewandowsky, Cheung, & Maybery, 2015; Ecker, Lewandowsky, Fenton, & Martin, 2013; Ecker, Lewandowsky, Swire, & D. Chang, 2011b; Ecker, Lewandowsky, & Tang, 2010; Guillory & Geraci, 2013, 2016; Lewandowsky, Stritzke, Oberauer, & Morales, 2005; Nyhan & Reifler, 2010; Nyhan, Reifler, & Ubel, 2013; Rich & Zaragoza, 2016; Thorson, 2016). In most of these studies, the retraction does have an effect—reliance on the critical information is typically halved compared to the no-retraction control—but the critical information almost always continues to be used to a significant extent.

Such continued reliance on misinformation is of particular concern when important decisions are at stake. One of the most commonly used examples of the CIE’s real-world relevance is the ongoing impact of the fabricated link between childhood vaccines and autism, which has proven fairly resistant to correction (e.g., Poland & Spier, 2010). These real-world
implications of the CIE are one of the factors that have stimulated research effort into designing more effective correction strategies (cf. Cook & Lewandowsky, 2011; Lewandowsky et al., 2012; Schwarz, Newman, & Leach, in press).

One of the recommendations given to the public that has arisen from these efforts is to avoid repeating the misinformation when correcting it. This recommendation is founded in psychological theorizing that repeating the misinformation when retracting it may inadvertently strengthen the misinformation by making it more familiar. As it is well-known that familiar claims are more likely to be trusted and believed (e.g., Dechene, Stahl, Hansen, & Wanke, 2010; Weaver, Garcia, Schwarz, & Miller, 2007), the retraction could ironically backfire and increase reliance on misinformation rather than reduce it. Repeating the misinformation while identifying it as false could thus later leave people thinking “I’ve heard that before, so there’s probably something to it” (Lewandowsky et al., 2012, p.115).

Some evidence for this “familiarity backfire effect” comes from a study by Skurnik, Yoon, and Schwarz (2007; also see Skurnik, Yoon, Park, & Schwarz, 2005), who provided participants with a “myths vs. facts” flyer that listed a number of claims regarding the flu vaccine, which were either affirmed or retracted. Skurnik et al. (2007) found that after a delay of 30 minutes, a substantial proportion of retracted myths were misremembered as facts, presumably based on the retraction-induced boost to the familiarity of the myths.¹

¹ In this study, the facts and myths all concerned the same topic, so an alternative account may involve source confusion (cf. M. Johnson, Hashtroudi, & Lindsay, 1993): participants may have just been confused about which statements were affirmed and which retracted. However, the effect was asymmetrical, in that a delay only led to increased acceptance of myths as true, with the rate of fact rejection remaining stable over time. This pattern is more in line with a familiarity-based explanation.
More recently, Swire, Ecker, and Lewandowsky (2016) also investigated the role of familiarity in myth corrections. Participants were given a set of true and false claims of unclear veracity (e.g., the fact that dogs can smell certain types of cancer, or the myth that playing Mozart can improve a baby’s intelligence), which were subsequently repeated and then either affirmed or retracted. Claim belief was then measured after various retention intervals of up to three weeks. Swire et al. found that over time, the impact of myth retractions was less sustained than the impact of fact affirmations. This asymmetry was explained within a dual-processing framework, assuming that belief ratings can be based both on recollection of the affirmative/corrective explanation or the claim’s familiarity (cf. Jacoby, 1991). The authors argued that for facts, it does not matter if belief is based on recollection of the affirmation or the familiarity of the claim—both will lead to acceptance of the fact; for myths, however, recollection of the retraction will lead to accurate rejection, whereas familiarity of the claim may lead to erroneous acceptance of the myth as true. The CIE thus seems at least partially familiarity-based. However, Swire et al. observed no familiarity backfire effect: myth belief post-retraction did not return to or exceed a pre-manipulation baseline (also see Peter & Koch, 2016). In sum, there is evidence for a role of familiarity in the CIE, but the evidentiary foundation for the recommendation that misinformation should not be repeated during its retraction is relatively weak.

Some theoretical accounts that focus on the salience of the misinformation during the correction even suggest that repeating misinformation when retracting it may be beneficial. Putnam, Wahlheim, and Jacoby (2014) as well as Stadler, Scharrer, Brumernhenrich, and Bromme (2013) argued that detection of a conflict between rival event interpretations facilitates updating of a person’s mental model of an event (cf. Morrow, Bower, & Greenspan, 1989). Such
conflict detection is arguably more likely to occur if the retraction explicitly refers to both the invalidated interpretation as well as the new correct interpretation. Likewise, Kendeou, Walsh, Smith, and O’Brien (2014) argued that effective knowledge revision requires the co-activation of invalidated and correct event interpretations, which again is more likely to occur if the misinformation is explicitly repeated when it is retracted.

The current study

The current study aimed to determine whether providing reminders or repetitions of misinformation in the course of a retraction increased or decreased the subsequent CIE, thus testing the contrasting predictions of familiarity and salience accounts. The familiarity account predicts that retractions repeating the misinformation will increase the misinformation’s familiarity, resulting in a larger CIE. The salience account predicts that retractions reminding people of the misinformation will enhance co-activation of outdated and new information and associated conflict detection, hence resulting in facilitated mental-model updating and a smaller CIE.

In order to test these predictions, we presented participants with fictional news articles, some of which contained a retraction of earlier information, together with an alternative account of the respective event. The retraction either (1) did not refer back to the to-be-retracted misinformation, (2) included a reminder, explaining that the initial information was incorrect (without repeating the misinformation), or (3) explicitly repeated the misinformation before correcting it.

To the best of our knowledge, the only previous test of the effect of an explicit repetition of the misinformation in the retraction was performed by Wilkes and Leatherbarrow (1988), in the study that first demonstrated the CIE. Wilkes and Leatherbarrow reported a null effect of the
repetition (although the retraction was numerically more effective if the misinformation was repeated), but given the limited power of that study, no firm conclusions can be drawn.

Method

The current study employed a within-subject design, featuring a single, four-level factor. The independent variable was the type of retraction condition. The dependent measure was participants’ reliance on retracted misinformation, calculated based on responses to a questionnaire assessing participants’ inferential reasoning.

Participants

A-priori power analysis suggested that to detect a small-to-medium difference between two conditions of effect size $f = 0.2$, with $\alpha = .05$ and $1 - \beta = .80$, and a moderate correlation between repeated measures of $r = .50$, the required sample size was 52 (this corresponds with the effect size found between conditions presenting misinformation once vs. thrice in Ecker, Lewandowsky, Swire, & D. Chang, 2011; power analysis was conducted with G*Power 3; Faul, Erdfelder, Lang, & Buchner, 2007). A total of $N = 60$ first year undergraduates from the University of Western Australia were recruited for participation in the current study, in return for partial course credit. The sample consisted of 18 male and 42 female participants, ranging from 17 to 53 years of age ($M = 20.52$, $SD = 7.14$).

Stimuli

Scenarios. Participants read six scenarios; they were informed that the scenarios would be the subject of a later memory test. Each scenario comprised two short articles and contained information regarding an unfolding news event (e.g., a wild fire). The first article in each case introduced the scenario and explained what happened; embedded in the first article was a piece of critical information that served as the potential target of a retraction in the second article (e.g.,

Commented [SL2]: This could also go, or be moved to Discussion. It’s a distraction here.
RETRACEMENTS, REMINDERS AND MISINFORMATION

‘the fire had been deliberately lit’). The second article contained additional information pertaining to each of the scenarios; there were four versions of each second article, based on the type of retraction condition (see Online Supplement for all articles).

In the no-retraction (NR) control condition, the second article did not contain any retraction of information given in the first article. The other three conditions were retraction conditions. In the retraction-with-no-reminder (RNR) condition, more recent information given in the second article naturally superseded the initial misinformation account of the first article without any explicit reference to it (e.g., ‘After a full investigation and review of witness reports, authorities have concluded that the fire was set off by lightning strikes’). The retraction-with-subtle-reminder (RSR) condition contained a retraction featuring a subtle reminder of the initial account, explaining that it was incorrect (e.g., ‘After a full investigation and review of witness reports, authorities have concluded that original reports were incorrect, and that the fire was set off by lightning strikes’). The final condition featured a correction that explicitly repeated the initial misinformation before retracting it (retraction-with-explicit-reminder condition, RER; e.g., ‘It was originally reported that the fire had been deliberately lit, but authorities have now ruled out this possibility. After a full investigation and review of witness reports, it has been concluded that the fire was set off by lightning strikes’).

Participants received three scenarios in the NR condition and one scenario in each of the three retraction conditions. We counterbalanced assignment of scenarios to conditions across participants, and controlling presentation order was controlled such that (1) a no-retraction scenario was always presented first, (2) there were never two retractions presented consecutively, (3) each of the three retraction conditions occurred equally often at each of the three possible order positions 2, 4, and 6, and (4) each scenario
occurred equally often at each order position. To this end, participants were randomly allocated to 1 of 6 pre-defined presentation orders of a Latin square design. This design was implemented in part to avoid participants being led to expect a retraction.

Participants read the six scenarios one-after-the-other, in the specified presentation order. The scenarios were presented via a slide-show on a computer screen. Participants read the first article and second article of each scenario on separate slides, before moving on to the next scenario. Each article was presented for a fixed amount of time (0.35 seconds per word), in order to control encoding time. This fixed time was pre-determined to allow reading times that were comfortable but not excessive. Participants were provided with a visual aid (a colored bar) on the screen that began to disappear slowly when there were 10 seconds left on the slide.

Questionnaire. Participants’ understanding of the scenarios was assessed with a questionnaire (see Online Supplement for all questions). The questionnaire was presented to participants in a booklet, following the order of scenarios established during study (specified by the pre-defined presentation order). The questionnaire comprised memory questions and inferential reasoning questions. For each scenario, participants’ memory was assessed with an open-ended free recall question (e.g., ‘Briefly summarize the ‘wild-fire’ article’) and three multiple-choice questions with four possible alternatives (e.g., ‘Where did the wild fire occur?’). These questions assessed adequate encoding and retention of scenario details.

Inferential reasoning questions required participants to make inferential judgments pertaining to the events in the scenarios. For each scenario, there were four open-ended questions designed to elicit responses relating to the critical information, while also allowing participants the opportunity to cite unrelated, alternative responses (e.g., ‘How could such events be prevented in future?’). In addition, there were three rating-scale questions requiring participants
to indicate on a 10-point scale their level of agreement with a statement (e.g., ‘Would it be lawful for someone to be punished as a result of the wild fire?’).

Procedure

Participants read an ethically-approved information sheet and provided informed consent. Participants then read the six scenarios in individual testing booths. After readings the scenarios, participants completed an unrelated distractor task for approximately 30 minutes, following Skurnik et al. (2007). Finally, participants completed the questionnaire assessing their understanding of the scenarios. The entire experiment took approximately one hour to complete.

Results

Questionnaire scoring

Questionnaire responses were coded by a scorer who was blind to experimental condition, following a standardized guide.

Memory scores. Recall of several aspects of the scenarios was scored separately; in particular, there were scores for (a) general fact-recall of arbitrary details, (b) recall of the critical information, (c) recall of the retraction, and (d) recall of the alternative.

The general fact-recall score was calculated based on responses to both the open-ended free recall question and the multiple-choice questions. Scoring of the free recall item was based on predetermined ‘idea units’. Idea units pertained to information contained in the scenarios that did not refer to the critical information or its alternative, and that was not assessed by the multiple-choice questions. For each scenario, two major idea units (i.e., information considered a major theme of the scenario; e.g., that the wild fire had not caused damage to residential property) and two minor idea units (i.e., information considered a minor detail in the scenario; e.g., that the wild fire had damaged forest reserves) were identified a priori (see Online
RETRACTIONS, REMINDERS AND MISINFORMATION

Supplement for all idea units). A score of 1 was given for recall of a major idea unit, while a score of 0.5 was given for recall of a minor idea unit, resulting in a possible maximum recall score of 3 for each scenario. Additionally, correct responses to multiple-choice questions were given a score of 1, resulting in a possible maximum score of 3 for each scenario. Scores were then combined and scaled to yield a final memory score for each scenario ranging from 0 to 1.

The memory scores of the three non-retraction scenarios were collapsed, such that each participant had one memory score per experimental condition.

Memory for the critical piece of information, memory for the retraction, and memory for the alternative account was coded in separate scores based on the response to the open-ended free-recall question. For each scenario, the score was 1 when the respective piece of information (i.e., the critical information, the retraction, or the alternative) was recalled and 0 otherwise. To illustrate, this means that any mention of the critical information led to a critical-information recall score of 1, whether or not the participant concurrently or subsequently mentioned the retraction (e.g., in the fire scenario, “it was thought the fire was caused by arson” and “the fire was not caused by arson as initially thought” were both scored 1 for critical-information recall, with the latter also receiving a retraction-recall score of 1). This means that recalling the initial critical piece of information does not necessarily imply reliance on misinformation, as long as a participant also recalled the retraction and/or alternative. Also, it was possible that the retraction would be recalled without mention of the critical information (e.g., “initial speculations were not confirmed”). Finally, any mention of the alternative led to an alternative-recall score of 1, irrespective of whether a retraction was mentioned (e.g., “lightning caused the fire” or “initial speculations were not confirmed, and it was concluded the fire was caused by lightning” both led to an alternative-recall score of 1, with the latter also scoring a 1
It was possible that all three measures were scored 1 (e.g., “the fire was not caused by arson as initially thought but by lightning”). Retraction and alternative recall scores were not coded for the NR condition.

Inferential reasoning scores. For each scenario, an inference score was calculated based on responses to the four open-ended inference questions and the three rating scales. For each open-ended question, a score of 1 was awarded for a clear and uncontroverted reference to the critical information (e.g., an answer such as “Arson” in response to the question “What was the cause of the fire?”). A score of 0 was given for any other response (e.g., a controverted answer such as “It was initially thought it was arson, but that was not true”). Rating-scale scores ranged from 1 to 10, with higher scores denoting stronger reliance on the critical information (scales that were negatively worded to this end were reverse-scored). For each scenario, all seven question scores were equally weighted, combined, and transformed into an inference score ranging from 0 to 1. The inference scores of the three non-retraction scenarios were collapsed, such that each participant had one inference score per experimental condition.

Analysis

Preliminary analyses were conducted to determine whether any participants needed to be removed from further analysis. The fact-recall scores were examined to determine whether any participants scored lower than an a-priori criterion of 0.167 (1 out of the maximum of 6) for all scenarios. One participant violated this, but as they scored above the criterion in 5 of the 6 scenarios, their data were retained, and thus no participants were excluded based on this criterion. The data were then screened for outliers, but none were identified.

\[\text{All analyses were repeated without this participant; this did not affect results.}\]
Memory scores. Memory scores were analyzed to investigate whether there were any differences between conditions in comprehension of and memory for the scenarios. The mean memory scores across conditions were comparable, with $M_{NR} = 0.66$ ($SE_{NR} = 0.01$), $M_{RNR} = 0.62$ ($SE_{RNR} = 0.02$), $M_{R} = 0.65$ ($SE_{R} = 0.02$), and $M_{RER} = 0.62$ ($SE_{RER} = 0.02$). We conducted a one-way repeated-measures analysis of variance (ANOVA), which was conducted and revealed no significant effect of condition, although the analysis just missed the conventional significance criterion $F(3, 177) = 2.35, p = .07, \eta^2_p = .04$.

Critical information recall scores were analyzed to determine whether there were any differences in recall between conditions. Mean critical information recall scores across conditions were comparable, with $M_{NR} = 0.53$ ($SE_{NR} = 0.04$), $M_{RNR} = 0.53$ ($SE_{RNR} = 0.06$), $M_{R} = 0.50$ ($SE_{R} = 0.07$), and $M_{RER} = 0.53$ ($SE_{RER} = 0.06$). A non-parametric repeated measures ANOVA (Friedman test) found no significant differences, $\chi^2_F < 1$.

Alternative recall scores were analyzed across retraction conditions. The mean scores were $M_{RNR} = 0.33$ ($SE_{RNR} = 0.06$), $M_{R} = 0.43$ ($SE_{R} = 0.06$), and $M_{RER} = 0.48$ ($SE_{RER} = 0.07$). A Friedman test revealed no main effect of condition, $\chi^2(2) = 3.60, p = .17$, $F(2, 118) = 1.82, p = .17$.

Retraction recall scores were analyzed to determine whether there were any differences in recall of the retraction between conditions. Mean retraction recall scores were $M_{RNR} = 0.13$ ($SE_{RNR} = 0.04$), $M_{R} = 0.22$ ($SE_{R} = 0.05$), and $M_{RER} = 0.32$ ($SE_{RER} = 0.06$). A Friedman test revealed a significant main effect of retraction condition on retraction recall, $\chi^2(2) = 7.28, p = .03$, $F(2, 118) = 3.81, p = .025, \eta^2_p = .06$. A contrast analysis revealed a significant difference in retraction recall between the RNR and RER conditions, $\chi^2(1)$.

Commented [SL3]: huh? Why non-parametric? This needs justification.

Commented [SL4]: Ditto, why?
RETRACIONS, REMINDERS AND MISINFORMATION

15

\[F(1, 59) = 9.16, \ p < .01 \]

\[F(1, 59) = 1.69, \ p = .20 \]

\[F(1, 59) = 1.82, \ p = .18 \]

\[\chi^2(1) = 1.67, \ p = .20 \]

\[\chi^2(1) = 1.80, \ p = .18 \]

\[\chi^2(1) = 1.82, \ p = .18 \]

As an initial test of the question if reliance on misinformation differed between retraction conditions, we calculated a measure of misinformation reliance by simply subtracting the summed retraction-recall and alternative-recall scores from the misinformation-recall score, separately for each retraction condition. This misinformation score was 1 if and only if misinformation was recalled without the retraction or the alternative being recalled as well; if the misinformation was not recalled, or if it was recalled alongside its retraction and/or the alternative, the score was 0 or -1 (a score of -2 was theoretically possible but did not eventuate). The mean misinformation scores across conditions were \(M_{RNR} = -0.07 (SE_{RNR} = 0.10) \), \(M_{RSR} = -0.15 (SE_{RSR} = 0.10) \), and \(M_{RER} = -0.27 (SE_{RER} = 0.10) \). A Friedman test yielded a significant main effect of condition, \(\chi^2(2) = 6.57, \ p = .04 \), substantiating that misinformation reliance was greatest in the RNR and lowest in the RER condition (in a contrast analysis, the RNR-RER difference was significant, \(\chi^2(1) = 5.77, \ p = .02 \), but the RNR-RSR and RSR-RER differences were not, \(\chi^2(1) < 3.21, \ p > .12 \)).

Inferential reasoning scores. The mean inference scores are depicted in Figure 1; mean scores were \(M_{NR} = 0.58 (SE_{NR} = 0.02) \), \(M_{RNR} = 0.39 (SE_{RNR} = 0.03) \), \(M_{RSR} = 0.34 (SE_{RSR} = 0.03) \), and \(M_{RER} = 0.27 (SE_{RER} = 0.03) \). First, one-sample \(t \)-tests were conducted to determine whether inference scores differed significantly from zero (zero representing no reliance on misinformation in reasoning). Results revealed that inference scores were substantially greater than zero in all retraction conditions, \(t(59) > 9.96, \ p < .001 \), indicating presence of a CIE in all three retraction conditions.

Commented [SL5]: I’d put the numbers into a table. You have 4 different measures and 4 conditions, and for that many numbers (+SEs) a table is more appropriate than insertion into text.

Commented [SL6]: Ditto, put in table to give this section focus. At the moment, it’s a bit too archival and boring, especially because most of these measures are not of great interest.

Commented [SL7]: APA says not to repeat info in figure/table in text.

Commented [SL8]: Not sure what this means. You should provide range of \(t \)’s or indicate that this is the smallest.
Inference scores were then analyzed to determine whether there were any differences between conditions in participants’ inferential reasoning that would reflect underlying differences in reliance on misinformation. A repeated-measures ANOVA, which revealed a significant main effect of retraction condition on inference scores, $F(3, 177) = 22.24, p < .001, \eta^2 = .27$. A contrast analysis (see Table 1) revealed pairwise significant differences between the NR and all three retraction conditions, indicating less-reduced reliance on the critical information after any type of retraction. There was also a significant difference between RNR and RER conditions, indicating less that reliance on misinformation was further reduced after a
the retraction featuring an explicit repetition of the misinformation. The difference between the RSR and RER conditions was marginally significant, suggesting that an explicit reminder tended to make the retraction more effective than a subtle reminder. 3

Table 1. Contrasts on Inference Scores

<table>
<thead>
<tr>
<th>Contrast</th>
<th>$F(1,59)$</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR vs. RNR</td>
<td>18.83</td>
<td>< .001</td>
</tr>
<tr>
<td>NR vs. RSR</td>
<td>30.21</td>
<td>< .001</td>
</tr>
<tr>
<td>NR vs. RER</td>
<td>73.99</td>
<td>< .001</td>
</tr>
<tr>
<td>RNR vs. RSR</td>
<td>1.26</td>
<td>.27</td>
</tr>
<tr>
<td>RNR vs. RER</td>
<td>9.60</td>
<td>.003</td>
</tr>
<tr>
<td>RSR vs. RER</td>
<td>3.44</td>
<td>.07</td>
</tr>
</tbody>
</table>

Note. NR = no retraction; RNR = retraction with no reminder; RSR = retraction with subtle reminder; RER = retraction with explicit reminder.

The parallel result patterns emerging from the analysis of retraction recall and inference scores seems to suggest that the better remembered retraction types were also more effective at correcting misinformation. To assess the nature of this relationship, we reanalyzed the inference scores from the RNR and RER conditions dependent on the number of retractions remembered (i.e., contrasting participants who recalled neither, one, or both retractions in these conditions). As can be seen in Figure 2, the effect of the explicit reminder (i.e., the difference between RNR and RER) was equivalent across conditions. A 2 (reminder: RNR vs. RER) × 3 (number of retractions remembered: 0 vs. 1 vs. 2) ANOVA returned a main effect of reminder, $F(1,57) = 7.01, p = .01, \eta_p^2 = .11$, but no effect of number of retractions remembered, and no interaction ($Fs < 1$).

3 Observed effects naturally differed somewhat across the different scenarios. Figure 1 of the online supplement shows the data across scenarios. However, given the low number of observations per cell after splitting up the scenarios, we caution against over-interpretation of these differences.
This study investigated whether providing reminders or repetitions of misinformation in the course of a retraction increased or decreased people’s reliance on misinformation. In doing so, the current study compared contrasting theoretical predictions of the familiarity account of continued-influence effects and reconsolidation theory with salience accounts of mental-model updating and knowledge revision, and directly addressed the common recommendation to not repeat the misinformation during its retraction in order to avoid a familiarity backfire effect.

It was found that any kind of retraction reduced reliance on misinformation compared to a control condition with no retraction. In the current study, each retraction was accompanied by an alternative causal account of the event, which is a factor known to reliably reduce reliance on misinformation (e.g., Ecker, Lewandowsky, & Tang, 2010; H. Johnson & Seifert, 1994; Seifert, 2002). Nonetheless, misinformation continued to have a significant influence on inferential reasoning despite a retraction. In line with previous research, this indicates that the provision of an alternative account alone is not enough to eliminate the CIE (e.g., Ecker, Lewandowsky, & Apai, 2011; Ecker, Lewandowsky, Swire, & D. Chang, 2011; Guillory & Geraci, 2013; 2016; Wilkes & Leatherbarrow, 1988).

The result of greatest interest was the finding that a retraction featuring an explicit reminder was most effective in reducing reliance on misinformation. That is to say, a retraction that explicitly repeated the misinformation (condition RER) lowered reliance on misinformation more than a retraction that provided no reminder (condition RNR); it also tended to be more effective than a retraction providing only a subtle reminder merely pointing out that an earlier account was incorrect (condition RSR).
The relevance of this finding for application is clear-cut. Despite the proven known relevance of familiarity for the CIE (Peter & Koch, 2016; Swire et al., 2016; also Skurnik et al., 2007, but see Cameron et al., 2013, for a conceptual-replication failure), the common recommendation to avoid repetition of misinformation in the course of its retraction (Cook & Lewandowsky, 2011; Lewandowsky et al., 2012) needs to be qualified. Based on the current data, it seems that it is may in fact be beneficial to repeat the to-be-corrected misinformation once when retracting it, to enhance the salience of the correction. Of course, familiarity can in principle still lead to myths being remembered as facts, and thus unnecessary repetition of misinformation should still be avoided, in particular in situations where one may familiarize people with misinformation they have not encountered before (Schwarz et al., in press).

Findings from the educational literature, where it has been found that misinformation can be used as a teaching tool (Bedford, 2010; Cook, Bedford, & Mandia, 2014; Kowalski & Taylor, 2009; Osborne, 2010).

Before concluding that repeating misinformation in order to then systematically debunk and refute it can thus be considered an effective and ‘safe’ educational strategy, we must address a number of caveats and limitations of the present study should, however, be mentioned. First, the interval between presentation of misinformation and its retraction was shorter than it would be in many real-world situations. While there is little evidence that the duration of this interval has a direct impact on a retraction’s effectiveness (Ecker et al., 2015, Experiment 1; H. Johnson & Seifert, 1994), the intervals examined in prior research has only been minimal did not differ much, and it is unknown how a longer misinformation-retraction interval might moderate the effect of misinformation repetition. Second, retractions in the present study featured causal alternatives, which in the real world are often not available, making retractions less effective. It
is possible that misinformation repetition might have a negative effect only in the absence of causal alternatives (however, Swire et al., 2016, failed to find familiarity backfire effects even in the absence of alternatives). Finally, while the present study used fictional events, real-world myths are often part of pre-existing ‘knowledge’, and myth repetition may have a negative effect only in the latter case. However, this seems unlikely as repetition of an unfamiliar myth (as in the present study) will have a larger impact on the myth’s relative familiarity compared to the repetition of an already-familiar myth. Thus, unfamiliar myths should make it more, not less, likely to detect a negative influence of repetition. In line with this, Swire et al. (2016) failed to find any evidence for familiarity backfire effects resulting from repetition of moderately familiar real-world myths.

To conclude, we presented evidence that repeating misinformation in the course of its retraction can reduce continued-influence effects. However, the influence of misinformation persisted despite the availability of causal alternatives and the repetition-enhanced effectiveness of retractions.
References

RETRACEMENTS, REMINDERS AND MISINFORMATION

Author contributions: UE and SL conceptualized the study; UE and JH designed the study; JH and UE prepared the materials; JH collected the data; JH and UE analyzed the data; UE, JH, and SL wrote the manuscript.

Acknowledgements. This research was supported by a Discovery Grant from the Australian Research Council to the first and third author (DP160103596). We thank Charles Hanich for research assistance. The lab web address is http://www.cogsciwa.com.
Online Supplement

Scenario 1

Article 1. Passengers on a commercial flight en route to Los Angeles received a terrible fright yesterday as their plane required an emergency landing. Peter Faulkner, the pilot of the aircraft, made the decision to land after he was having difficulties controlling the plane. The Federal Aviation Administration believes the pilot made the right decision, and attributed difficulties controlling the aircraft to an electrical fault caused by the extreme weather conditions he was flying in. The aircraft was able to make a safe landing at Kansas City airport, and all 350 passengers on board were evacuated without problem.

Article 2. Passengers on a commercial flight that had to make an emergency landing at Kansas City airport were forced to stay overnight while the airline arranged a suitable replacement aircraft. Marie Scott, a passenger on the flight, told reporters of her ordeal. “It was horrible, all loose items were getting thrown around the cabin, and the seatbelt was hardly containing me. I’m glad I’m safe, but I just really want to go home to my family now.” [RSR]

Meanwhile, air crash investigators have found that previous attributions of the emergency landing were incorrect, and that the difficulty controlling the airplane stemmed from psychical deterioration of the aircraft’s rudder system. [RER] Meanwhile, it has become clear that previous attributions that difficulty controlling the aircraft was caused by bad weather were incorrect. Air crash investigators have found that the difficulty stemmed from psychical deterioration of the aircraft’s rudder system. [RNR] Meanwhile, air crash investigators have found that the difficulty controlling the aircraft stemmed from psychical deterioration of the aircraft’s rudder system. The aircraft involved was an A380 Airbus, the largest passenger airplane in the world. The landing at
Kansas City airport was further complicated by the fact that the airport is yet to modify its facilities to accommodate the size of the A380.

Scenario 2

Article 1. Firefighters in Victoria have been battling a bushfire⁴ that raged out of control in the state’s North-East overnight. The bushfire came dangerously close to homes in the town of Euroa, but it is believed that no damage was caused to property. David Karle of the Country Fire Authority (CFA) indicated that authorities were looking into the cause of the fire, with early evidence suggesting that the fire had been deliberately lit. Emergency services were still working tirelessly this morning to extinguish the flames, but were confident that the location of the remaining fire was unlikely to pose any further threat to local communities.

Article 2. After working throughout the day, firefighters have managed to bring a bushfire in the North-East of Victoria under control. There have been no reported casualties or damage to property, with most land damage occurring in rural fringe areas and nearby forest reserves. The suspected burn area is estimated to be roughly 50,000 hectares. [RSR] After a full investigation and review of witness reports, authorities have concluded that original reports were incorrect, and that the fire was set off by lightning strikes. [RER] It was originally reported that the fire had been deliberately lit, but authorities have now ruled out this possibility. After a full investigation and review of witness reports, it has been concluded that the fire was set off by lightning strikes. [RNR] After a full investigation and review of witness reports, authorities have concluded that the fire was set off by lightning strikes. Casey Haas, a resident of Euroa, expressed her relief that no one had been harmed by the fire, and said she felt lucky that they had

⁴ Please note that the term “bushfire” is the common Australian term for a large wild fire. The term “wild fire” was used in the main article only to avoid misunderstandings with an international readership.
avoided disaster. Even so, she feels that it is important for residents of the community to work together to ensure they are prepared for disaster if it ever strikes again.

Scenario 3

Article 1. The death of a notorious drug dealer, known on the street as ‘Coach’, is being treated as suspicious. At this stage of the investigation, authorities believe the death was the result of an assault in what is believed to have been a drug deal gone wrong, and various members of the local drug scene are being investigated. The dealer himself has been under investigation for several months by police regarding his alleged involvement in the trade of methamphetamines. A neighbour discovered the man in his Frankston home during the early hours of Saturday morning. Police believe the man had been dead for several hours before he was found. Sergeant Barry Wade from the Victorian Police Force has asked anybody who has witnessed any suspicious behaviour in the area to contact authorities.

Article 2. The drug dealer’s death comes after a string of violent brawls occurring at his Frankston residence. A methamphetamine lab has been found in the back yard, and all drugs have been seized from the property. [RSR] A full police investigation into the cause of death found that original suspicions were false. A toxicology report has found the death was due to a drug overdose. [RER] A full police investigation into the cause of death found that original suspicions that the death followed an assault were false. A toxicology report has found the death was due to a drug overdose. [RNR] A full police investigation into the cause of death, aided significantly by a toxicology report, has found that the death was due to a drug overdose. The funeral is scheduled for tomorrow afternoon, and will be attended by friends and family of the deceased under police observation. A spokesperson for the family said they were extremely upset by their family member’s death.
Scenario 4

Article 1. A woman has been taken to hospital after losing consciousness while out partying at the Cable nightclub in London last night. After noticing that she was in trouble, her friends decided to call an ambulance, which took her to St. Mary’s hospital. A friend of the woman said she had complained of hallucinations and nausea not long before falling unconscious. The woman herself has no memory of what happened. Doctors believe the young lady’s symptoms are the result of her drink getting spiked. This is the latest in a series of drink spiking incidents at the club, which has renewed calls for it to introduce a bottled drinks only policy. The incident also comes as a reminder to party-goers to be careful with their drinks, and to take measures to ensure they are not a victim of drink spiking.

Article 2. A young lady who fell unconscious while partying has remained in hospital. The lady was out celebrating with friends after graduating from The Regent Academy, where the group had studied photography together. When she lost consciousness, it was the timely aid of her friends that saved her from further harm. [RSR] After running a series of tests, doctors have ruled out earlier explanations of the cause of the symptoms. The symptoms were caused by bacterial encephalitis, and the woman is responding well to treatment. [RER] After running a series of tests, doctors have ruled out drink spiking as the cause of the symptoms. The symptoms were caused by bacterial encephalitis, and the woman is responding well to treatment. [RNR] After running a series of tests, doctors have found that the woman’s symptoms were caused by bacterial encephalitis. The woman is responding well to treatment. A relative of the woman spoke on behalf of the family, stating that they were glad to hear news that she was recovering well, and that they were extremely proud of the strength she had shown.
Scenario 5

Article 1. Scientists at the University of Sydney are supervising the trial of a new compound vaccine, offered to children across NSW, combining the polio and chicken pox (varicella) vaccines. Professor Barnaby Norton said that the new compound polio varicella (CPV) vaccine exhibited far greater immunological responses compared to current singular vaccines. However, initial suggestions were that immunizations with the CPV vaccine led to a substantial increase in side effects. The Immunise Australia Program hopes that introducing the CPV vaccine could help to increase the immunization rate against polio for children, as part of an active push to completely eradicate the disease in humans.

Article 2. The new compound CPV vaccine was introduced at the beginning of the year in a state-wide trial and has been given to over 10,000 NSW children. [RSR] This trial has revealed that earlier concerns were unwarranted, with findings showing that the vaccine is safe. [RER] This trial has revealed that earlier concerns about an increase in side effects were unwarranted, with findings showing that the vaccine is safe. [RNR] This trial has now been reviewed, with findings showing that the vaccine is safe. The results of the trial indicate that the new vaccine only needs one dose to achieve full immunity to the polio virus. This differs from previous vaccines which required 2 booster shots. One dose of the CPV vaccine would cost $125. Health insurers are now reviewing the potential inclusion of the vaccine into the national immunization initiative.

Scenario 6

Article 1. The Freemont water department was forced to shut down its water intake from its main water supply, the Denroy River due to contamination concerns following reports of large scale fish deaths in the waterway. It is believed that the fish deaths are due to chemical
waste dumping by a riverside pharmaceutical company, in violation of the Missouri Clean Water Act. The Freemont water department supplies water to the Shelby region, and remains committed to ensuring that customers can be confident that their water supply is of the purest quality.

Article 2. The Freemont water department has been given the all clear to continue water intake from the Denroy River, after operations ceased for 5 days due to large scale fish deaths in the waterway. [RSR] Tests have revealed that previous suspicions regarding the cause of the fish deaths were unfounded. The tests found that the deaths were due to a rare fish ailment that presents no harm to humans. [RER] Tests have revealed that previous suspicions that the fish deaths were due to chemical waste dumping were unfounded. The tests found that the deaths were due to a rare fish ailment that presents no harm to humans. [RNR] Tests have revealed that the fish deaths were due to a rare fish ailment that presents no harm to humans. The shutdown was bad news for the Freemont water department, as recent draught periods have resulted in record low storage levels. Despite these ongoing concerns, a spokesperson has assured customers that the local drinking water is as safe as it has ever been.

Questionnaire

Questions regarding the ‘airplane landing’ article.

Briefly summarise the ‘airplane landing’ article.

What airport did the airplane land at? (a. Kansas; b. Denver; c. Orlando; d. Seattle)

How many passengers were on board? (a. 50; b. 150; c. 250; d. 350)

What type of aircraft was involved? (a. Boeing 747; b. Airbus A380; c. Boeing 777; d. Airbus A319)
Should the pilot’s decisions and behaviour be reviewed? (1-10 scale from “Not necessary” to “Yes, definitely”)
Should the airplane’s service history be scrutinized? (1-10 scale from “Not necessary” to “Yes, definitely”)
How could such events be prevented in the future?
What would be a good newspaper headline for what happened?
What could be a reason to be upset about this incident?
Why was the pilot having difficulties controlling the airplane?
The US guidelines for flying in bad weather should be reviewed. (1-10 scale from “Completely disagree” to “Completely agree”)

Questions regarding the ‘bushfire’ article.

Briefly summarise the ‘bushfire’ article.

Where did the bushfire occur? (a. Shepparton, b. Euroa, c. Benalla, d. Kyneton)
What was local resident Casey Hass relieved about? (a. That no one had been harmed; b. That her house had not been affected; c. That her pets had survived; d. That rain had set in)
How many hectares of bushland were burnt? (a. 100,000 ; b. 25,000; c. 50,000; d. 200,000)

How mistrustful would local residents be after the fire? (1-10 scale from “Not at all mistrustful” to “Very mistrustful”)
Would it be lawful for someone to be punished as a result of the bushfire? (1-10 scale from “Not at all” to “Yes, definitely”)
How could such events be prevented in the future?
What would be a good newspaper headline for what happened?
RETRACTIONS, REMINDERS AND MISINFORMATION

What could be a reason to further investigate this incident?

What was the cause of the bushfire?

The government should spend more resources to prevent arson. (1-10 scale from “Not at all” to “Yes, definitely”)

Questions regarding the ‘death of a drug dealer’ article.

Briefly summarise the ‘death of a drug dealer’ article.

What was the nickname of the drug dealer? (a. Coach; b. Shrink; c. Grandpa; d. Priest)

Who found the body? (a. His mother; b. Police; c. Neighbour; d. Priest)

What kind of drug did police find on the property? (a. Cannabis; b. Heroin; c. Methamphetamine; d. Ecstasy)

Should police continue to investigate the circumstances of the drug dealer’s death? (1-10 scale from “Not necessary” to “Yes, absolutely”)

How appropriate would it be for someone to be jailed as a result of the drug dealer’s death? (1-10 scale from “Not appropriate” to “Very appropriate”)

What would be a good newspaper headline for this story?

How could this incident have been avoided?

What could be a reason to further investigate this incident?

What was the cause of the drug dealer’s death?

The family of the drug dealer will seek revenge. (1-10 scale from “Not likely” to “Very likely”)

Questions regarding the ‘nightclub’ article.

Briefly summarise the ‘nightclub’ article.

What nightclub was the woman partying at? (a. Loft; b. Fabric; c. Cable; d. Plastic)
In what city did the incident occur? (a. London; b. Melbourne; c. New York; d. Munich)

What subject did the woman study at the Regent Academy? (a. Photography; b. Interior design; c. Fashion; d. Beauty therapy)

Based on what you have read, do you think any illegal activity occurred at the nightclub? (1-10 scale from “Not at all” to “Yes, definitely”)

If she hadn’t gone to the nightclub, how likely is it that the woman would have needed to go to hospital? (1-10 scale from “Not likely” to “Very likely”)

How could such events be prevented in future?

What would be a good newspaper headline for what happened?

What could be a reason not to visit the mentioned nightclub?

What was the cause of the woman’s symptoms?

Should the affected nightclub be introducing a ‘bottled drinks only’ policy? (1-10 scale from “Not necessary” to “Yes, definitely”)

Questions regarding the ‘vaccine’ article.

Briefly summarise the ‘vaccine’ article.

What was the name of the Professor? (a. Charles Hume; b. Peter Krull; c. Barnaby Norton; d. James Swindon)

How many doses of the CPV vaccine is needed to achieve full immunity? (a. 1; b. 2; c. 3; d. 4)

How much does one dose of the CPV vaccine cost? (a. $500; b. $250; c. $125; d. $25)

How likely is it that you would give your child the compound CPV vaccine, rather than the separate singular vaccines? (1-10 scale from “Very unlikely” to “Very likely”)
How safe do you think the compound CPV vaccine is? (1-10 scale from “Very unsafe” to “Very safe”)

Why would the introduction of the new CPV vaccine make people more skeptical about vaccinations?

What would be a good newspaper headline for this report?

What could be a reason not to have the CPV vaccine?

Is there any harm in taking the CPV vaccine rather than the singular vaccines?

The government should subsidise compound vaccines. (1-10 scale from “Absolutely not” to “Yes, completely”)

Questions regarding the ‘water source’ article.

Briefly summarise the ‘water source’ article.

What water department was involved? (a. Freemont; b. Wortworth; c. Patterson; d. Greenacre)

What is the name of the river that the water supply comes from? (a. Harding; b. Denroy; c. Frederick; d. Morgan)

How many days was intake from the water supply shut down for? (a. 1; b. 5; c. 13; d. 27)

Should the pharmaceutical company be fined? (1-10 scale from “Not at all” to “Yes, definitely”)

If you were drinking from this water supply, would you have health concerns? (1-10 scale from “Absolutely not” to “Yes, absolutely”)

How could such events be prevented in the future?

What would be a good newspaper headline for what happened?

What could be a reason not to drink from this water supply?
What was the cause of the fish deaths?

Control measures in riverside industrial areas in Missouri should be tightened. (1-10 scale from “Completely disagree” to “Completely agree”)

Idea Units

‘Airplane landing’ article.

Major idea units.

There was an emergency landing of a plane.

Safe landing/ everyone survived.

Minor idea units.

Plane en route to Los Angeles/ Commercial flight.

Difficulty landing at Kansas City airport due to facilities.

‘Bushfire’ article.

Major idea units.

CFA battling bushfire.

No damage to property.

Minor idea units.

Emergency services still working to extinguish/ No further threat/ Bushfire under control.

Damage to rural fringe areas and forest reserves.

‘Drug dealer’ article.

Major idea units.

Drug dealer found dead.

Dealer investigated for alleged involvement in trade of meth/ Meth lab in backyard.

Minor idea units.
RETRACTIONS, REMINDERS AND MISINFORMATION

Found at Frankston home.

Funeral scheduled for following afternoon.

‘Nightclub’ article.

Major idea units.

Woman taken to hospital after losing consciousness while partying.

Celebrating with friends at nightclub.

Minor idea units.

Woman has no memory of what happened.

Had complained of hallucinations and nausea before falling unconscious.

‘Vaccine’ article.

Major idea units.

Trial of new compound vaccine.

Combines chicken pox and polio vaccines.

Minor idea units.

Great immunological response compared to current vaccines.

Part of an active push to eradicate polio.

‘Water source’ article.

Major idea units.

Water department shut down water intake.

Contamination concerns in main water supply/ Reports of large scale fish deaths.

Minor idea units.

Record low storage levels reported.

Drinking water reported to be safe by spokesperson.
OS Figure 1. Inference Scores across Conditions and Scenarios.

Note. NR = no retraction; RNR = retraction with no reminder; RSR = retraction with subtle reminder; RER = retraction with explicit reminder. Error bars depict standard errors of the mean.