Carbon fluxes from subducted carbonates revealed by uranium excess at Mount Vesuvius, Italy

Riccardo Avanzinelli1,2*, Martina Casalini1*, Tim Elliott2, and Sandro Conticelli1,3

1 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via Giorgio La Pira, 4, I-50121 Florence, Italy
2 Bristol Isotope Group, School of Earth Sciences, University of Bristol, Queens Road, Bristol BS8 1RJ, UK
3 Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche, Via Giorgio La Pira, 4, I-50121 Florence, Italy

ABSTRACT

The fate of carbonate-rich sediments recycled at destructive plate margins is a key issue for constraining the budget of deep CO2 supplied to the atmosphere by volcanism. Experimental studies have demonstrated that metasomatic melts can be generated by partial melting of subducted carbonate-pelitic sediments, but signatures of the involvement of such components in erupted magmas are more elusive. We have made new U-Th disequilibria, Sr-Nd-Pb isotope, and high-precision δ234U analyses on lavas from Mount Vesuvius (Italy) and show that their measured 238U excesses require a mantle source affected by the addition of U-rich carbonated melts, generated by partial melting of subducted calcareous sediments in the presence of residual epilide. Accordingly, we argue that the occurrence of 238U excesses in “sediment-dominated” arc magmas represents diagnostic evidence of addition of carbonate sediments via subduction, hence providing constraints on deep carbon cycling within Earth. Our quantitative enrichment model, combined with published experimental results, allows us to estimate a resulting flux of 0.15–0.8 Mt/yr CO2 from the subducted carbonates to the mantle source of Mount Vesuvius.

INTRODUCTION

At destructive plate margins, the oceanic slab is subducted into the mantle, carrying both basaltic oceanic crust and overlying sediments. Part of this subducted material is then released at depth, affecting the mantle wedge above the slab, and it is eventually returned to the surface through volcanoes. This flux is a key part of element cycling on Earth (Kelemen and Manning, 2015).

The evidence of this process can be found in the elemental and isotopic compositions of subduction-related magmas worldwide. Globally, the geochemistry of subduction-related volcanic rocks is dictated by the variable contribution of three main components (e.g., Elliott, 2003) (Fig. 1; Fig. DR1 in the GSA Data Repository1): (1) the depleted mantle (DM); (2) the slab-derived fluids, with isotope compositions similar to that of subducted basaltic oceanic crust (BOC); (3) the slab-derived melts, with crustal isotope signature, interpreted as deriving from the recycling of subducted sediments.

It can be difficult to deconvolve the contributions of these different components in arc magmas, not least for subducted carbonate-rich sediments. Constraining their involvement is key to directly quantifying the origin of CO2 emissions from volcanoes, with major consequences for atmospheric fluxes (Burton et al., 2013). Yet their contribution to subduction zone magmas is not necessarily distinctive in many traditionally used geochemical tracers.

Experimental studies (Poli, 2015; Skora et al., 2015) have shown that subducted carbonate-rich sediments (marls) may undergo partial melting if infiltrated by significant amounts of H2O. The involvement of subducted sedimentary carbonate in the genesis of some subduction-related volcanoes has been suggested on the basis of carbon isotope data on fumaroles and geothermal fluids (van Soest et al., 1998), of minor element contents in olivine (Ammannati et al., 2016), and of whole rock geochemical and isotope data (Conticelli et al., 2015). However, it is commonly difficult to constrain the nature of the recycled sediments from the isotopic compositions of erupted magmas.

Identifying the role of recycled carbonate sediments is further complicated by the possible occurrence of crustal limestone assimilation en route to the surface, which may modify the composition of the erupted magmas, overprinting some of the geochemical and isotopic signatures inherited from the mantle source (e.g., Iacono Marziano et al., 2009).

Figure 1. Plot of (238U/230Th) (parentheses denoting that the ratio is expressed as activities) versus chondrite-normalized La/Sm (A) and versus Δ7/4Pb (which represents the difference between the 207Pb/204Pb of samples and that of Northern Hemisphere reference line (Hart, 1984) at the sample’s 208Pb/204Pb) (B). Samples from Mount Vesuvius (Italy; this study) are compared with other subduction-related volcanic rocks (data from GEOROC database, http://georoc.mpch-mainz.gwdg.de/georoc/). Samples from Mariana Islands (western North Pacific Ocean; Elliott et al., 1997; Avanzinelli et al., 2012) are representative of typical oceanic arc with variable contributions of sediment (sed.) melt relative to basaltic oceanic crust (BOC) fluids. Data for Kick’em Jenny (Caribbean; Huang et al., 2011) and Sunda arc (Indonesia; Turner and Foden, 2001) are representative of sediment-dominated arc lavas with possible contribution from carbonate-rich sediments. Depleted mantle is assumed to have Δ238U/230Th = 0 and Δ7/4Pb = 0. Full data set for Mount Vesuvius samples is provided in the Data Repository (Tables DR1–DR4 [see footnote 1]).
In this study, we report the occurrence of marked ^{238}U excesses at Mount Vesuvius (Italy), and coupling these $^{230}\text{Th}-^{238}\text{U}$ measurements with variations in $\delta^{238}\text{U}$ (the parts-per-thousand difference in $^{238}\text{U}/^{235}\text{U}$ relative to a reference solution standard, CRM145) and radiogenic isotope data (Sr, Nd, and Pb), we demonstrate the involvement of deep-recycled carbonate-rich lithologies in the mantle source of these magmas.

Uranium-series disequilibria in arc lavas have long been used to constrain the contribution of slab-derived liquids (fluids and/or melts), as well as the time scales of their transfer from the slab to the surface (e.g., Gill and Condomines, 1992; for further details, see the Data Repository). “Fluid-dominated” arcs are generally characterized by significant ^{238}U excess over ^{230}Th, that is, ($^{238}\text{U}/^{230}\text{Th}$) > 1 (Fig. 1), a feature classically attributed either to the greater fluid mobility of U with respect to Th (e.g., Gill and Condomines, 1992), or to the presence of residual accessory phases preferentially retaining Th during melting of the subducting basaltic oceanic crust (Avanzinelli et al., 2012). Sediment melts, on the contrary, seem to impart either no disequilibrium (Condomines and Sigmarsson, 1993) or minor ^{230}Th excesses (Avanzinelli et al., 2012) to the erupted lavas.

^{238}U EXCESS AT MOUNT VESUVIUS AS TRACER FOR SUBDUCTION-DERIVED CARBONATE-RICH SEDIMENT MELTS

Mount Vesuvius lavas have significant ^{238}U excesses (Voltaggio et al., 2004; Avanzinelli et al., 2008) (Fig. 1), which may suggest the involvement of BOC-derived fluids along the lines of the general processes proposed for arc magmas (Elliott, 2003).

Yet, when compared to the global arc database (Fig. 1), the observed ^{238}U excesses in Vesuvius lavas are anomalous. Indeed, the geochemical and Sr-Nd-Pb isotopic compositions of Vesuvius lavas invariably lie at the “sediment-dominated” end of the global arc trend (Fig. 1; Fig. DR1), suggesting a mantle source strongly enriched by sediment-derived melts. In this scenario, the contribution from BOC-derived fluids should be obscured by the sediment-melt signal, due to the greater capacity of the latter as an incompatible trace-element carrier with respect to hydrous fluids.

Vesuvius lavas therefore are anomalous among subduction-related magmas. Yet, the occurrence of ^{238}U excesses in sediment-dominated arc magmas is not a unique characteristic of Vesuvius (Fig. 1), but also occurs in a few other cases such as in the Lesser Antilles (e.g., Kick’em Jenny volcano; Huang et al., 2011), Nicaragua (Reagan et al., 1994), and part of the Sunda arc (e.g., Tambora and Sanganeb Api volcanoes in Indonesia; Turner and Foden, 2001).

Given the sediment-derived trace element and long-lived isotope characteristics (i.e., Sr, Nd and Pb; Fig. 1; Fig. DR1; Tables DR1–DR4 in the Data Repository) of Vesuvius lavas, the occurrence of large ^{238}U excesses requires either extremely large amounts of BOC-derived fluids, to remain evident against the sediment contribution, or the addition of a sedimentary component recently enriched in U with respect to Th. When plotted against radiogenic isotope ratios such as $^{143}\text{Nd}/^{144}\text{Nd}$ (Fig. DR3) and $^{206}\text{Pb}/^{204}\text{Pb}$ (Hart, 1984; Fig. 1), Vesuvius lavas do not show a decrease of $\Delta^{238}\text{Pb}$ with increasing ($^{238}\text{U}/^{230}\text{Th}$) as would be expected if the ^{238}U excess was due to BOC-derived fluids. Instead, the samples characterized by larger ^{238}U excesses show similar or higher $\Delta^{238}\text{Pb}$ (and $^{143}\text{Nd}/^{144}\text{Nd}$) compared to samples close to secular equilibrium. Hence, the component responsible for the ^{238}U excess at Mount Vesuvius also imparts a crustal signature to the magmas, indicating it must derive from subducted sediments.

To further constrain the origin of the U-rich component, we made high-precision $\delta^{238}\text{U}$ measurements. Natural variations in $^{238}\text{U}/^{235}\text{U}$ are linked to the partial reduction of hexavalent U(VI) to tetravalent U(IV) (see the review in Andersen et al., 2017) and are limited to the low-temperature environment of Earth’s surface, so that the $^{238}\text{U}/^{235}\text{U}$ signatures of magmas provide a robust tracer of near-surface–processed U. A recent study (Andersen et al., 2015) reported data for the Mariana arc, showing a clear trend from isotopically heavy U composition in sediment-dominated islands to isotopically light values in fluid-dominated ones. This feature, which is associated with the shift from ^{230}Th to ^{238}U excesses in erupted magmas (Fig. 2), may be interpreted to result from the isotopically light composition of U-rich fluids originating from the upper, most-altered portion of the BOC.

The Mount Vesuvius lavas measured in this study show instead an invariably heavy U isotopic composition, thus excluding a major role for fluids from the most altered portion of the BOC. Even considering the heavier $\delta^{238}\text{U}$ composition in sediment-melt components from the upper, most-altered portion of the BOC, the data do not fall on an U-Th isochron diagram. This does not exclude the occurrence of significant limestone assimilation at Mount Vesuvius (~10%; Iacono Marziano et al., 2009) affecting some of the features of the magmas (e.g., major elements). In terms of U-Th disequilibria, however, this process may be responsible for some of the vertical scattering shown by the data on the U-Th isochron diagram (Fig. DR2), but not for the ^{238}U excess (see details in the Data Repository).

On the contrary, the two carbonate-rich clays (i.e., marls) that we analyzed show high $\delta^{238}\text{U}$ excesses, making them suitable candidates to provide the distinctive signature of the studied magmas. The involvement of recycled carbonate-rich sediments as a “marl melt component” (MMC) can provide the solution to explain the ^{238}U excess at Mount Vesuvius. A recent experimental study (Skora et al., 2015) showed that the abundances of some key trace elements in melts from calcareous sediments (i.e., marls) at subarc pressure-temperature ($P-T$) conditions are controlled by epidote, that it is stabilized during melting and can remain as a residual phase.
Vesuvius lavas with published parameters regarded which show extreme U/Th ratios (>2; Korsakov and Table DR5), showing that <5% of such a component is sufficient to impart U-series disequilibrium in a mantle source that had been previously strongly metasomatized, as evident from the radiogenic isotope composition of the samples with the smallest 238U excess (Fig. 1).

Evidence for such a process is not restricted to Mount Vesuvius. Other subduction-related magmas with sediment-dominated geochemical and radiogenic isotope signatures show significant 238U excess (e.g., Kick’em Jenny; Huang et al. 2011; Fig. 1). Therefore, we suggest that the presence of significant 238U excesses in enriched (i.e., sediment-dominated) subduction-related rocks may represent key evidence for the involvement of carbonate-rich subducted sediments.

This has important implications for constraining the carbon budget emissions at arcs. A recent study (Mason et al., 2017) suggested that shallow remobilization of crustal carbon (i.e., assimilation) may dominate the volcanic arc emissions over the deeper “subduction” carbon cycle, reporting Mount Vesuvius as one of the main locations where CO2 is mainly derived from interaction with the shallow crust (see also Iacono-Marziano et al., 2009). Our data indicate instead that subducted carbonate-rich sediment melts (MMC) have an important role in the chemical and isotopic composition of Vesuvius lavas, and Italian magmatism more generally (e.g., Avanzinelli et al., 2008; Conticelli et al., 2015), resulting in significant “subduction-derived” CO2 fluxes (see also Frezzotti et al., 2009).

MMC-DERIVED CO2 FLUXES

We attempted to estimate the MMC-derived CO2 fluxes by combining the two-step mantle enrichment model used to explain the 238U excess of Vesuvius lavas with published parameters regarding the output rates of Mount Vesuvius and the amount of CO2 carried along with the MMC. The rationale of our calculation is that, given the extreme incompatibility of U both during mantle melting and magma differentiation (Blundy and Wood, 2003), it can be assumed that the total amount of U in Vesuvius magmatic products is the same as that hosted in their mantle source. Hence, knowing the magmatic output rates of Mount Vesuvius and the average U contents of the erupted products, it is possible to calculate the U flux from the mantle source. Combining this estimate with the U concentration calculated for the metasomatized mantle source in our two-step mantle enrichment model, we estimated the mass flux of mantle undergoing melting. Finally, we extrapolated the mass flux of MMC added to the mantle source of Mount Vesuvius from the proportion of MMC required to generate the observed average (230Th/238U) of Vesuvius lavas (Table DR5). This can be converted to MMC-derived CO2 fluxes simply by estimating the amount of CO2 carried along with the MMC. Given the large uncertainties in several of the parameters used for the calculation—namely, (1) the U content of the erupted magmas, (2) the output rates, (3) the U and the CO2 content of the MMC, and (4) the amount of MMC required to produce the mean 238U excess observed in Vesuvius magmas—we performed Monte Carlo simulations, letting the four aforementioned parameters randomly vary between maximum and minimum values. Further details on the various parameters used are provided in the Data Repository and in Tables DR6 and DR7 therein. The results (Fig. 3) of our calculation yield average MMC-derived CO2 fluxes between ~0.15 Mt/yr and ~0.8 Mt/yr.

It is important to stress that the estimated fluxes presented in our study account only for the CO2 derived from the addition of the MMC and do not consider other possible sources of CO2 that contribute to the total CO2 fluxes at Mount Vesuvius, such as those related to the shallow assimilation of limestone and those added from the subducted slab during the first step of mantle enrichment. Also, they represent an estimated CO2 flux averaged over the whole investigated period (A.D. 1697–1944), which would increase considerably (almost double) if considering only the active phases of the volcano (Scandone et al., 2008; see the Data Repository), and conversely decrease in low-activity phases. Therefore, it is difficult to compare our estimates with CO2 emissions from presently active volcanoes. Keeping this in mind, the range of MMC-derived CO2 fluxes calculated for Mount Vesuvius is comparable to CO2 fluxes calculated from present-day emission at arc volcanoes, such as Stromboli (southern Italy; 0.73 Mt/yr; Burton et al., 2013) and Montserrat (Lesser Antilles; 0.56 Mt/yr; Burton et al., 2013). This suggests that CO2 fluxes deriving from subducted carbonate-rich material are significant for the total carbon budget emitted at some arc volcanoes. Mount Vesuvius is not active at present, hence direct measurements of volcanic CO2 fluxes are not available, although estimates based on the isotopic composition of groundwater (Caliro et al., 2005) and diffuse soil degassing (Frondini et al., 2004) report values of ~0.1 Mt/yr, which are lower than those indicated by our calculation. In addition, it must be taken into account that a significant portion of the present-day CO2 emitted around Mount Vesuvius has been linked to limestone assimilation (Iacono-Marziano et al., 2009).

Yet, the 238U excesses of Vesuvius magmas, when combined with 238U/Pb and Sr, and Nd isotope ratios, can only be explained by the addition in their source of carbonate-rich sediment melts that contributes significantly to the CO2 fluxes released at the surface, especially during the more-active phases of the volcano.

ACKNOWLEDGMENTS

We thank F. Aliberti, M. Andersen, A. Bragagni, E. Braschi, C. Coath, R. Cioni, M. Matti, J. Prytulak, S. Tommasini, and M. Ulivi for discussions and help on various aspects of the paper. Comments by J. Foden, A. Skelton, S. Turner, F. Gaillard, and an anonymous reviewer, and careful editorial handling by J.B. Murphy, greatly improved the manuscript. Avanzinelli was funded by a Marie Curie postdoctoral fellowship (025136-OIBH2O) and by the MIUR (Ministero dell’Istruzione dell’Università e della Ricerca) “Rientro dei Cervelli” program. Funding for this research was also provided by Progetti di Ricerca di Interesse Nazionale grants 2010TT22SC_001, 20158A9CBM, and 2015EC9P15.

REFERENCES CITED
