
Peer reviewed version

Link to published version (if available): 10.21037/jtd.2017.05.21

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via AME at http://jtd.amegroups.com/article/view/13867/11596. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www bristol.ac.uk/pure/about/ebr-terms
Minimally invasive aortic valve replacement in high risk patient groups

Daniel Fudulu, Harriet Lewis, Umberto Benedetto, Massimo Caputo, Gianni Angelini, Hunaid A Vohra

Department of Cardiac Surgery, University Bristol Hospitals NHS Foundation Trust, Bristol, UK

Word count: 3740

Corresponding Author:
Daniel Fudulu
Research Fellow
Department of Cardiac surgery
University Bristol Hospitals
Bristol, UK
Tel/fax: 01173426563
E-mail: daniel.fudulu@bristol.ac.uk

Running title: Mini-AVR in the high risk patient.
Abstract

Minimally invasive aortic valve replacement aims to preserve the sternal integrity and improve postoperative outcomes. In low risk patients, this technique can be achieved with comparable mortality to the conventional approach and can result in reduced intensive care and hospital length of stay, transfusion requirement, renal dysfunction, improved respiratory function along with increased patient satisfaction. In this review we aim to assess if these benefits can be transferred to the high risk patient groups. We therefore discuss the available evidence for the following high risk groups: elderly patients, re-operative surgery, poor lung function, pulmonary hypertension, obesity, concomitant procedures and high risk score cohorts.

Key words:

minimally invasive surgical procedures, aortic valve, elderly, reoperation, left ventricular dysfunction
1. Introduction

Aortic valve replacement (AVR) via median sternotomy remains the standard treatment for aortic valvular disease. However, the development of minimally invasive approaches in general surgery has driven the adoption of lesser invasive techniques within the field of cardiac surgery. Historically, Cosgrove and Cohn were the first clinicians to pioneer smaller incisions for both mitral and aortic procedures(1). Despite longer cardiopulmonary bypass (CPB) times compared to conventional surgery (1-13), preservation of the sternal integrity and minimisation of dissection may improve the cosmetic result, reduce bleeding, provide better respiratory function, yield shorter hospital stays and therefore lower costs and improved patient satisfaction. A large meta-analysis by Phan et al. demonstrated that minimally invasive aortic valve replacement (mini-AVR) is also associated with a reduced incidence of renal failure and has comparable mortality and morbidity to conventional surgery (14). The above advantages could prove significant in the “high risk” cohorts such as elderly patients, re-operative surgery, poor respiratory status, pulmonary hypertension, renal dysfunction or poor left ventricular (LV) function (15, 16). Hence, the current review focuses on the outcomes following mini-AVR in the above high risk groups. Although the definition of minimally invasive approach to the aortic valve remains a matter of debate, the present review discusses the open approaches, performed via a small incision (e.g. not a full sternotomy), therefore we do not refer to the trans-catheter aortic valve implantation (TAVI) (17). We included all the studies where the aortic valve was approached via a minimally invasive approach including: the various types of partial sternotomy, minithoracotomy or port access approach.

2. Methods

A thorough literature search was conducted in PubMed and Embase databases, using the following search string: “(minimally invasive OR mini OR mini OR minimal access OR partial sternotomy OR hemi-sternotomy OR anterior thoracotomy OR parasternal OR transverse
sternotomy) AND (aortic valve) AND (replacement OR surgery OR insertion) AND (high risk OR elderly OR old age OR elderly OR left ventricular failure OR left ventricular dysfunction OR renal failure OR chronic kidney disease OR renal dysfunction OR chronic lung disease OR chronic obstructive pulmonary disease OR re-do OR reoperative OR resternotomy OR reintervention OR pulmonary hypertension)”. Further articles were identified by cross reference check from the articles identified by our search.

3. **Mini-AVR in Elderly Patients**

The increase in the life expectancy has resulted in more aortic valve surgery being performed in the elderly population (18). With an increasing prevalence with age, calcific aortic stenosis (AS) is the main valvular disease in the octogenarians with a predicted requirement for approximately 3500 AVRs per year (18, 19). Certainly, conventional aortic valve replacement (CAVR), performed via full midline sternotomy, remains the definitive treatment and yields excellent results (20). However, elderly patients are less able to cope with the stress of surgery due to a reduced vital organ reserve and various associated comorbidities (19). Several retrospective studies, reported outcomes of mini-AVR versus CAVR in the elderly population (Table 1).

Grossi et. al. (21) compared the outcomes of 166 patients (mean age of 77.5 years) undergoing CAVR, with 56 patients (mean age 76 years) undergoing aortic valve replacement using a minimally invasive port access technique. There was no difference in hospital mortality. However, the minimally invasive group had a lower incidence of sepsis and wound complications, decreased fresh frozen plasma transfusion requirement and shorter length of hospital stay.

A prospective study by Sharony et al. (22) matched 189 patients undergoing mini-AVR and 189 patients undergoing CAVR via sternotomy. All patients were aged over 65, with 28%
being octogenarians. The two cohorts had similar hospital mortalities and similar rates of: re-intervention, stroke, wound infection, gastro-intestinal complications, new renal failure and respiratory failure. The CPB times were similar but the mini-AVR group had a shorter hospital stay and more patients were discharged to their own home.

The same group (23) reported results of two propensity-matched cohorts, 233 patients each, aged >80 years, undergoing either mini-AVR or CAVR. Hospital mortality and perioperative morbidity was similar in both groups. However, a greater proportion of mini-AVR patients had a reduced length of hospital stay and were discharged home rather than transferred to a rehabilitation facility. In the multivariate analyses, the presence of severe atheromatous aortic diseases and need for urgent operation increased the risk of hospital mortality.

El Bardissi (24) et al reported outcomes 249 consecutive mini-AVRs in octogenarians patients that were at a prohibitive high risk (median EuroSCORE of 11% and STS score 10.5%) and were considered candidates for TAVI. Interestingly, the high cardiac surgery risk scores were not predictive of operative mortality which proved to be only 3%. Also the perioperative morbidity was low: stroke 4%, renal failure requiring dialysis 1%, cardiac arrest 1 %, sepsis 1 % and pulmonary embolism 1%. The long-term survival of up to 10 years did not differ from a low risk, age and gender matched population.

A retrospective review of consecutive heart operations in patients aged 75 or above, conducted by Lamelas et al (25), identified 58 patients that underwent minimally invasive aortic valve procedures performed by mini-thoracotomy and compared them with a cohort of 43 patients that underwent CAVR. The composite of mortality and morbidity was significantly lower in the minimally invasive group. This was due to a lower incidence of renal failure, reduced
intubation time, less wound infection and fewer deaths. Furthermore, the intensive care unit length of stay and total length of hospital stay were lower in the mini-AVR group.

In a small series of 58 isolated mini-AVR performed via a mini sternotomy in patients with median age of 76, Alasaar et al (26) reported no operative mortality and no late mortality at 6 months. There was one reoperation for bleeding, no pacemaker insertion and no wound infections. The CPB times were acceptable and the intensive care unit (ICU) mean stay was approximately 2 days and the hospital mean stay was 6 days. Similarly, a larger retrospective study by Krishna et al. (27) on 255 consecutive mini-AVRs done via mini-right thoracotomy in octogenarians, reported acceptable morbidity and mortality rates.

Santarpino et al (28) allocated 66 patients undergoing sutureless mini-AVR to two age groups: age > or = 80 years (25 patients) and age < or = 80 (41 patients). The outcomes in terms of in-hospital mortality, stroke, pacemaker implantation, survival (mean follow-up of approximately 14 months) were not different. A health and wellbeing survey questionnaire was conducted with no differences reported between the groups.

Gilmanov et al (29) compared two propensity matched groups of isolated mini-AVRs performed via a right anterior thoracotomy (100 patients) versus a full sternotomy (100 patients). Patients were aged 80 years or above. The main findings of the study were reduced stroke incidence, earlier extubation time and shorter hospital stay, favouring the minimally invasive group. Both the in-hospital mortality and long term survival at 5 years were similar. The rate of postoperative atrial fibrillation (AF) and permanent pacemaker (PPM) insertion rates did not differ.

Moscarelli et al (30) conducted a systematic review of non-randomised studies of 340 elderly patients (mean population age above 75) who recieved minimally invasive aortic valve surgery versus CAVR in 343 patients. They found comparable mortality to full sternotomy,
significantly reduced postoperative length of stay, no significant difference in CPB and AoX times.

4. Re-do Minimally Invasive Aortic Valve Surgery

Several studies investigated the potential benefits of minimally invasive surgery in re-operative aortic valve surgery (Table 2). Theoretically, a smaller incision would reduce the dissection area resulting in less bleeding from adhesiolysis and less risk of damaging patent coronary grafts. Furthermore, preservation of the sternal integrity in such high-risk patients improves the respiratory function and patients have been shown to have shorter hospital stays (32-34).

In 2000, Byrne et al. (35) reported 34 re-do AVR via partial sternotomy. Sixty-two percent of the patients had previous coronary artery bypass grafting (CABG) while 41% had previous valve surgery. There were no intraoperative deaths and no conversions to full sternotomy. The early mortality was 5.9% due to arrhythmia in one case and a large stroke in the other case. There were no reoperations for bleeding and the median lengths of stays in ICU and hospital were 1 and 7 days respectively.

Sharony et al (36) reported the outcomes of 161 patients undergoing re-do minimally invasive valve operations via mini-thoracotomy (61 patients had aortic) versus a 227 patients having CAVR via median sternotomy (177 patients). The authors found a significantly lower early mortality, no wound infection, less need for transfusion and shorter hospital stays in the minimally invasive group. However, the incidence of congestive heart failure, renal disease and poor LV function was significantly higher in the sternotomy group. Furthermore, the multivariate analysis showed that renal disease and poor ejection fraction were associated with increased mortality. The five-year morality was comparable between the two groups. No subgroup analysis for the aortic group was performed.
In a smaller series by Bakir et al. (37) of 19 re-do AVR cases done via upper partial sternotomy (63.2% patients with previous coronary CABG) there were no early deaths, however, 4 patients (21%) required return to theatre for bleeding including one from an injury to a previous patent vein graft. The mean follow-up time was 23.6 months and there were 2 late deaths one of unknown cause and one non-cardiac.

Tabata el al. (38) reported 146 re-do mini AVRs in an elderly population. The majority (93 patients) had previous CABG. The operative mortality was 4.1%, reoperation rates for bleeding was 0.7% and most of the patients required transfusion (83.6%). In this series, there were no CABG graft injuries and the five-year actuarial survival was 85%. A small series of 10 patients with previous CABG undergoing mini-AVR was also reported by Dell’Amore et al. (39) There was no in hospital mortality and no injury to the by-pass grafts.

Gaeta et al. (40) reported outcomes following re-operative mini-AVR on 16 patients with previous patent left internal mammary artery (LIMA) grafts. On this small series there were no early deaths but 4 late deaths were reported, out of which 2 were due to cardiac causes. No patient required conversion to full sternotomy or reopening for bleeding and there were no injuries to the LIMA grafts.

Mikus et al (41) in a series of 90 patients who underwent reoperative aortic valve surgery reported comparative results between a minimally invasive approach cohort (38 patients) and a conventional sternotomy cohort (n=52). There were no significant differences between the groups in terms of the profile risk (e.g. EuroSCORE, left ventricular function or body mass index). There was one death in the minimally invasive group. There were no differences in CPB or cross clamp times between the two groups however the partial sternotomy group had significantly lower ventilation times.
Kaneko et al. (42) reported outcomes following 105 octogenarians that underwent redo isolated AVR. Fifty-one patients underwent mini-AVR while 54 patients had CAVR. Both cohorts had similar risk factors. There was no difference in terms of operative mortality or other postoperative outcomes between the two approaches, however, the survival analysis at 1 year and 5 years favoured mini-AVR.

Gosev et al. (43) compared the postoperative outcomes of 34 patients undergoing mini-AVR with 67 patients undergoing CAVR. Both groups did not differ in terms of demographics or preoperative risk profiles. The authors reported shorter operative times, ventilation times, ICU stays and hospital length of stays favouring the mini-AVR group. There was one early death in the CAVR group. Mid-term survival at 1 year and 5 years favoured mini-AVR.

Phan et al. (44) in a meta-analysis of 7 observational studies of reoperative mini-AVR found similar in-hospital mortality and stroke rates. The rates of PPM implantation, renal failure and re-operation for bleeding were again similar. There was no difference in hospital stays between the two approaches.

5. **Outcomes of mini AVR in patients with high cardiac risk scores**

In the current section we will discuss the studies that reported outcomes of mini-AVR in populations considered high risk according to the various risk scoring systems in cardiac surgery (Table 3).

Bridgewater et al. (46) reported outcomes of a high risk cohort (median age 78 and Parsonnet score of 18%) who underwent mini-AVR via a transverse sternotomy approach compared to a Parsonnet score, age and sex matched retrospective cohort. The authors found a significantly higher mortality, incidence of re-exploration, paravalvular leaks and re-exploration in mini-
AVR group. Furthermore, mini-AVR had longer postoperative stays and higher incidence of morbidity.

In 2004, De Smet et al. (47) analysed the outcomes of 100 patients undergoing mini-AVR via J- sternotomy compared to a retrospective series of CAVR performed in 91 patients operated before introduction of mini-AVR in that institution. Both cohorts had similar preoperative characteristics and they were further stratified by EuroSCORE in low, medium and high risk. In the high risk group (EuroSCORE >6) there was a higher incidence of AF in patients undergoing sternotomy in contrast to mini-AVR patients who experienced more neurologic events. However, when only the severe brain injuries were included in the analysis no difference was noted. Similarly, a greater incidence of AF occurred in the medium risk sternotomy group. In the low risk mini-AVR patients, there was a higher incidence of AF. Overall, the mortality and lengths of stay were similar between conventional sternotomy versus mini-sternotomy.

Grossi et al (48) reported outcomes of isolated AVR in a high risk cohort of 731 patients with mean EuroSCORE of 9.7. Mini-AVR was performed in 64.2% (469 patients). No comparative analysis was performed between the operative approaches. The actual hospital mortality was 7.8% suggesting that the EuroSCORE over predicted the mortality. In the multivariate analysis; poor ejection fraction, chronic obstructive pulmonary disease (COPD) and peripheral vascular disease significantly affected hospital mortality. The five-year freedom from all-cause mortality was 72.4% at 5 years. Age, reoperation, renal and chronic lung disease were predictors of worse survival. The authors raised concerns regarding patients referred to TAVI based on risk scores that were overestimated, when no long term follow-up outcome is available for percutaneous prosthesis.
Zierer et al. (49) compared 21 patients with a mean EuroSCORE of 38% undergoing TAVI with a cohort of 30 patients with a mean EuroSCORE of 35% undergoing mini-AVR via upper partial mini-sternotomy. Allocation was non-randomized; however, the perioperative risk profiles were matched between the groups. The operative and ventilation times, ICU and hospital length of stay were shorter in the TAVI group but there was no difference in early mortality, perioperative morbidity and survival at 1 year (100% complete follow-up).

Martens et al. (50) reported outcomes of mini-AVR via partial sternotomy, using the ATS 3F Enable sutureless bioprosthesis, in 22 elderly patients. Mean age of 75 years and mean logistic EuroSCORE of 13. The mean reimplantation time was 10+/- 6 minutes, CPB time was 87 minutes and the mean cross clamp time was 55 minutes. The early mortality (<90 days) was 9% (2 deaths). There were no paravalvular leaks and the implanted valves had low gradients both on discharge and at 12 months.

Later, in 2013, Conciatre et al. (51) reported outcomes in an elderly population (mean age of 77) undergoing sutureless aortic valve implantation (3f Enable bioprosthesis) via V-Type ministernotomy. The mean EuroSCORE of the cohort was 15%. The mean CPB and aortic cross clamp times were 100.2 minutes and 66.4 minutes respectively. One patient had trivial paravalvular leak and there were no early deaths or at follow-up (median follow-up time was 4 months, interquartile range, 2-10 months). The mean pressure gradients were remained low on follow-up. Burdett et al. (52) compared two matched cohorts for perioperative profile and risk score (mean EuroSCORE of 7). One group (98 patients) underwent manubrium limited sternotomy and the other conventional sternotomy (93 patients). The mini-AVR cohort had longer CPB times and aortic cross clamp times (10 and 6 minutes respectively) but significantly less postoperative blood loss and transfusion requirements. The postoperative morbidity, length of stays, rate of paravalvular leaks and in hospital mortality were similar.
Miceli et al. (53) compared the outcomes of mini-AVR using sutureless Perceval S via a right minithoracotomy to transapical or transfemoral TAVI between two propensity matched groups (37 patients each). The median logistic score of both groups was 14% with a range of 9-20%. There were no significant difference in mortality, stroke rates, conversion to sternotomy, and bleeding, renal failure or ICU length of stay between the two matched groups. However, mini-AVR patients had significantly higher length of ward stay while the TAVI patients had more paravalvular leaks. There were no differences in the haemodynamic performances of the valves between the groups. Medium term survival at 1 year and 2 years was better for the mini-AVR groups.

6. Mini AVR in patients with chronic lung disease or pulmonary hypertension

As discussed earlier, maintenance of the sternal integrity could prove beneficial in patients with reduced respiratory reserve. Calderon et al. (54) in a prospective randomized trial of mini-AVR versus CAVR measured the postoperative spirometry parameters in 78 patients. They found no significant changes between the two groups.

Stolinski et al. (55) measured the pulmonary function tests at 1 week, 1 month and 3 months of two elderly cohorts (mean age >75 years): mini-AVR (65 patients) versus CAVR (82 patients). The two cohorts had similar perioperative characteristics. At 1 week and 1 month the pulmonary function was better in the mini-AVR but there was no significant difference between the two groups at 3 months. The duration of postoperative mechanical ventilation was lower in the min-AVR group but the incidence of pulmonary complications was similar.

A study by Li et al (56) measured the extravascular water index and pulmonary vascular permeability index in 90 patients that received either a conventional sternotomy, mini-AVR via right anterior thoracotomy or via upper sternotomy. The minimally invasive group had a faster recovery of the above parameters.
Only a few studies evaluating the effect of mini-AVR in patients with poor lung function pre-operatively exist (Table 4). Al Backer et al. (57) in a propensity matched study of 223 patient pairs: min-AVR via “J” sternotomy versus AVR via full sternotomy found a shorter ICU and hospital length of stay for mini-AVR patients as the forced expiratory volume in 1 second (FEV1) decreased. There was a trend towards higher survival of mini-AVR patients (93% versus 89% at 1 year, p=0.07) however there was no difference in late survival.

A retrospective analysis of 165 patients with COPD (82% had moderate COPD e.g. FEV1 between 50% and 80%) by Santana et al. (58) found no difference in hospital mortality between the mini-AVR patients (n=100) and the conventional sternotomy patients (n=65). However, the composite of post-operative complications was significantly reduced in mini-AVR groups. Furthermore, the ICU lengths of stay and hospital length of stay were shorter in minimally invasive group.

Gosain et al. (59) reported outcomes after mini-AVR in 569 patients with pulmonary hypertension. The mean pulmonary artery pressure of the group was 33 mmHg. The overall early mortality was 3.5% and the stroke rates were 1.4%. Patients with severe pulmonary hypertension had a significantly longer ICU stay and trend towards longer ventilation times.

7. Mini AVR in patients with renal dysfunction

Pre-operative renal dysfunction is an independent risk factor in operative mortality and late survival in patients undergoing heart surgery (60). The reno-protective effect of minimally invasive surgery has already been proven in mitral valve surgery (61, 62).

We found only 2 studies that evaluated the effect mini-AVR in patients with pre-existing renal dysfunction (Table 4). Valdez et al.(63) retrospectively reviewed a cohort of 688 patients with chronic kidney disease stages 2-5. In their study, 236 patients received a mini-AVR and 87 received a conventional AVR. There were no differences in operative mortality between the
minimally invasive or the full sternotomy groups. The minimally invasive surgery group had a lower incidence of acute on chronic kidney injury despite longer CPB and aortic cross clamp (AoX) times. However, there was no difference in the peak postoperative creatinine measurements between the two groups or the need for dialysis. The authors used the RIFLE (Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease) classification to define AKI. This classification also takes into account urine output and the estimated glomerular filtration rate. Furthermore, the minimal access patients had fewer composite complications, shorter ICU and hospital lengths of stay. In the multivariate analysis minimally invasive surgery was associated with 60% reduction in the risk of development of acute kidney injury. Similar results were found by a large meta-analysis of non-randomized controlled trials where renal failure occurred less in the mini-AVR group despite longer CPB and AoX times (14).

Haldewang et al. (64), in a small retrospective study compared 77 patients that received a mini-AVR to 56 patients that received a TAVI. The mini AVR patients had a lower risk of developing acute kidney injury compared to TAVI.

8. **Patients with poor left ventricular function or severe heart failure**

The study by Tabata et al. (65) is the only one to date that compares the effect of mini-AVR versus CAVR in patients with pre-operative LV dysfunction. The authors propensity matched two cohorts of 41 patients each (mini-AVR or CAVR). There was no significant difference in operative mortality, post-operative complications, blood transfusion requirement or length of hospital stay and CPB and AoXtimes.

A study conducted by Mihaljevic et al (66) compared two propensity matched cohorts of patients with severe heart failure (New York Heart Association III and IV): minimally invasive valve surgery versus conventional sternotomy valve surgery. The mean ejection fraction did not differ between the groups and was classed as moderate. The comparisons were adjusted not
only to the patient characteristics but also to the individual surgeon. Without adjusting for the operator, the CPB, aortic cross clamp times and ICU length stays were shorter for the minimally invasive group. The hospital mortality, long term survival and were similar. However, when adjusting for the surgeon there were no differences in the outcomes between the two groups.

9. Mini AVR in obese patients

Several studies found no adverse outcomes of performing conventional cardiac surgery in obese patients. However, this group of patients is at increased risk of deep sternal wound infection, therefore a minimally invasive approach could prove advantageous (58, 67). In contrast, adequate exposure using a minimally invasive approach can prove to be a challenge. Two studies to our knowledge evaluated the effect of mini-AVR in this high-risk group (Table 4). Santana et al (58) compared the outcomes of 31 patients who had aortic valve surgery via a mini-thoracotomy with a matched group 43 patients had aortic valve surgery full sternotomy. The composite of postoperative complications occurred less frequently in the minimally invasive group. This was driven by a lower incidence of renal failure, shorter ventilation times, lower reintubation rates, lower incidence of deep sternal wound infection and reduced in-hospital mortality. A recent study by Acharya et al. (68) on 90 patients who underwent mini-AVR compared using univariate regression analysis on the effect on postoperative outcomes of a BMI (body mass index) <25 (in 36 patients) with the effect of BMI ≥ 25 (54 patients). The high BMI cohort had increased incidence of hospital acquired pneumonia and new onset of AF. However, there was no difference in ICU length of stay, hospital length of stay, wound complications rates, inotrope requirements or renal dysfunction. Furthermore, a correlation between increasing BMI and reduced ventilation or post-operative blood loss was found.
10. Mini-AVR in patients requiring concomitant procedures

Another high-risk group is that of patients requiring additional, complex procedures associated to minimally aortic valve surgery.

Totaro et al. (69) reported the outcomes of 1126 procedures performed via upper mini-sternotomy. The authors compared the outcomes of isolated min-AVR (61%) with re-do mini AVR (7%) or other complex cardiac surgery (32%) including AVR combined with aortic surgery procedures or CABG. The complex cardiac surgery group had a higher operative mortality, longer ventilation times and longer ICU status however the surgical revision rates were similar in all 3 groups.

Kaneko et al. (70) reported outcomes of mini-AVR via an upper hemi-sternotomy in 119 patients who required a concomitant aortic procedure. The majority of the patients (59.6%) had supra-coronary ascending aorta replacement. The authors reported an operative mortality of 2.8% and a postoperative survival at 1 and 5 years of 96.2% and 92.4% respectively. There were 4 (3.7%) reoperations for bleeding. Other complications included postoperative renal failure in 2 cases and myocardial infarction in 2 other cases. The mean length of stay was approximately a week.

Elmahdy et al. (71) reported a case series of 6 patients that had triple valve surgery via a right anterior mini-thoracotomy. All patients had aortic valve surgery, mitral valve repair and tricuspid valve repair. The authors reported 2 early deaths and 2 cases of postoperative AF.

11. Limitations of the current evidence

The evidence presented in the current review suggests that minimally invasive aortic valve surgery in the various high risk categories is done with comparable survival to conventional techniques but with several additional benefits. However, we have to acknowledge several
limitations to the conclusions we draw. Firstly, all the studies we found were single centre, non-randomized, retrospective and the majority suffered from a small patient sample size. Furthermore, both the patients and medical staff were not blinded to the treatment modality. Efforts were made to balance the groups by propensity matching or cardiac risk score matching in the comparative studies, but this does eliminate patient selection bias entirely. The weight of the evidence suggested a clear decrease in hospital stays with minimally invasive techniques however this is again subject to bias depending on the grade of doctor making the discharge decision at that time. The aim of this review was to look at the outcomes after minimally invasive aortic valve surgery; however some studies included mixed series of aortic and other valve surgery that lacked sub-analysis for aortic procedures. Finally, there was heterogeneity in the type of minimally invasive approach used that could influence the outcomes.
12. Conclusions

All the current evidence on the performance of mini-AVR in high risk patient groups is based on retrospective, observational studies. In all high-risk groups, mini-AVR is performed with comparable morality and mid-term survival to conventional surgery. In elderly patients, despite longer aortic cross clamp times and CPB times, mini-AVR results in improved ventilatory function and renal function, reduced wound infection, shorter hospitalization and a greater proportion of patient being discharged straight to home. Re-do mini-AVR is a safe procedure with some studies showing a benefit in mid-term survival. Mini-sternotomy in patients with previous CABG can be performed with a low risk of injury to patent grafts. Current cardiac surgery scoring systems tend to overestimate mortality in high risk patients. Despite longer operative times and longer hospitalization, sutureless mini-AVR is a competitive alternative to TAVI in the high-risk patient resulting in less paravalvular leaks according to a study. In patients with chronic lung disease, pulmonary hypertension or chronic kidney disease, a minimally invasive approach is safe and reduces hospital and ICU length of stays. Obese patients can benefit from a minimally invasive approach in terms of reduced wound complications, improved respiratory function and improved survival according to a study. Mini-AVR concomitant with aortic surgery or valve surgery can be performed with acceptable mortality and morbidity.
Table 1 Mini-AVR in Elderly patients

Abbreviations: Abbreviations: AVR- aortic valve replacement; mini-AVR- minimally invasive aortic valve replacement; SS – standard sternotomy; CAVR- conventional aortic valve replacement via median sternotomy; CPB – cardiopulmonary by-pass; A0X – aortic cross clamp; IQR – interquartile range; ICU – intensive care unit; AKI – acute kidney injury; PPM – permanent pacemaker; AF- atrial fibrillation.

<table>
<thead>
<tr>
<th>Author, date</th>
<th>Study type and level of evidence</th>
<th>Patient groups and study design</th>
<th>Minimal access approach</th>
<th>Outcomes</th>
<th>Comments</th>
<th>Author’s conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grossi et al., 1998 (21)</td>
<td>Retrospective, Level III</td>
<td>259 patients (mean age 77.5 years) had standard sternotomy (SS); 111 patients minimally invasive port access mean age 76.0 years); 166 (64.1%) patients had aortic valve replacement via SS while 56 (50.4%) had AVR done via minimally invasive port access approach.</td>
<td>port access</td>
<td>hospital mortality: 9.7% (25/259) in conventional group and 7.2% (8/111) in mini-AVR group (p = 0.50); mini-AVR: significantly lowered incidence of sepsis or wound complications (1.8% vs 7.7%; p = 0.027), required less fresh frozen plasma transfusion, (median 1-unit vs 2 units; p=0.04) and had a shorter stay (11.6 days vs 17.6 days; p = 0.001)</td>
<td>mixed series of aortic and mitral surgery; mitral surgery was performed significantly more often in the minimally invasive group ((49.5% vs. 35.9%; p<0.001)</td>
<td>mini-port AVR yields excellent results in elderly and is associated significantly less plasma transfusion, fewer postoperative complications, and shorter length of hospital stay.</td>
</tr>
</tbody>
</table>
| Sharony et al., 2003 (22) | Prospective, propensity matched, Level III | 189 mini-AVR patients were matched with 189 CAVR patients by age, ventricular function, valvular pathology, urgency of operation, diabetes, right anterior mini-thoracotomy | no difference in hospital mortality (6.9%) and freedom from postoperative morbidity, mini-AVR versus CAVR (82.5% versus 81.5%, p=0.79); in multivariate analysis: urgent procedures [Odds Ratio (OR) 3.97; p=0.03], congestive heart failure (OR 3.94; P 0.03), and ejection fraction 30% (OR 4.16; P | mini-AVR is safe in elderly patients, with morbidity and mortality comparable to SS and is associated with shorter stay and
previous cardiac surgery, renal disease, and history of stroke. All patients were above 80 years.

0.03) were predictors of hospital mortality and prolonged length of stay was associated with age (p=0.05), stroke (OR 3.5,p=0.001), congestive heart failure (CHF) (OR 2.2, p=0.004), and SS (OR 2.3,p=0.002). Mini-AVR patients were discharged home (52.6% versus 38.6%, P 0.03) rather than to rehabilitation facilities; no difference in survival at 3 years.

Sharony et al., 2004 (23)

Retrospective, propensity matched Level III

2 matched cohorts of 233 mini-AVR and 223 CAVR. Matching variables included left ventricular ejection fraction <30%, previous myocardial infarction, congestive heart failure, previous cardiac surgery, renal insufficiency, age, gender, chronic obstructive pulmonary disease (COPD), peripheral vascular disease, previous stroke or carotid disease, urgent/emergent right anterior mini-thoracotomy

hospital mortality mini-AVR vs SS groups: 5.6% versus 7.3% (p = 0.45) and morbidity: 13.3% versus 14.2% (p = 0.79); multivariable analysis: mortality associated with: severe atheromatous aortic disease (p = 0.001), chronic obstructive pulmonary disease (COPD) (p =0.002), and urgent operation (p = 0.02); freedom major perioperative morbidity (86.7% versus 85.8%; p = 0.79); median length of stay was shorter with mini-AVR (6 versus 8 days; p <0.001); greater proportion of mini-AVR patients than SS patients was discharged home rather than sent to rehabilitation facilities or nursing homes (65.7% versus 52.9%; p = 0.05).
<p>| Elbardissi et al., 2011 (24) | Retrospective, Level III | 249 mini-AVR in octogenarians [84±3 (range 80–95)], European System for Cardiac Operative Risk Evaluation (EuroSCORE) and Society of Thoracic Surgeons score used for risk stratification (STS) | upper sternotomy | operative mortality was 3% (n =8/249); median modified EuroSCORE (11%; interquartile range, 6–14) and STS score (10.5%; interquartile range, 7–17) were not predictive of 30-day mortality (EuroSCORE e-index=0.527, p=0.074, STS score e-index=0.67, p=0.18); long-term survival after minimally invasive aortic valve replacement at 1, 5, and 10 years was 93%, 77%, and 56%, respectively with no significant difference in long-term survival compared with that of a US age- and gender-matched population (standardized mortality ratio, 1.01; 95% confidence interval, 0.76–1.37; p=0.88); in multivariate analysis: increasing age (hazard ratio, 1.10; P¼ .008) and severe COPD (hazard ratio, 2.52; P<.007) were significant predictors of survival | excellent outcomes after mini-AVR with long-term survival that is no different than that of an age and gender-matched US population. |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Group Details</th>
<th>Procedure Duration</th>
<th>Cardiopulmonary Bypass Time (CPB)</th>
<th>Cross-clamp (AoX) Time</th>
<th>Complications</th>
<th>Mortality & Morbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamelas et al., 2011 (25)</td>
<td>Retrospective, Level III</td>
<td>consecutive patients age > 75 years: 119 mini-AVR versus 84 who had CAVR</td>
<td>right anterior mini-thoracotomy</td>
<td>median postoperative length (mini-AVR vs SS groups)=7 days (interquartile range [IQR] 6 to 10) versus 12 days (IQR 9 to 20), p<0.001; intensive care unit (ICU) length of stay (mini-AVR vs SS groups) was 52 hours (IQR 44 to 93) versus 119 hours (IQR 57 to 193), p<0.001; in-hospital mortality (mini-AVR vs): 2 (1.7%) versus 8 (9.5%, p =0.01 and composite postoperative morbidity and mortality occurred in 25 (21%) versus 38 (45.2%), p<0.001; difference in in the composite of mortality or morbidity driven by: acute renal failure, 1 (0.8%) vs 14 (16.7%), p<0.001; intubation (hours): 23 (19.3%) vs 32 (38.1%), p =0.003; wound infections: 1 (0.8%) vs 5 (6%), p =0.034; and death 8 (9.5) vs 2 (1.7), p=0.01; Cardiopulmonary bypass time (CPB), IQR, (mini-AVR vs SS groups): 118 (67–186) vs 86 (39–268), p<0.001; Cross-clamp (AoX) time; 84 (40–154) vs 61 (25–156), p<0.001</td>
<td>lower morbidity and mortality of mini-AVR in elderly compared to SS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alassar et al., 2013 (26)</td>
<td>Retrospective, Level III</td>
<td>58 patients (76.1 ± 9.4 years) who had mini-aVR</td>
<td>hemi-upper sternotomy</td>
<td>AoX: 54.6 +/-6.3 min, CPB time: 71.2+/−11.3, time of surgery: 154.1 +/-26.8 min, Re-operation for bleeding: 1 case (1.7%); no strokes</td>
<td>single arm study</td>
<td>mini-AVR safe in the elderly.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Patients</td>
<td>Intervention</td>
<td>Results</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santarpino et al., 2013 (31)</td>
<td>Prospective, Level III</td>
<td>66 patients mini-AVR with sutureless Perceval S bioprosthesis allocated to age group ≥80 years (n=25) or age group <80 years (n=41)</td>
<td>length of intensive care unit stay was similar in both groups (age ≥80 vs <80): 1.9 ± 0.8 vs 2.5 ± 1.4 days, p = 0.061; in-hospital mortality occurred in only one patient aged ≥80 years; transient cerebral ischemic similar in age ≥80 vs <80, p = 0.59; no difference in pacemaker implantation (1.5 versus 3%; p = 0.68), 2 patients age ≥80 versus 1 patient age<80 died during a mean follow up was 13.9 ± 7.4 months, no significant differences between groups in SF-36 questionnaire answers.</td>
<td>Mean EuroSCORE greater in age group ≥80 years (12.3 ± 7.1 vs 7.7 ± 3.8, p=0.002)</td>
<td>mini-AVR results comparable for in patients aged ≥80 years were comparable to those of younger patients.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krishna et al., 2014 (27)</td>
<td>Retrospective, Level III</td>
<td>Mini-AVR in 255 consecutive patients with a mean age 83.5 ± 3 years</td>
<td>4 patients (1.6%) had cerebrovascular accidents, 38 (14.9%) prolonged ventilation, 4 (1.6%) reoperation for bleeding, and 8 (3.1%) acute kidney injury; median intensive care unit length of stay =48.5 hours (IQR 27-92 h) and the postoperative length of stay=7 days (IQR 5-9 days); 30-day mortality=3.1% (n = 8), combined end point of morbidity and mortality</td>
<td>single arm study; 3 cases were re-do.</td>
<td>Mini-AVR can be performed safely in the elderly with acceptable outcomes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilmanov et al., 2015 (29)</td>
<td>Retrospective, propensity matched Level III</td>
<td>patients aged 80 years, propensity score matching: 100 mini-AVR vs 100 SS</td>
<td>right anterior mini-thoracotomy</td>
<td>no difference in operative times, mini-AVR patients had a larger prosthesis (p < 0.001) and were more likely to receive a sutureless valve (p< 0.001); shorter time for extubation (p < 0.001) and shorter hospital length of stay (p = 0.005) for mini-AVR, no difference in transient ischaemic attack (p = 0.47), more postoperative strokes in CAVR [0 vs 4 (4.0%) (P = 0.043)], no differens in pacemaker (p = 0.47) or new-onset of atrial fibrillation (p = 0.28), no difference in operative mortality (p = 0.68), mini-AVR more likely to be discharged straight to home (p = 0.031), similar survival rates (mini-AVR vs SS) at 5 years (80 vs 81%, P = 0.37), minimally invasive approach no impact on survival (p = 0.38).</td>
<td>the median follow-up duration was longer in the SS group (59 vs 24 months, p < 0.001)</td>
<td>Mini- AVR safely performed in patients aged ≥80 years and associated with lower postoperative stroke incidence, earlier extubation and shorter hospital stay.</td>
<td></td>
</tr>
<tr>
<td>Moscarelli et al., 2016 (30)</td>
<td>meta-analysis of non-randomized studies, Level II</td>
<td>1,347 patients (675 conventional standard sternotomy and 672 minimally invasive valve surgery)</td>
<td>right anterior mini-thoracotomy or upper sternotomy</td>
<td>comparable early mortality to standard sternotomy (odd ratio (OR) 0.79, CI [0.40,1.56], p=0.50) with no heterogeneity (p=0.13); mini-AVR associated with reduced intubation time (OR 0.48, CI [0.30,0.78] and reduced post-operative length of stay (weighted mean difference (WMD) -2.91, CI [-3.09, -2.74] p<0.00001); CPB times and (WMD 24.29, CI [22.97, 25.61] p<0.00001 and AoX times (WMD 8.61, CI [7.61, 9.61], p<0.00001) were longer for minimally access valve surgery</td>
<td>pooled outcomes for aortic and mitral valve surgery; subgroup analysis demonstrated statistically significant reduced post-operative length of stay for both minimally invasive aortic and mitral surgery</td>
<td>mini-AVR or minimally invasive mitral surgery associated with longer CPB and AoX times but shorter intubation and lengths of stay.</td>
<td></td>
</tr>
</tbody>
</table>
Abbreviations: Abbreviations: AVR- aortic valve replacement; mini-AVR- minimally invasive aortic valve replacement; SS – standard sternotomy; CAVR- aortic valve replacement via median sternotomy; CPB – cardiopulmonary by-pass; A0X – aortic cross clamp; IQR – interquartile range; ICU – intensive care unit; AKI – acute kidney injury; PPM – permanent pacemaker; AF- atrial fibrillation.

<table>
<thead>
<tr>
<th>Author, date</th>
<th>Study type and level of evidence</th>
<th>Patient group</th>
<th>Minimal access approach</th>
<th>Previous cardiac surgery</th>
<th>Outcomes</th>
<th>Comments</th>
<th>Author’s conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byrne et al., 2000 (45)</td>
<td>Retrospective, Level III</td>
<td>34 mini-AVRs, 23 (66%) underwent AVR of the native aortic valve and 11 (33%) underwent replacement of a prosthetic valve.</td>
<td>upper re-sternotomy (inverted "T")</td>
<td>21 patients (62%) had previous coronary artery bypass grafts (CABG) and 14 (41%) had previous valve surgery</td>
<td>no intraoperative or valve-related complications; no conversion to full re-sternotomy; 2 (5.9%) early deaths: 1 arrhythmia and 1 stroke; no reoperation for bleeding; morbidity: 3 (9%) new onset atrial fibrillation (AF), 3 pacemaker implantations (9%), 2 deep sternal wound infections (6%); median ICU stay: 1 day; median hospital stay: 7 days; at follow-up (100 % complete, median 19 months): 1 (3%) late deep sternal wound</td>
<td>mini-AVR associated with low morbidity and mortality.</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Study Design</td>
<td>Patient Details</td>
<td>Surgical Approach</td>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharony et al., 2006 (36)</td>
<td>Retrospective, Level III</td>
<td>161 patients via mini-thoracotomy for valve surgery (aortic = 61; mitral = 100) compared with 337 patients who had valve surgery via SS (aortic = 160; mitral = 177)</td>
<td>Right anterior mini re-thoracotomy</td>
<td>Hospital mortality was lower for mini-AVR: 5.6% (9/161) versus 11.3% (38/337) (univariate, p=0.04); mean CPB time (p=0.15) and Aox times similar (0.45), no difference in stroke rates (p=1.00); deep wound infection rates wound infections (0% vs 2.4%, p = 0.05), less transfusion (p=0.02) and shorter hospital stay (p=0.009) in mini-AVR patients; higher 5-year survival with mini-AVR (92.4 ± 2% vs 86.0 ± 2%, respectively, p = 0.08)</td>
<td>Incidence of congestive heart failure, renal disease, and non-elective procedures were higher in the SS group; in multivariate analysis (odds ratio: 95% confidence intervals, p value): COPD (p = 0.001), renal disease (p=0.01), cerebrovascular disease (p=0.04), and ejection fraction<30% (p = 0.06) associated with mini-AVR yields less hospital morbidity, decreased hospital length of stay, and slightly favourable mid-term survival</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Infection, 2.32 (6%) late cardiac deaths.
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Patients Description</th>
<th>Procedure Details</th>
<th>Outcome Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakir et al., 2007 (37)</td>
<td>Retrospective. Level III</td>
<td>19 consecutive patients who had mini-AVR</td>
<td>J-sternotomy</td>
<td>Mean CPB: 133.1 ± 54.4 and mean AoX: 87.4 ± 32.7; mean intubation time was 1.5 ± 1.4 days, mean ICU stay: 2.9 ± 2.6; mean hospital stays: 12.9 ± 5.7 days, median chest drain output: 550 ml, 4 revisions for bleeding; 2 hospital deaths (5%), 1 sternal wound infection, 3 patients had new-onset AF</td>
</tr>
<tr>
<td>Tabata et al., 2008 (38)</td>
<td>Retrospective. Level III</td>
<td>146 patients, minimally invasive aortic valve surgery</td>
<td>upper re-sternotomy</td>
<td>Median CPB: 150 minutes; mean AoX: 80 minutes; 4 patients: conversion to full sternotomy; operative mortality was 4.1% (6/146); reoperation for bleeding: 0.7% (1/146); blood transfusion: More than 1 previous operation in 13 (8.9%); 19 patients (13%) underwent concomitant procedures: CABG, mitral valve repair or re-do mini-AVR feasible and safe procedure with avoidance of injury to previous coronary grafts</td>
</tr>
<tr>
<td>Dell'Amore et al., 2009 (39)</td>
<td>Retrospective. Level IV</td>
<td>10 mini-AVR patients</td>
<td>upper j-shaped mini re-sternotomy</td>
<td>All patients had previous CABG with all grafts patent.</td>
</tr>
<tr>
<td>Gaeta et al., 2010 (40)</td>
<td>Retrospective. Level III</td>
<td>16 patients that had mini-AVR</td>
<td>J mini-re-sternotomy in 15 patients and inverted “T” mini-re-sternotomy in 1 patient.</td>
<td>16 patients with previous CABG and patent LIMA to LAD graft.</td>
</tr>
<tr>
<td>Mikus et al., 2013 (41)</td>
<td>Retrospective. Level III</td>
<td>90 patients who underwent reoperative AVR: 38 mini-aVR and 52 SS.</td>
<td>upper j-shaped mini re-sternotomy</td>
<td>46 had patent bypass grafts and 44 previously had heart valve replacement or repair.</td>
</tr>
<tr>
<td>Kaneko et al., 2014 (42)</td>
<td>Retrospective. Level III</td>
<td>105 patients, aged > 80 years, isolated valve surgery only: 51 mini AVR and 54 SS.</td>
<td>upper hemi re-sternotomy</td>
<td>6 patients (5.7%) had reoperation for bleeding, 4 (3.8%) permanent stroke, 4 (3.8%) new renal failure, 22 (21.0%) new-onset atrial fibrillation; operative mortality was 9.2% in the SS group and 3.9% in the mini-AVR group (p=0.438); survival benefit at both 1 year (79%±11.7% vs 92%±7.8%) and 5 years (38% ±17.6% vs 65%±15.7%, p=0.028).</td>
</tr>
<tr>
<td>Gosev et al., 2015 (43)</td>
<td>Retrospective, Level III</td>
<td>101 patients, isolated valve surgery: 34 mini AVR and 67 SS</td>
<td>upper hemi-sternotomy</td>
<td>All patients had previous AVR: 57 were bioprosthesis and 44 mechanical; shorter operative for mini-AVR vs SS: 330 min vs 356 min, p = 0.053; mini-AVR patients had shorter ventilation time (5.7 h vs 8.4 h; p = 0.005), ICU stay (37 h vs 63 h; p ≤ 0.001) and hospital length of stay (6.5 days vs 8.0 days; p = 0.038); operative mortality: 1 SS and 0 mini-AVR; survival at 1 and 5 years for mini-AVR versus SS: 100% (95% CI 100100) and 100% (95% CI 100100) vs 93.9% (95% CI 88.299.7) and 85.0% (95% CI 75.194.9), respectively (p = 0.041).</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Phan et al., 2014 (44)</td>
<td>Meta-analysis, Level II</td>
<td>441 mini-AVR patients from 11 studies.</td>
<td>various: upper ministernotomy, “J” ministernotomy, mini-thoracotomy, upper mini-thoracotomy (“T” and L)</td>
<td>In-hospital mortality in hospital mortality 0-9.5%, no difference mini-AVR vs SS (RR, 0.77; 95% CI, 0.39-1.54; P=0.46); similar stroke rates: 2.6-8%; no difference in rates of pacemaker implantation, renal failure and reoperation</td>
</tr>
</tbody>
</table>
for bleeding; similar CPB durations and AoX times; no difference in hospital stays.
Table 3 Mini-AVR in patients with high cardiac surgery risk score

<table>
<thead>
<tr>
<th>Author, date</th>
<th>Study type and level of evidence</th>
<th>Patient group</th>
<th>Cardiac Risk Score</th>
<th>Minimal access approach</th>
<th>Outcomes</th>
<th>Comment</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridgewater et al., 1998 (46)</td>
<td>Retrospective, level IV</td>
<td>14 patients (median age 78) mini-AVR patients compared with a historical CAVR group (n=14).</td>
<td>Mean Parsonnet score of 18%</td>
<td>Transverse sternotomy</td>
<td>AoX and CPB times (67 minutes and 92 minutes for mini-AVR versus 46 minutes and 66 minutes respectively for SS AVR, p=0.001); hospital stay; median 12 days for mini-AVR vs 8 days for SS AVR, P = 0.025; 2 deaths vs 0 (p=0.16) in the mini-AVR group, in the mini-AVR group: 2 re-explorations for bleeding, 3 new paravalvular leaks compared to none in the control group (p=0.07), 1 patient</td>
<td>Patients matched for surgeon, age, sex and Parsonnet score.</td>
<td>A greater level of morbidity and mortality is associated with mini-AVR</td>
</tr>
</tbody>
</table>

Abbreviations: AVR- aortic valve replacement; mini-AVR- minimally invasive aortic valve replacement; SS – standard sternotomy; CAVR- aortic valve replacement via median sternotomy; CPB – cardiopulmonary by-pass; AoX – aortic cross clamp; IQR – interquartile range; ICU – intensive care unit; AKI – acute kidney injury; PPM – permanent pacemaker; AF- atrial fibrillation.
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>n Patients</th>
<th>Patient Stratification</th>
<th>J-shaped mini-sternotomy</th>
<th>Risk Group Comparison</th>
<th>No Differences in</th>
<th>In High Risk Patients Using a Minimally Invasive Approach Proves Beneficial in Terms of Cardiac Rhythm Disturbation</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Smet et al., 2004 (47)</td>
<td>Retrospective study, Level III</td>
<td>100 patients mini-AVR and 99 patients SS AVR;</td>
<td>Patient stratified into low, medium and high risk groups according to EuroSCORE; high risk patients: 51 mini-aVR vs 40 SS AVR.</td>
<td>J-shaped mini-sternotomy</td>
<td>In the high risk group: more CAVR patients had new onset AF: 15 (29.4%) vs 21 (52.5%), p=0.001 while more neurological events occurred in the mini-aVR group: 3 (5.8%) vs 1 (2.5%), p=0.001; no differences in terms of mortality, sternal or other infection.</td>
<td>overall no differences in: AoX time, CPB time, ICU blood loss, ICU and hospital stays.</td>
<td>In high risk patients using a minimally invasive approach proves beneficial in terms of cardiac rhythm disturbance.</td>
</tr>
<tr>
<td>Grossi et al., 2008 (48)</td>
<td>Retrospective study, Level III</td>
<td>731 patients with EuroSCORE of 7 or higher undergoing isolated mini-aVR</td>
<td>mean EuroSCORE was 9.7 (median, 10), and the mean logistic EuroSCORE was 17.2%.</td>
<td>right anterior mini-thoracotomy in 436 (92.9%), upper mini-sternotomy approach in 33 (7.1%)</td>
<td>actual hospital mortality was 7.8% (57 of 731); in multivariate analysis: ejection fraction of < 30 % (p =0.002; odds ratio [OR], 3.13), chronic obstructive pulmonary disease (p=0.019; OR, 2.14),</td>
<td>single arm design</td>
<td>Logistic EuroSCORE greatly over predicts mortality in these patients that could benefit from mini-AVR rather than TAVI.</td>
</tr>
</tbody>
</table>
and peripheral vascular disease (p=0.048; OR, 2.13) were predictors of hospital mortality; freedom from all-cause death (including hospital mortality) was 72.4% at 5 years (152 patients); age (p < 0.001), previous cardiac operations (p < 0.014; OR, 1.51), renal failure (p < 0.002; OR, 2.37), and chronic obstructive pulmonary disease (p < 0.007; OR, 1.30) were predictors of worse survival.

Zierer et al., 2009 (49)

<p>| Retrospective study, Level III | 30 mini-AVR patients compared to 21 TAVI patients. | EuroSCORE predicted risk for mortality (mini-AVR vs SS AVR): 35±9% vs 38±14% | L-Shaped partial upper sternotomy | Operative time (min) for TAVI vs mini-AVR: 154±33 vs 208±28, p=0.004, no difference in early mortality; ventilation time (hours), TAVI vs mini-AVR): 6±2 vs 18±3, p <.001; ICU stay (days, TAVI vs 233 (31.9%) had had previous cardiac procedures; age, preoperative comorbidities, and perioperative faster postoperative recovery after TAVI, with comparable mortality or morbidity to mini-AVR. |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Patients</th>
<th>Methods</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martens et al., 2009 (50)</td>
<td>Retrospective, Level IV</td>
<td>22 patients, age >79, sutureless mini-AVR using sutureless ATS 3f</td>
<td>Enable aortic bioprosthesis</td>
<td>Mean logistic EuroSCORE was 13</td>
</tr>
</tbody>
</table>
| Concistre et al., 2013 (51) | Retrospective, Level IV | 13 patients, mean age 77±3.9 years, sutureless mini-aVR, ATS 3f | Enable aortic bioprosthesis | Mean, SD logistic EuroSCORE was 15%±3.5%. V-type mini-sternotomy interrupted at the second intercostal space | mean CPB time: 100.2±5.3; AoX: 66.4±18.6 minutes, no hospital mortality, short term mean ± SD pressure gradient: 14±4.9 mm Hg (median follow-up time was 4 | Sutureless mini-AVR in high risk elderly patients is feasible, safe and with good haemodynamic results.
<table>
<thead>
<tr>
<th>Study</th>
<th>Study Design</th>
<th>Patients</th>
<th>Valve Type</th>
<th>EuroSCORE</th>
<th>Surgical Access</th>
<th>CPB Time</th>
<th>AoX</th>
<th>Blood Loss</th>
<th>Blood Products</th>
<th>Length of Stay</th>
<th>Mortality</th>
<th>AKI</th>
<th>Stroke</th>
<th>AF</th>
<th>PPM</th>
<th>Deep Sternal Wound Infection</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burdett et al., 2014</td>
<td>Retrospective, Level III</td>
<td>98 patients mini-AVR and 93 patients CAVR</td>
<td>mean logistic EuroSCORE mini-AVR 7.15 vs SS AVR 6.55, P = 0.47.</td>
<td>manubrium-limited sternotomy</td>
<td>mean CPB time (mini-AVR vs SS AVR): 88 vs 78 min, P = 0.0004; mean AoX (mini-AVR vs SS AVR): 66 vs 60 min, P = 0.0078, less postoperative blood loss (332 vs 513 ml, P = 0.00021); mini-AVR less likely to require blood products (24 vs 36%, P = 0.042), no difference in: length of stays, survival, need for dialysis for AKI, stroke, AF rates, PPM rates or deep sternal wound infection.</td>
<td>mini-AVR confers similar outcomes to CAVR; additional benefits with mini-AVR in reducing blood loss and need for transfusion.</td>
<td></td>
</tr>
<tr>
<td>Miceli et al., 2016</td>
<td>Retrospective, propensity matched, Level III</td>
<td>37 patients mini-AVR with Perceval S sutureless valve compared to 37 TAVI group</td>
<td>mini-AVR vs TAVI median, IQR EuroSCORE: 14.2 (7.3–18.7) and 14 (11.1–21.5) respectively.</td>
<td>right anterior mini-thoracotomy</td>
<td>in-hospital mortality (mini-AVR vs TAVI): 8.1% (n = 3) vs 0, p=0.25 and no difference in stroke rates, conversion to full sternotomy, major bleeding, renal</td>
<td>No severe paravalvular leaks in both groups</td>
<td>Mini-AVR with a trend of better early outcomes and mid-term survival compared with TAVI.</td>
<td></td>
</tr>
</tbody>
</table>
failure, ICU stay; ward stay shorter for TAVI group (4.5[3-6] vs 7 [6-8]), p<0.01; more paravalvular leaks in TAVI group (p<0.01); no difference in haemodynamic performance, AV block rates or PPM insertion rates; 1 year survival (mini-AVR vs TAVI): 91.6 vs 78.6% and 2 year survival: 91.6 vs 66.2%, p=0.1
<table>
<thead>
<tr>
<th>High risk group</th>
<th>Author, date and journal</th>
<th>Study type and level of evidence</th>
<th>Patient group</th>
<th>Outcomes</th>
<th>Outcomes</th>
<th>Comments</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor lung function</td>
<td>Santana et al., 2012 (72)</td>
<td>Retrospective, Level III</td>
<td>165 patients undergoing isolated valve surgery who had diagnosed COPD. 100 patients mini-AVR vs 65 patients SS AVR.</td>
<td>mini-sternotomy</td>
<td>Of the 165 patients with diagnosed COPD, in hospital mortality (mini-aVR vs CAVR): 1% vs 5%, p=0.14; composite of postoperative complications reduced in mini-aVR (30 versus 54%, P = 0.002); median ICU stay (mini-AVR vs CAVR): 47 h (IQR 40–70) versus 73 h (IQR 51–112), P < 0.001; median postoperative length of stay (mini-aVR vs SS AVR): days (IQR 5–9)</td>
<td>composite of postoperative complications included: death, renal failure, prolonged ventilation, reintubation, sternal deep wound infection, sepsis, pneumonia, bleeding requiring re-operation, stroke, atrial fibrillation</td>
<td>In patients with diagnosed COPD a minimally invasive approach is beneficial in terms of length of hospital stay and reduced post-operative complications.</td>
</tr>
</tbody>
</table>

Table 4 Mini-AVR in patients with poor lung function, pulmonary HTN, poor LV, renal failure and in patient requiring concomitant procedures. Abbreviations: AVR- aortic valve replacement; mini-AVR- minimally invasive aortic valve replacement; SS – standard sternotomy; CAVR- aortic valve replacement via median sternotomy; CPB – cardiopulmonary by-pass; A0X – aortic cross clamp; IQR – interquartile range; ICU – intensive care unit; AKI – acute kidney injury; PPM – permanent pacemaker; AF- atrial fibrillation; COPD – chronic obstructive pulmonary disease; FEV1 – forced expiratory volume in 1 second.; TAVI - transcatheter aortic valve insertion; eGFR – estimated glomerular filtration rate.
Albacker et al., 2014 (57) | Retrospective, Propensity matched, Level III | 223 propensity-matched pairs of patients with measured FEV1%; mini-aVR versus CAVR identified from 6931 consecutive isolated AVRs. | partial upper J-incision | patients with chronic lung disease had a longer median ICU stay (41 vs 27 hours, p=0.001) and postoperative length of stay (7.1 vs 6.1 days, P<.0001); at normal values of FEV1% no difference between mini-aVR and CAVR however at progressively lower FEV1% length of stays were shorter with mini-AVR; trend toward better survival with mini-AVR; trend toward better survival with mini-AVR (93% vs 89% at 1 year, p=0.07) but survival at
| Patients with poor pulmonary function pre-operatively would benefit from mini-AVR in terms of ITU length of stay and overall length of hospital stay; better survival with mini-AVR as lung function decreases.
<p>| Pulmonary HTN | Gosain et al., 2016 (59) | Retrospective, Level III | Right mini-thoracotomy | 5 years was no longer different (p=0.9), greatest survival advantage persisting at 5 years in patients with FEV1%<50. | 569 patients (mean age 72±11) following minimally invasive aortic/mitral valve replacement with mild to severe pulmonary HTN. | mild/moderate pulmonary HTN (n=474) vs severe pulmonary HTH (n=95): no difference in operative mortality, postoperative stroke rates; need for intraoperative transfusion or ventilation times; ICU length of stay shorter for mini-AVR (46 ± 10 vs 70 ± 12, p<0.001) but no difference in hospital length of stay (p=1). | mean pulmonary artery pressure (mPAP) was classF4:G4ified as mild (mPAP 25-29mmHg), Moderate (30-39mmHg), Severe (mPAP >39mmHg) | Mini-AVR safe and feasible in patients with PH. |</p>
<table>
<thead>
<tr>
<th>Renal dysfunction</th>
<th>Valdez et al., 2013 (63)</th>
<th>Retrospective, Level III</th>
<th>688 patients with chronic kidney stage 2 to 5 who underwent either minimally invasive valve surgery (510, 74%) or conventional valve surgery (178, 26%)</th>
<th>Right mini-thoracotomy for mini-AVR and left mini-thoracotomy for mitral valve surgery.</th>
<th>less composite complication with mini-AVR: (33.1% vs 49.4%; odds ratio, 0.5; p<0.01); shorter intensive care unit (48 [IQR, 33-74] hours vs 71 [IQR, 42-96] hours; p<0.01); hospital stay (8 [IQR, 6-9] days vs 10 [IQR, 8-15] days; p<0.001); lower incidence of acute kidney injury (8% vs 14.7%; odds ratio, 0.5; P ≤ 0.01); in multivariable analysis, minimally invasive valve surgery associated with a 60% reduction in the risk of postoperative acute kidney injury</th>
<th>composite of complications included: AF, pneumonia, reintubation, stroke, sepsis, wound infection, prolonged ventilation, bleeding requiring reoperation.</th>
<th>minimally invasive valve surgery for patients with pre-existing CKD stage 2-5 associated with reduced postoperative complications and risk of acute on chronic renal failure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haldenwang et al., 2014 (64)</td>
<td>Retrospective, Level III</td>
<td>70 patients, age>75 years, undergoing TAVI vs 56 mini-AVR</td>
<td>“J”-shape sternotomy</td>
<td>58 patients developed a risk of AKI (Creatinine > 03 mg/dL or 1.5–1.9-fold creatinine increase from baseline) and 13 had renal injury or failure (>2-fold creatinine increase)</td>
<td>EuroSCORE II and preoperative creatinine higher for TAVI vs mini-AVR (p<0.01), eGFR higher in mini-aVR</td>
<td>A higher risk for AKI after TAVI should be considered in elderly patients.</td>
<td></td>
</tr>
</tbody>
</table>
from baseline): higher AKI risk for TAVI (odds ratio, OR=2.58; 95% confidence interval, CI=1.18, 5.63; p=0.017), no correlation between AKI and early mortality.

patients (p=0.01) but these parameters had no impact on AKI on further analysis (logistic regression).

Poor LV Tabata et al., 2007 (65) Retrospective, propensity matched, Level III 140 patients with ejection fraction ≤40% undergoing isolated AVR: 73 patients mini-AVR and 67 CAVR. Upper hemi-sternotomy operative mortality was comparable between mini-AVR and CAVR (2.4% vs 4.8%, p=0.562); no difference in: CPB time, AoX times, reoperation for bleeding, blood transfusion requirement, ventilation times, perioperative MI, renal failure, cerebrovascular events, deep sternal wound infection or length of hospital stay, or discharge to home rates mini-AVR in patients with poor left ventricular function can be performed safely with comparable results to CAVR.
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>Procedure</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mihaljevic et al., 2014 (66)</td>
<td>Retrospective, Propensity matched, Level III</td>
<td>matched pairs of patients with NYHA class III-IV who underwent minimally invasive valve surgery (n=185) vs 185 pairs conventional surgery; further adjustment for surgeons: 139 minimally invasive valve surgery vs 138 conventional surgery.</td>
<td>Upper hemi-sternotomy</td>
<td>minimally invasive surgery versus conventional sternotomy provided shorter AoX time (59±27 vs 64±26 minutes), CPB time (75±35 vs 86±34), ICU stays (24 vs 43 hours, p=0.007); hospital morbidity, mortality, long-term survival were similar; after adjusting for surgeon: all outcomes were similar, including AoX times, CPB times, ICU, hospital stays and survival.</td>
</tr>
<tr>
<td>Obese patient</td>
<td>Santanna et al., 2011 (58)</td>
<td>160 obese patients with (body mass index of greater than 30 kg/m2) undergoing</td>
<td>Right minithoracotomy</td>
<td>composite postoperative complications: 15 (23.49%) versus 49 (51.0%), p=0.034, in the minimally invasive group versus median</td>
</tr>
</tbody>
</table>

Minimally invasive surgery in obese patients has a lower morbidity and mortality when compared with median sternotomy approach.
isolated valve surgery: 64 underwent minimally invasive isolated valve surgery compared to 96 via conventional surgery

- minimally invasive valve surgery associated with: lower incidence of acute renal failure (0 vs 6 patients [6.25%], p 0.041), shorter ventilation times: prolonged intubation (12 [18.7%] vs 33 [34.3%], p=0.049); lower reintubation rates (3 [4.68%] vs 15 [15.6%], p=0.032), less deep sternal wound infections: (0 vs 4 [4.1%], p=0.098), and death (0 vs 8 [8.3%], p 0.041).

Acharya et al., 2016 (68)

| Retrospective, Level III | 90 patients receiving mini-AVR. Univariate linear regression analysis performed to examine the effects of BMI (≥25 vs <25) on post-

<p>| J-shaped sternotomy | overall no peri-operative mortality, myocardial infarction or stroke; patients with BMI≥25 had: longer AoX times (p=0.0218), trend towards longer CPB times (p=0.0615), higher incidence of hospital acquired pneumonia (p=0.020) and new onset of AF (p=0.036); no effect of single arm study design | mini-aVR can reduce obesity related complications |
| Concomitantprocedure | Totaro et al., 2009 (69) | Retrospective, Level III | 1126 procedures minimally invasive aortic procedures: 695 patients undergoing isolated aortic valve surgery (61%) vs 77 patients who had re-do mini-AVR vs complex procedures performed in 354 (32%). | Upper ministernotomy | overall in-hospital mortality was 4.1%; complex minimally invasive surgery associated with significantly higher postoperative mortality (24 patients, 6.7%) than isolated procedures or re-do mini-AVR; ventilation times (p<0.05), ICU stays (P<0.05) and bleeding (p<0.05) higher for complex group vs isolated or re-do groups; hospital stay longer for complex groups vs isolated AVR (p<0.05, complex procedures included: double valve replacement-repair, ascending aorta-aortic arch replacement, aortic root replacement, aortic dissection, AVR combined with coronary surgery, and complex redo procedures. | Minimally invasive approach for complex procedures safe and feasible. |</p>
<table>
<thead>
<tr>
<th></th>
<th>Study Design</th>
<th>Number of Patients</th>
<th>Procedure Details</th>
<th>Complications</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elmahdy et al., 2010 (71)</td>
<td>Retrospective, Level IV</td>
<td>6 patients undergoing minimally invasive triple valve surgery</td>
<td>2 early deaths; 2 patients had new onset of AF; no postoperative cerebrovascular accidents, myocardial infarctions or acute kidney injuries; median ICU stay: 62 h (IQR: 50-111 h); median hospital stay: 12 days (IQR: 7-23 days)</td>
<td>right anterior thoracotomy approach</td>
<td>5 mini-AVR and 1 minimally invasive aortic valve repair combined with tricuspid valve repair and mitral valve repair.</td>
</tr>
<tr>
<td>Kaneko et al., 2012 (70)</td>
<td>Retrospective, Level III</td>
<td>109 patients undergoing mini-AVR combined with aortic surgery.</td>
<td>Operative mortality was 2.8% (n = 3); 4 (3.7%) reoperations for bleeding; mean CPB time: 152 ±61 minutes; AoX time: single arm study design; associated aortic procedures included: supra</td>
<td>Upper hemi-sternotomy</td>
<td>Combined with aortic surgery is safe and feasible and associated</td>
</tr>
<tr>
<td>coronary ascending aortic replacement (n=65), ascending and proximal arch replacement, (n=8 patients), aortoplasty (n=11 patients), Bentall procedure (n=8), root enlargement (n=13)</td>
<td>with good early outcomes.</td>
<td>108±47 minutes; 2 (1.8%) myocardial infarctions, 2 (1.8%) new-onset renal failure; mean length of stay was 7.1±5.6 days; 1-year survival was 96.2% and 5-year survival was 92.4%;</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Author Contributions:

1. (I) Conception and design: Daniel Fudulu, Hunaid A Vohra
2. (II) Administrative support: Daniel Fudulu, Harriet Lewis
3. (III) Provision of study materials or patients: Daniel Fudulu, Harriet Lewis
4. (IV) Collection and assembly of data: Daniel Fudulu, Harriet Lewis
5. (V) Data analysis and interpretation: Daniel Fudulu, Hunaid A Vohra
6. (VI) Manuscript writing: Daniel Fudulu, Harriet Lewis, Umberto Benedetto, Massimo Caputo, Gianni Angelini, Hunaid A Vohra
7. (VII) Final approval of manuscript: Daniel Fudulu, Harriet Lewis, Umberto Benedetto, Massimo Caputo, Gianni Angelini, Hunaid A Vohra

Funding statement

The study was supported by the British Heart Foundation and the NIHR Bristol Cardiovascular Biomedical Research Unit

Conflicts of Interest Statement.

None declared
References

