
Publisher's PDF, also known as Version of record

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It will be available online via BioMedEng at https://www.biomedeng18.com/conference-proceedings. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
The Potential of Director Theory for Modelling Blood Flow in the Cardiovascular System

M.J. Webster¹, A.M. Gambaruto¹, A.R. Champneys²

¹ Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TH. ² Department of Engineering Maths, University of Bristol, Bristol, BS8 1TH, UK

Introduction
We are looking at using director theory (also known as Cosserat theory) as an alternative to classical 1D models for arterial modelling of the human cardiovascular system with the intent of balancing accuracy with low computational cost.

Methods
The director theory is a hierarchical, theory where the velocity is approximated by a series of vectors that depend only on the co-axial direction and time, multiplied by shape functions that depend only on the cross-section. Director theory can retain more of the structure of complex geometries than classical 1D modelling. Preliminary discussion and comparison of director theory to classical 1D models are outlined in Robertson and Sequeira [1].

Results & Discussion
The first results we obtained by applying director theory to fluid, following the approach of Caulk and Naghdi [2], were for Poiseuille flow and steady swirling flow in a straight pipe of constant radius.

We now begin to look at curvature, following the approach of Green et al [3]. Fig 1 shows plots of the shape functions for a toroidally curved pipe of circular cross-section.

Conclusion
We show in this abstract the potential for director theory for modelling the cardiovascular system without resorting to the over simplification required by classical 1D modelling.

References

Acknowledgments
EPSRC n_1823818