
Peer reviewed version

Link to published version (if available):
10.1021/acs.jctc.8b00337

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via ACS at https://pubs.acs.org/doi/10.1021/acs.jctc.8b00337. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
A wavefunction-like correlation model for use in hybrid density functionals

Timothy C. Wiles and Frederick R. Manby*

Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK

E-mail: fred.manby@bristol.ac.uk

Abstract

We present Unsöld-W12 (UW12), an approximation to the correlation energy of molecules that is an explicit functional of the single-particle reduced density matrix. The approximation resembles one part of modern explicitly-correlated second-order Møller-Plesset (MP2) theory, and is intended as an alternative to MP2 in double-hybrid exchange-correlation functionals. Orbital optimization with UW12 is straightforward, and the UW12 energy is evaluated without a double summation over unoccupied orbitals, leading to a faster basis-set convergence than is seen in double-hybrid functionals. We suggest a one-parameter hybrid exchange-correlation functional XCH-BLYP-UW12. XCH-BLYP-UW12 is similar to double-hybrid functionals, but contains UW12 correlation instead of MP2 correlation. We find that XCH-BLYP-UW12 is more accurate than the existing double-hybrid functional B2-PLYP for small-molecule main-group reaction barrier-heights, and has roughly the same accuracy as the existing hybrid functional B3LYP for atomization energies.

I. INTRODUCTION

In hybrid density-functional theory (DFT), the exchange-correlation energy is expressed as a sum of semi-local(DFT) and non-local (nl) parts

\[
E_{xc} = a_{xc}^{DFT} E_{xc}^{DFT} + a_{xc}^{nl} E_{xc}^{nl},
\]

where \(E_{xc}^{DFT} \) is a functional of the electron density \(\rho(x) \), whereas \(E_{xc}^{nl} \) is a functional of the single-particle reduced density matrix (1-RDM)

\[
\rho(x|x') = \sum_i \phi_i^*(x) \phi_i(x'),
\]

where \(\{ \phi_i \} \) are occupied Kohn-Sham spin-orbitals (we use spin-orbitals throughout unless otherwise stated). Typically, the non-local part \(E_{xc}^{nl} \) is chosen to be the Hartree-Fock exchange energy given by

\[
E_{xc}^{HF} = -\frac{1}{2} \sum_{\sigma} \int dr_1 \int dr_2 |\rho_\sigma(r_1|r_2)|^2 |
\]

where \(\sigma = \uparrow, \downarrow \) is a spin variable.

For instance, the B3LYP hybrid functional \(^3\) is defined as

\[
E_{xc}^{B3LYP} = (1 - a_x^{HF} - a_x^{B88}) E_x^S + a_x^{HF} E_x^{HF} + a_x^{B88} E_x^{B88} + (1 - a_c^{LYP}) E_c^{VWN} + a_c^{LYP} E_c^{LYP}
\]

where \(E_x^S \) is the Slater-Dirac exchange functional, \(E_c^{VWN} \) is the Vosko-Wilk-Nusair (VWN) correlation functional \(^4\), \(E_c^{LYP} \) is the Lee-Yang-Parr (LYP) correlation functional \(^5\), and \(E_x^{B88} \) is the Becke’s 1988 exchange functional \(^6\). The adjustable parameters \(a_x^{HF}, a_x^{B88}, a_c^{LYP} = 0.20; 0.72; 0.81 \) were fit \(^2\) to the 56 atomization energies, 42 ion-
ization potentials, 8 proton affinities, and the 10 first-row total atomic energies of Ref. 8. Despite being widely used throughout chemistry, B3LYP systematically underestimates reaction barrier-heights due to an incomplete cancellation of the self-interaction error.9

The B-HH-LYP10 hybrid functional

\[E_{xc}^{B-HH-LYP} = \frac{1}{2} E_{x}^{B88} + \frac{1}{2} E_{x}^{HF} + E_{c}^{LYP} \]

(5)

is more accurate than B3LYP for reaction barrier-heights, but systematically underestimates atomization energies. This phenomenon has been attributed to the larger fraction of exact exchange in B-HH-LYP \((a_{x}^{HF} = 0.50) \) than in B3LYP \((a_{x}^{HF} = 0.20) \). Is it possible to make a functional that is accurate for both reaction barrier-heights and atomization energies?1213

For some time, there have been efforts to overcome these problems by adding additional non-local terms to the energy expression. In double-hybrid DFT, the non-local part of the exchange-correlation energy is expressed as

\[E_{xc}^{nl} = a_{x}^{HF} E_{x}^{HF} + a_{c}^{virt} E_{c}^{virt} \]

(6)

where \(E_{c}^{virt} \) is a non-local model of the correlation energy that depends on the unoccupied (virtual) orbitals and their eigenvalues \(\{\phi_{a}, \varepsilon_{a}\} \), in addition to the occupied orbitals and eigenvalues \(\{\phi_{i}, \varepsilon_{i}\} \). Addition of \(E_{c}^{virt} \) leads to a so-called “fifth-rung” functional.9 In 2006, Grimme14 proposed choosing \(E_{c}^{virt} \) to be the second-order Møller-Plesset (MP2) correlation energy \(E_{c}^{PT2} \), building on the earlier development of Görling-Levy perturbation theory1516 and related composite methods by Truhlar1718.

The resulting B2-PLYP double-hybrid functional is defined as14

\[E_{xc}^{B2-PLYP} = (1 - a_{x}^{HF}) E_{x}^{B88} + a_{x}^{HF} E_{x}^{HF} \]

\[+ (1 - a_c) E_{c}^{LYP} + a_c E_{c}^{PT2} \]

(7)

where the empirical parameters \(a_{x}^{HF} = 0.8033, a_{c} = 0.3211 \) are optimized for the heats of formation of the G2/97 set. Similarly, the 1DH-BLYP11 and the (more recent) LS1-DH19 double-hybrid functionals are defined as

\[E_{xc}^{1DH-BLYP} = (1 - \lambda) E_{x}^{B88} + \lambda E_{x}^{HF} \]

\[+ (1 - \lambda^2) E_{c}^{LYP} + \lambda^2 E_{c}^{PT2} \]

(8)

\[E_{xc}^{LS1-DH} = (1 - \lambda) E_{x}^{B88} + \lambda E_{x}^{HF} \]

\[+ (1 - \lambda^3) E_{c}^{LYP} + \lambda^3 E_{c}^{PT2} \]

(9)

where in each case \(\lambda \) is an adjustable parameter between 0 and 1. To evaluate Eqns. 7, 8, and 9, the Kohn-Sham orbitals \(\{\phi_{a}\} \) are first optimized in a self-consistent manner ignoring the MP2 correlation energy \(E_{c}^{PT2} \) term. The \(E_{c}^{PT2} \) energy is then calculated using the resulting orbitals and eigenvalues \(\{\phi_{a}, \varepsilon_{a}\} \).

In 2008, Zhang et al.20 proposed an alternative methodology. They used the orbitals and eigenvalues from a B3LYP calculation to calculate the \(E_{c}^{PT2}, E_{x}^{HF}, \) and \(E_{xc}^{DFT} \) components of the energy, and constructed the XYZG3 functional

\[E_{xc}^{XYZG3} = (1 - a_{x}^{HF} - a_{x}^{S}) E_{x}^{B88} \]

\[+ (1 - a_{c}^{PT2}) E_{c}^{LYP} + a_{x}^{S} E_{x}^{S} \]

\[+ a_{x}^{HF} E_{x}^{HF} + a_{c}^{PT2} E_{c}^{PT2} \]

(10)

where the empirical parameters \(a_{x}^{HF} = 0.8033, a_{x}^{S} = -0.0140, a_{c}^{PT2} = 0.3211 \) are optimized for the heats of formation of the G3/99 set. One advantage of XYZG3 over B2-PLYP is that XYZG3 correctly models the integer discontinuity for systems with non-integer charge.22

Limitations of existing hybrid and double-hybrid functionals

Even the most recent conventional hybrid functionals suffer from self-interaction error, meaning they are surpassed in accuracy by double-hybrid functionals in almost all cases (particularly barrier-heights and non-bonded interactions). After an exhaustive study of both hybrid and double-hybrid density functionals, the authors of Ref. 24 recommend that double-hybrids should be used whenever possible. However, implementing the MP2 energy expression efficiently is not a trivial task, and so double-hybrid
functionals are not available in many many popular electronic structure codes. They also concede that hybrid functionals have been shown to outperform double-hybrid functionals in transition-metal chemistry [24,26] — and that this is an ongoing area of research. It is somewhat unsatisfying that the electron density is not optimized using the full energy expression in the methods mentioned so far. This can lead to unphysical behaviour when spin-unrestricted calculations are performed [27–29]. Not only that, but the calculation of gradients and other first-order response properties is made more involved by the fact that the energy is not minimized (stationary) with respect to orbital rotations.

It should be mentioned that orbital-optimized double-hybrids have recently (since 2013) been developed to address this issue. The orbital-optimization is not trivial to implement, but leads to a better description of electron affinities, reaction barrier heights, and radical bond dissociations [20–22]. We hope to compare UW12 hybrids with orbital-optimized double-hybrids in the future.

Other disadvantages to using conventional MP2 include the explicit summation over the unoccupied Kohn-Sham orbitals \{\phi_a\} in Eqn. [11]. This gives double-hybrid functionals a slower basis-set convergence than hybrid functionals [9].

Our search should therefore be for new correlation models that can achieve chemical accuracy (when included in a hybrid density-functional), have only a few parameters, are easy to implement into existing electronic structure codes, can be orbital-optimised, have fast convergence with respect to basis, and low computation scaling.

In this paper we investigate the possibility of adding terms to \(E_{xc}^{nl}\) that have wavefunction-character (are similar to \(E_{xc}^{PT2}\)) but which depend only on occupied Kohn-Sham orbitals \{\phi_i\}. More specifically, we will seek expressions that are explicit functionals of the 1-RDM \(\rho(x|x')\). The total energy can thus be minimized with respect to \(\rho(x|x')\) in the usual Kohn-Sham manner.

II. THEORY

The Unsöld-W12 correlation energy

The second-order Møller-Plesset (MP2) correlation energy for a system (neglecting contributions from singly-excited determinants) is given by

\[
E_{c}^{PT2} = -\frac{1}{2} \sum_{ijab} \langle ij| r_{12}^{-1} |ab\rangle \langle ab| r_{12}^{-1} |ij\rangle \frac{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j}{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j} \tag{11}
\]

where \(|i\rangle, |j\rangle \equiv \phi_i, \phi_j\) are occupied Kohn-Sham spin-orbitals, and \(|a\rangle, |b\rangle \equiv \phi_a, \phi_b\) are unoccupied (virtual) spin-orbitals in an infinite single-particle basis. In principle, the set \{\phi_a\} is infinite. However, in most practical implementations of \(E_{c}^{PT2}\), finite basis sets are used. The ket \(|pq\rangle\) is defined as

\[
|pq\rangle = |pq\rangle - |qp\rangle. \tag{12}
\]

In the Unsöld approximation the denominator is approximated as a single characteristic energy gap \(\Delta\) to give

\[
E_{c}^{U} = -\frac{1}{2\Delta} \sum_{ijab} \langle ij| r_{12}^{-1} |ab\rangle \langle ab| r_{12}^{-1} |ij\rangle. \tag{13}
\]

The model implicitly expresses the amplitudes for double excitations in the form

\[
T_{ab}^{ij} \approx -\frac{1}{\Delta} \langle ij| r_{12}^{-1} |ab\rangle \tag{14}
\]

which, prima facie, is a terrible approximation. But without changing the structure of the theory, we can formulate models of the form

\[
T_{ab}^{ij} \approx \langle ij| w_{12} |ab\rangle \tag{15}
\]

where \(w_{12}\) is a two-electron operator to be determined. We arrive at the Unsöld-W12 (UW12) correlation energy \(E_{c}^{UW12}\)

\[
E_{c}^{UW12} = \frac{1}{2} \sum_{ijab} \langle ij| w_{12} |ab\rangle \langle ab| r_{12}^{-1} |ij\rangle. \tag{16}
\]
Note that \(E_{c}^{\text{UW12}} \) is linear in the operator \(w_{12} \), which we refer to as the “geminal” operator.

Removing the summation over unoccupied orbitals

In Eqn. [16] it appears that calculating \(E_{c}^{\text{UW12}} \) requires summing over the (infinite set of) unoccupied orbitals \(\{ \phi_{a} \} \). We now show that \(E_{c}^{\text{UW12}} \) can be expressed in terms of only the (finite set of) occupied orbitals \(\{ \phi \} \). First recognise that

\[
\sum_{ab} \langle ab | \langle ab \rangle = \sum_{pq} |pq\rangle \langle pq| + \sum_{ij} |ij\rangle \langle ij| - \sum_{ip} |ip\rangle \langle ip| - \sum_{ip} |pi\rangle \langle pi| \quad (17)
\]

is an exact identity, where \(\{ \phi_{p} \} \) is the (infinite) orthonormal set of all Kohn-Sham orbitals. Now recognise that the operator \(\sum_{p} |p\rangle \langle p| \) is the unit operator in the (infinite) space of single-particle wavefunctions. Substituting Eqn. [17] into Eqn. [16] we arrive at

\[
E_{c}^{\text{UW12}} = E_{c,2\text{el}}^{\text{UW12}} + E_{c,4\text{el}}^{\text{UW12}} + E_{c,3\text{el}}^{\text{UW12}} \quad (18)
\]

where

\[
E_{c,2\text{el}}^{\text{UW12}} = \frac{1}{2} \sum_{ijpq} \langle ij | w_{12} | pq \rangle \langle pq | r_{12}^{-1} | ij \rangle
\]

\[
= \frac{1}{2} \sum_{ij} \langle ij | w_{12} | r_{12}^{-1} \rangle \langle ij | \quad (19)
\]

\[
E_{c,3\text{el}}^{\text{UW12}} = - \sum_{ijkp} \langle ij | w_{12} | kq \rangle \langle kq | r_{12}^{-1} | ij \rangle
\]

\[
= - \sum_{ijk} \langle ij | w_{12} | r_{23}^{-1} | kji \rangle \quad (20)
\]

\[
E_{c,4\text{el}}^{\text{UW12}} = \frac{1}{2} \sum_{ijkl} \langle ij | w_{12} | kl \rangle \langle kl | r_{12}^{-1} | ij \rangle \quad (21)
\]

Note that this is an exact relation, and is made possible by the structure of the model in Eqn. [16]. Such a completeness relation is not possible in conventional MP2 theory (Eqn. [11]) due to the energy denominator \(1/(\varepsilon_{a} + \varepsilon_{b} - \varepsilon_{i} - \varepsilon_{j}) \).

We can also write the components of \(E_{c}^{\text{UW12}} \) as explicit functionals of the 1-RDM:

\[
E_{c,2\text{el}}^{\text{UW12}} = \int dx_{1} \int dx_{2} w_{12} r_{12}^{-1} \Gamma^{(2)}_{12|12} \quad (22)
\]

\[
E_{c,3\text{el}}^{\text{UW12}} = -2 \int dx_{1} \int dx_{2} \int dx_{3} \quad (23)
\]

\[
E_{c,4\text{el}}^{\text{UW12}} = \int dx_{1} \int dx_{2} \int dx_{3} \int dx_{4} \quad (24)
\]

where the two-particle reduced-density-matrix (2-RDM) is defined as

\[
\Gamma^{(2)}_{12|34} = \frac{1}{2!} \left| \begin{array}{cc} \rho_{1|3} & \rho_{1|4} \\ \rho_{2|3} & \rho_{2|4} \end{array} \right| \quad (25)
\]

and \(\rho_{1|2} \equiv \rho(x_{1}|x_{2}) \).

Note that Eqn. [20] contains three-electron integrals

\[
\langle pq | w_{12} r_{23}^{-1} | stu \rangle = \int dx_{1} \int dx_{2} \int dx_{3} \quad (22)
\]

\[
\begin{align*}
\phi_{q}^{*}(x_{1}) & \phi_{s}^{*}(x_{2}) \phi_{u}^{*}(x_{3}) \\
& w_{12} r_{23}^{-1} \rho_{q|s} \phi_{r}(x_{1}) \phi_{t}(x_{2}) \phi_{u}(x_{3}) \end{align*} \quad (26)
\]

These can be calculated efficiently using grids, as outlined in Part [8]. In Appendix [VIII], we show that the scaling for evaluating the Fock matrix using such grids is \(N^{4} \) (where \(N \) is the size of the system).

Relationship to MP2-F12

In explicitly-correlated second-order Møller-Plesset theory (MP2-F12), the linear term in the
Hylleraas functional is given by35

\[
E_{c}^{\text{MP2-F12}} = \frac{1}{2} \sum_{ijab} T_{ij}^{ab} \langle ab | r_{12}^{-1} | ij \rangle \\
+ \frac{1}{2} \sum_{ijklab} T_{ijkl}^{ab} \langle kl | f_{12} | ab \rangle \langle ab | r_{12}^{-1} | ij \rangle,
\]

(27)

where the indices \(\tilde{a} \tilde{b} \) run over the (finite) set \(\{ \phi_{a} \} \) of all unoccupied orbitals in the given atomic orbital basis, and the indices \(ab \) run over the (infinite) set \(\{ \phi_{a} \} \) of all unoccupied orbitals in a complete single-particle basis. Consider the case where the atomic orbital basis is minimal, such that the set \(\{ \phi_{a} \} \) is empty. The expression then becomes

\[
E_{c}^{\text{MP2-F12}} = \frac{1}{2} \sum_{ijklab} T_{ijkl}^{ab} \langle kl | f_{12} | ab \rangle \langle ab | r_{12}^{-1} | ij \rangle.
\]

(28)

If we set the MP2-F12 occupied-occupied amplitudes to be

\[
T_{ijkl}^{ab} = - (\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}),
\]

(29)

and the geminal \(f_{12} = - w_{12} \), then Eqn. 28 reduces to the UW12 correlation energy (Eqn. 16). It is worth noting that in the F12 literature the idea of using just the linear part (or \(V \)-term) of the second-order Hylleraas functional has been floated before36,37 but was generally discarded as not being sufficiently accurate in the context highly converged wavefunction-based correlation methods.

MP2 correlation energy as a Laplace-transform

The MP2 correlation energy (defined in Eqn. 11) can also be written as a Laplace transform16

\[
E_{c}^{\text{PT2}} = \int_{0}^{\infty} d\tau \ E_{c}(\tau)
\]

(30)

where

\[
E_{c}(\tau) = -\frac{1}{2} \sum_{ijab} e^{-\tau (\epsilon_{a} + \epsilon_{b} - \epsilon_{i} - \epsilon_{j})} \langle ij | r_{12}^{-1} | ab \rangle \\
\times \langle ab | r_{12}^{-1} | ij \rangle
\]

(31)

\[
= -\frac{1}{2} \sum_{ijab} (ij) e^{-F_{1} \tau} e^{-F_{2} \tau} r_{12}^{-1} e^{F_{1} \tau} e^{F_{2} \tau} \langle ab | r_{12}^{-1} | ij \rangle
\]

(32)

and \(F_{1} \) (\(F_{2} \)) is the Fock operator that acts on electron 1 (electron 2). If we set the geminal operator to be

\[
w_{12} = - \int_{0}^{\infty} d\tau \ e^{-F_{1} \tau} e^{-F_{2} \tau} r_{12}^{-1} e^{F_{1} \tau} e^{F_{2} \tau}
\]

(33)

then the Unsöld-W12 correlation energy (Eqn. 16) is equivalent to the MP2 correlation energy (Eqn. 11). The challenge regarding Unsöld-W12 now reduces to finding a simple form for the operator \(w_{12} \) that does not depend on the system, but that still captures the physics of the problem.

Choosing the geminal operator \(w_{12} \)

Motivated by the \(r_{12} \) methods of explicitly-correlated electronic structure theory39,40, let us now choose the operator \(w_{12} \) in Eqn. 16 to be a function of the distance \(r_{12} \) between the two electrons

\[
w_{12} = w^{s_{12}}(r_{12})
\]

(34)

where \(s_{12} = \delta_{\sigma_{1} \sigma_{2}} \) is the total spin of the two electrons \((s_{12} = 0,1)\). Note that \(E_{c}^{\text{UW12}} \) is invariant to adding a constant \(c \) to \(w^{s}(r_{12}) \).

We can choose \(w^{s}(r_{12}) \) to correctly model the correlation at any length scale. Inspired by the work of Ten-no51, we choose \(w^{s}(r_{12}) \) to be a Slater function in the inter-electron coordinate \(r_{12} \)

\[
w^{s_{12}}(r_{12}) = - \frac{1}{2(s_{12} + 1)} r_{c} e^{-r_{12}/r_{c}}
\]

(35)

where \(r_{c} \) is a characteristic length scale for electron correlation.
Unsöld-W12 hybrid functionals

If we replace E_{c}^{PT2} with E_{c}^{UW12} in Eqn. 18 and fix the parameter $\lambda = 1/2$, we can define a new hybrid functional XCH-BLYP-UW12:

$$E_{xc}^{XCH-BLYP-UW12} = \frac{1}{2} E_{x}^{\text{B88}} + \frac{1}{2} E_{x}^{\text{HF}} + \frac{3}{4} E_{c}^{\text{LYP}} + \frac{1}{4} E_{c}^{\text{UW12},rc}$$

The XCH-BLYP-UW12 functional contains a single adjustable parameter r_{c}, which represents both the length scale for the correlation hole, and also scales the Unsöld correlation energy. We refer to XCH-BLYP-UW12 as a hybrid functional (as opposed to a double-hybrid functional) since it can be evaluated without an explicit summation over the unoccupied Kohn-Sham orbitals. We use the prefix XCH (exchange-and-correlation-hybrid) because the functional contains non-local correlation as well as non-local exchange. Conventional hybrids such as B3LYP contain non-local exchange but only local correlation.

III. IMPLEMENTATION

Evaluating the UW12 correlation energy

The geminal $w^{s}(r_{12})$ is expressed as a sum of Gaussians

$$w^{s}(r_{12}) \approx w_{\text{GTG}}^{s}(r_{12}) = \sum_{l} c_{s}\gamma e^{-\gamma r_{12}^{2}},$$

where the coefficients $c_{s}\gamma$ (given in the Supporting Information) are chosen to minimize the error

$$\Delta_{\text{GTG}}^{s} = \int_{0}^{\infty} dr_{12} \left[w_{\text{GTG}}^{s}(r_{12}) - w^{s}(r_{12}) \right]^{2},$$

according to the procedure outlined in Ref. 41.

We evaluate the three-electron integrals in Eqn. 26 through a quadrature in the electron coordinate that couples the two operators together, as proposed by Boys and Handy43 and independently rediscovered by Ten-no44. Thus we compute the integral as

$$\langle ijk|w_{12}^{-1}r_{23}|lmm\rangle = s_{jm} \int dr_{2} \phi_{j}^{*}(r_{2})\phi_{m}(r_{2}) \times \langle i|w^{sij}(r - r_{2})|l\rangle \langle k|v(r - r_{2})|n\rangle,$$

where $s_{pq} = \delta_{\sigma_{p}, \sigma_{q}}$, and $v(r - r_{2}) = 1/|r - r_{2}|$. The integral over r_{2} is then performed numerically using the SG-1 quadrature grid45.

The elements of the Fock matrix $F_{\alpha\beta} = \partial E_{c}^{\text{UW12}} / \partial D_{\alpha\beta}^{\sigma} + \partial E_{c}^{\text{UW12}} / \partial D_{\beta\alpha}^{\sigma}] / 2$ are also calculated (see Appendix VIII), where $D_{\alpha\beta}^{\sigma}$ is an element of the Kohn-Sham density matrix in the atomic-orbital basis $\alpha(r)$, such that

$$\rho_{\sigma}(r) = \sum_{\alpha\beta} \alpha(r) D_{\alpha\beta}^{\sigma} \beta(r').$$

The energy expression can then minimized with respect to $\rho(x|x')$ using a self-consistent-field procedure.

A first inspection of Eqn. 21 suggests that calculating the Fock matrix contribution $\partial E_{c,4\text{el}}^{\text{UW12}} / \partial D_{\alpha\beta}^{\sigma}$ scales formally as N^{5} where N is the size of the system. However, in Appendix VIII we show that (using the same grid method used in Eqn. 40) one may evaluate the Fock matrix in a computational time that formally scales as N^{4}. This is the same formal scaling as density-fitted Hartree-Fock exchange.

Aside: Laplace-transform MP2

It should be noted that Laplace-transform MP2 methods – in which the integral in Eqn. 30 is approximated with a finite set of points in τ-space – also scale formally as N^{4} (although they still suffer from the same slow basis-set convergence as standard MP2). This favourable computational scaling comes with the trade-off that one can only evaluate the opposite-spin $E_{c,0}^{\text{PT2}}$ component of E_{c}^{PT2}. Double-hybrid functionals which make use of a Laplace-transform to evaluate E_{c}^{PT2} are hence referred to as spin-opposite-scaled double-hybrids, and such methods rely on the $E_{c,0}^{\text{DFT}}$ term to provide the correlation energy between same-spin electrons. Recent examples include DOD-
An advantage of UW12 is that we can evaluate both the same-spin $E_{c,s=1}^{UW12}$ and opposite-spin $E_{c,s=0}^{UW12}$ components in N^4 time. This means UW12 hybrids can be applied in systems where spin-opposite-scaled double-hybrids (e.g. DOD-PBEB95-D3BJ) are not as accurate as conventional double-hybrids (e.g. DSD-PBEB95-D3BJ). In addition, the range-dependence and spin-dependence of the geminal $w^s(r_{12})$ in UW12 leads to the attractive possibility of using different length-scales for the same-spin and opposite-spin correlation energy components: reflecting the fact that same-spin (opposite-spin) correlation is more important at long-range (short-range).

IV. COMPUTATIONAL DETAILS

The UW12 correlation energy expression and the XCH-BLYP-UW12 functional were implemented in the electronic structure program entos.

We use the Dunning aug-cc-pV(X+d)Z basis sets. The B2-PLYP and DSD-PBEB95 calculations were performed with frozen-core MP2 unless otherwise stated. All the electrons (both valence and core) were correlated in the XCH-BLYP-UW12 calculations. Energies of singlet molecules and atoms were calculated with the spin-restricted Kohn-Sham formalism, and energies of other molecules and atoms were calculated with the spin-unrestricted formalism. B2-PLYP and DSD-PBEB95 values were calculated in Molpro. All other values were calculated in entos unless otherwise stated. For entos calculations, the Def2-SVP-JKFIT density-fitting basis-set was used. Density fitting was not used for the Molpro calculations.

V. RESULTS AND DISCUSSION

Atomization energies and barrier-heights

We wish to find a method that can correctly estimate both atomization energies and barrier-heights. Following the procedure of Ref. we optimize the value of the single parameter r_c in XCH-BLYP-UW12 on the AE6 (atomization energies) and BH6 (barrier-heights) test sets. All the calculations for the AE6 and BH6 sets were performed at the geometries optimized by quadratic configuration interaction with single and double excitations with the modified Gaussian-3 basis-set (QCISD/MG3). Reference values (with zero-point energies removed) were taken from Tables 1 and 2 of Ref. Individual values for all the test sets in this paper are tabulated in the supporting information. Mean absolute errors are plotted in Fig. where it can be seen that $r_c = 1.7 a_0$ (where a_0 is the Bohr radius) is around the optimum length scale for $w(r_{12})$ for both the AE6 set and the combined AE6+BH6 set, if an aug-cc-pV(Q+d)Z basis is used. In Fig. we plot the signed errors for individual atomization energies in the AE6 set. XCH-BLYP-UW12 converges more rapidly with respect to basis-set than the existing double-hybrid functionals B2-PLYP and DSD-PBEB95-D3BJ. The slow basis-set convergence of the double-hybrids is due to the double-sum over unoccupied orbitals that is present in the E_{c}^{PT2} term. It should be noted that the parameters in B2-PLYP were optimized using a quadruple-ζ basis-set. Chan and Radom have investigated re-optimizing the parameters in B2-PLYP to obtain accurate results in triple-ζ basis-sets, but we do not use their parameters here.

In Fig. we compare XCH-BLYP-UW12 (with the length-scale $r_c = 1.7 a_0$ with existing hybrid and double-hybrid functionals on larger benchmark sets of atomization energies and reaction barrier heights. The atomization-energy set referred to here as G2-1-AE-noLiBeNa contains the 49 molecules of Ref. (G2-1 set except for the six molecules containing Li, Be, and Na), with MP2(full)/6-31G* geometries. Reference values were taken from Table 2 of Ref. The barrier-height set DBH24/08 used QCISD/MG3 geometries. Reference values were taken from Table 1 of Ref. The aug-cc-pV(Q+d)Z basis-set was used for all calculations. The zero-point energies are removed in the reference values in all cases.
Fig. 1 shows that the (proof-of-concept) XCH-BLYP-UW12 functional has better accuracy than B2-PLYP for reaction barrier-heights. XCH-BLYP-UW12 does not perform as well as B3LYP and B2-PLYP on the G2-1 atomization energy set, although note that this set was one of those used to fit the three parameters in B3LYP.48 Note also that all of the molecules in the G2-1 atomization energy set are also in the G2/97 heats of formation set, which was used to fit the two parameters in B2-PLYP.14 The performance demonstrated here for XCH-BLYP-UW12 is achieved with a single varied parameter, \(r_c \), optimized over a set (AE6) of six atomization energies. Preliminary investigations suggest that similar performance to B2-PLYP can be achieved if two parameters are used, to adjust both the length scale \(r_c \) and the mixing of GGA and UW12.

Density-corrected B3LYP — where the DFT energy is calculated using Hartree-Fock molecular orbitals — performs better than B3LYP for barrier-heights, but XCH-BLYP-UW12 performs better still. XCH-BLYP-UW12 predicts barrier heights with an accuracy comparable to that of the modern DSD-PBE95-D3BJ double-hybrid (which has 6 adjustable parameters).

Reaction energies

Results for the XCH-BLYP-UW12 functional for the G2RC reaction energy test set are also plotted in Fig. 3. As with the G2-1 atomization energies, we observe that XCH-BLYP-UW12 performs with roughly the same accuracy as B3LYP. Note that all the compounds in the G2RC set are also in the G2-1 and G2/97 sets.

Non-bonded interactions

Our aim in this work has been to model short-range correlation effects (since in Section 6 we chose \(w(r_{12}) \) to be a short-range function). Nevertheless, it is interesting to ask how accurate XCH-BLYP-UW12 is for modelling long-range London dispersion forces. In Fig. 4 we plot the dissociation curve for the argon dimer. It is known
Figure 2: Atomization energy errors for individual molecules in the AE6 test set for the existing hybrid functional B3LYP, the existing double-hybrid functionals B2-PLYP and DSD-PBE95-D3BJ, and the new UW12 hybrid functional XCH-BLYP-UW12. The abbreviations (pro.), (gly.), and (cyc.) refer to the isomers propyne, glyoxal, and cyclobutane respectively.
that B2-PLYP under-binds this system, whereas MP2 over-binds. We see that XCH-BLYP-UW12 gives a binding curve that is qualitatively similar to B2-PLYP. The value of $2r_{vdW}(Ar) + r_c$ is also shown on the plot. $r_{vdW}(Ar)$ is an estimate of the van-der-Waals radius of the argon atom (from Ref. [73]), so $2r_{vdW}(Ar) + r_c$ is an estimate of the bond length at which the outer-most electrons on argon atom A are separated from outer-most electrons on argon atom B by a distance r_c. Despite $w(r_{12})$ decaying exponentially with r_{12}, the length-scale ($r_c = 1.7a_0 = 0.90\ \text{Å}$) is sufficiently long that XCH-BLYP-UW12 produces binding throughout the region of interest (the range of bond lengths from 3.5 – 4.5 Å).

VI. CONCLUSIONS

We have shown that it is possible to define a wave-function-like correlation model UW12 that is an explicit functional of the 1-RDM $\rho(x|x')$. UW12 has several advantages over E^{PT2}_c term used in double hybrids. It has more rapid basis-set convergence it lacks energy denominators, so divergences that can arise in PT2 are avoided and it can be included fully in the self-consistent optimization. As a result the gradient theory with respect to nuclear motions — though not developed here — is straightforward. These advantages mean that new functionals containing UW12 may soon surpass double-hybrids in terms of their applicability, performance, and computational efficiency.

We have demonstrated that the formal scaling for evaluating the UW12 energy is N^4, where N represents the size of the system. This is equivalent to the formal scaling of density-fitted Hartree-Fock exchange — a component of B3LYP. In addition, we have shown that it is possible to compute the UW12 energy and Fock matrix efficiently using ingredients (integrals and grids) that are already present in most electronic structure codes (see Appendix VIII).

We have suggested a one-parameter hybrid functional XCH-BLYP-UW12 containing the Ulsöld correlation model, and this new functional estimates reaction barrier-heights with the same level of accuracy as modern double-hybrid functionals containing six parameters. We are investigating ways to improve the performance of the method for atomization energies, while retaining the good accuracy for barrier-heights, and preliminary investigations into this make us hopeful.

Our model for the geminal $w^s(r_{12})$ in Eqn. 35 was somewhat arbitrary, and based on physical intuition. In the future, we hope to fit $w^s(r_{12})$ to a model correlation system: for instance, jel-
Further enhancements would be to replace the exchange energy \(E_x = \frac{1}{2} [E_{HF}^x + E_{B88}^x] \) with a long-range corrected exchange model, or to modify the relative scaling of the same-spin (\(s = 1 \)) and opposite-spin (\(s = 0 \)) components of \(w^s(r_{12}) \). Such enhancements have proved successful for double-hybrid functionals. \(^{74,75}\) Using different length scales for the same-spin and opposite-spin components is another another attractive possibility when using UW12, and merits future investigation.

We conclude from this work that wavefunction-like hybrid functionals are worth further investigation. They may soon outperform double-hybrid functionals in terms of accuracy (due to orbital optimization), and in terms of computational cost (since smaller basis sets can be used).

VII. ACKNOWLEDGEMENTS

The authors thank David Tew for numerous helpful discussions. TCW is funded through the Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Theory and Modelling in Chemical Sciences (EPSRC EP/L015722/1).

VIII. APPENDIX: ALGORITHMS FOR EFFICIENT EVALUATION OF THE FOCK MATRIX

We can use density-fitting and grids to evaluate the Unsöld-W12 correlation energy (and contribution to the Fock matrix) with a computational cost that formally scales as \(N^4 \) where \(N \) is the size of the system. In this section, summation symbols are written in the positions that leads to the most efficient algorithm.

We first use density-fitting in an auxiliary basis of \(N_{DF} \) one-electron functions \(\{C(r)\} \) to write the
two-electron r_{12}^{-1} integrals as

$$
\langle ij | r_{12}^{-1} | kl \rangle \approx \sum_{CD} (ik | r_{12}^{-1} | C)(V^{-1})_{CD}(D | r_{12}^{-1} | jl) = \sum_{C} (ik | r_{12}^{-1} | C)(\bar{C} | r_{12}^{-1} | jl) \tag{42}
$$

where the positive-definite matrix V has elements $V_{DC} = (D | r_{12}^{-1} | C)$, using the notation

$$
(ik | r_{12}^{-1} | C) = s_{ik} \times \int dr_1 \int dr_2 \phi_i^*(r_1)\phi_k(r_1) r_{12}^{-1} C(r_2) \tag{43}
$$

$$(D | r_{12}^{-1} | C) = \int dr_1 \int dr_2 D(r_1) r_{12}^{-1} C(r_2) . \tag{44}
$$

We express the two-electron $w(r_{12})$ integrals on a grid as

$$
\langle ij | w_{12} | kl \rangle = \sum_{\lambda} w_{\lambda} \phi_j^*(r_\lambda)\phi_i(r_\lambda)s_{ji} (r_\lambda | w_{12}^* | ik) \tag{45}
$$

where $(r_\lambda | w_{12} | \beta j) = \langle \beta | w(r - r_\lambda) | j \rangle$, and where λ refers to a grid point at position r_λ with grid weight w_λ.

In this section, we separate the direct ($+, |pq\rangle = |pq\rangle$) and indirect ($-, |pq\rangle = -|qp\rangle$) components of E^UW12_{c} such that

$$
E_{c,2el}^\text{UW12} = E_{c,2el,+}^{\text{UW12}} + E_{c,2el,-}^{\text{UW12}} \tag{46}
$$

$$
E_{c,3el}^\text{UW12} = E_{c,3el,+}^{\text{UW12}} + E_{c,3el,-}^{\text{UW12}} \tag{47}
$$

$$
E_{c,4el}^\text{UW12} = E_{c,4el,+}^{\text{UW12}} + E_{c,4el,-}^{\text{UW12}} . \tag{48}
$$

Substituting Eqns. 40, 42, and 45 into Eqns. 19, 21, and 20 and differentiating with respect to the elements $D_{\alpha\beta}^\sigma$ of the density matrix in the atomic-orbital basis we obtain the contributions to the Fock matrix

$$
\frac{\partial E_{c,2el,+}^{\text{UW12}}}{\partial D_{\alpha\beta}^\sigma} = \sum_j \langle \alpha j | w_{12} r_{12}^{-1} | \beta j \rangle
$$

$$
= \sum_\lambda w_{\lambda} \alpha^*(r_\lambda) \sum_j (r_\lambda | w_{12} \delta_{\sigma,j} r_{12}^{-1} | jj \rangle \beta(r_\lambda) , \tag{49}
$$

$$
\frac{\partial E_{c,2el,-}^{\text{UW12}}}{\partial D_{\alpha\beta}^\sigma} = -\sum_j \delta_{\sigma,j} \langle j \alpha | w_{12} r_{12}^{-1} | \beta j \rangle
$$

$$
= -\sum_\lambda w_{\lambda} \alpha^*(r_\lambda) \sum_j \delta_{\sigma,j} \phi_j^*(r_\lambda)(r_\lambda | w_{12} r_{12}^{-1} | \beta j) , \tag{50}
$$

$$
\frac{\partial E_{c,3el,+}^{\text{UW12}}}{\partial D_{\alpha\beta}^\sigma} = -2 \sum_{jk} \langle \alpha j k | w_{12} r_{23}^{-1} | j k \beta \rangle
$$

$$
- \sum_{jk} \langle j \alpha k | w_{12} r_{23}^{-1} | j k \beta \rangle
$$

$$
= -2 \sum_\lambda w_{\lambda} \left[\sum_j \phi_j^*(r_\lambda)\phi_j(r_\lambda) \right] \times \left[\sum_k \delta_{\sigma,k} (r_\lambda | w_{12} \delta_{\sigma,j} \alpha k \rangle (r_\lambda | r_{12}^{-1} | \beta) \right]
$$

$$
- \sum_\lambda w_{\lambda} \left[\alpha^*(r_\lambda) \beta(r_\lambda) \right] \times \left[\sum_{jk} (r_\lambda | w_{12} \delta_{\sigma,j} \beta (r_\lambda) \rangle \langle j k | (r_\lambda | r_{12}^{-1} | \beta) \right] , \tag{51}
$$
and exploiting the short-range nature of the geminal function \(w(r_{12}) \) to reduce the scaling further.\(^{77}\)

Supporting Information Available

Tables of coefficients \(c_{xy} \) used in Eqn. 38. Tables of individual atomization energies and barrier-heights for the test sets mentioned in the text.

All data from this work are held in an open-access repository: [url to be added in proof].

References

1. A “semi-local” functional \(E[\rho] \) depends only on the electron (spin-)density \(\rho^{\sigma}(\mathbf{r}) \) at the point \(\mathbf{r} \) and on derivative quantities at the point \(\mathbf{r} \).

2. We use \(x \) to refer to both space (\(\mathbf{r} \)) and spin (\(\sigma \)) coordinates.

3. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* 1993, 98, 5648–5652, note: There are multiple variants of the VWN functional presented in Ref. 4. The most commonly used in quantum chemistry are known as VWN(III) and VWN(V). These are used to construct two variants of B3LYP: known as B3LYP3 and B3LYP5. We choose to use B3LYP3 throughout for compatibility with Ref. 11 All references to B3LYP thus refer to B3LYP3 instead of B3LYP5.

(7) To fit the parameters in B3LYP, the energy components in Eqn. [4] were evaluated using the Kohn-Sham orbitals from a previous self-consistent LDA calculation.[3]

(12) It should be noted that many more recent hybrid functionals achieve this, albeit at the expense of having many more tunable parameters than B3LYP. M05-2X[28] and ωB97X-V[79] are examples of hybrid functionals that perform well for atomization energies and barrier-heights but have many tunable parameters (M05-2X has 20 tunable parameters, and ωB97X-V has 10, compared to B3LYP which has 3). Our aim in this work is to search for new ingredients to add to hybrid DFT in such a way that the number of tunable parameters remains low.

(13) Another motivating factor for adding non-local correlation terms to the energy expression is that hybrid DFT functionals perform poorly for many classes of non-covalent interactions between molecules (even when an empirical dispersion correction term is added). This is true even of the most recent hybrid functionals.[35]

(20) Such double-hybrid functionals are sometimes referred to as “truncated”, since the orbitals are optimized using a part of the full energy expression.

(22) Su, N. Q.; Yang, W.; Mori-Sánchez, P.; Xu, X. Fractional Charge Behavior and Band Gap Predictions with the XYG3 Type of

(34) Note that singly-excited determinants are ignored in this theory, and are probably mainly accounted for through orbital optimization. Single excitations are also often ignored in double hybrid, even without orbital optimization.

(37) Grüneis, A. Efficient Explicitly Correlated Many-Electron Perturbation Theory

(42) Our aim in this paper is to demonstrate a hybrid functional which gives (roughly) the same results as B2-PLYP, but whilst only using occupied Kohn-Sham orbitals. Hence we choose \(a_{\text{HF}}^x, a_{\text{LYP}}^c = \lambda, (1 - \lambda^2) = \frac{1}{2}, \frac{3}{4} \) to enable direct comparisons with B2-PLYP (which has \(a_{\text{HF}}^x, a_{\text{LYP}}^c = 0.53, 0.73 \)). Developers of double-hybrid functionals have found that it is possible to construct functionals with comparable accuracy for a range of values of \(a_{\text{HF}}^x \) (in the range 0.45–0.75), and we expect the same to be true of our XCH functionals. In future, we intend to publish results using a range of values of \(a_{\text{HF}}^x \).

(50) entos, an electronic structure program (2017), designed by F.R. Manby and T.F. Miller.

(53) Woon, D. E.; Dunning Jr., T. H. Gaussian basis sets for use in correlated molecular cal-

(56) This is in keeping with the original B2-PLYP paper[14]. The authors of Ref. [46] ran similar calculations both with and without the frozen-core approximation, and found that there was little difference in the performance (provided the parameters were re-optimized in each case).

(62) QCISD/MG3 geometries for AE6 and BH6 compounds were taken from the Minnesota Database Collection at https://comp.chem.umn.edu/db/.

(65) MP2(full)/6-31G* geometries were obtained from the argonne National Laboratory website http://www.cse.anl.gov/OldCHMwebsiteContent/compmat/g2geoma.htm.

(66) QCISD/MG3 geometries for DBH24/08 compounds were taken from the Minnesota Database Collection at http://comp.chem.umn.edu/db/.

(69) MP2(full)/6-31G(d) geometries and reference values (with single-point energies removed) are taken from the GMTKN55 database collection at http://www.chemie.uni-bonn.de/pctc/mulliken-center/software/GMTKN/gmtkn55/.

(70) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio

(76) In estimating the slowest step of the calculation, we assume that $N_{\text{grid}} > N_{\text{DF}} > N_{\text{AO}} > N_{\text{el}}$.

(77) For a helpful introduction to some of the techniques that can be used to reduce the computational expense (both scaling and prefactor) of MP2-like correlation models, see the section labelled “Summary of local OS PT2 approximations” in the Supporting Information of Ref. 48.

For Table of Contents Only