
Publisher's PDF, also known as Version of record

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Using MBSE Techniques to Perform Early Validation on the Data Handling Unit of a Spacecraft

Joe Gregory, Lucy Berthoud, Theo Tryfonas
University of Bristol

Research Aim
Demonstrate that transferring from a document-based to model-based systems engineering approach enables early validation of the functional system through high-level simulation of the design artefacts.

Use Case
- The spacecraft has limited memory onboard – assigned 880 Gb
- The mission has been defined – sun synchronous
- High-level system information is available – system modes, activities, etc.
- Can we produce a system model that validates the memory allocation?

Objectives
- Validate total memory allocation
- Optimise memory directory sizes
- Validate model against Excel results

Methodology
Based on Estable’s ‘Federated and Executable Models’ methodology.

1. Physical Architecture of the system defined, containing parameters of the system
2. Functional Architecture of the system defined, starting with system mode diagram
3. Functional Architecture of the system continues, with system activities and corresponding calculations defined (written in Matlab and called)
4. Requirements stored in the system model. These are rewritten as mathematical constraints and linked to the architecture
5. Mission Profile can then be loaded into system model, and the system response analysed

Memory Allocation
Full simulation results show a ~40% margin – i.e. memory usage only ever reaches ~60% of memory limit

Directory Optimisation
Suggested optimised partitioning between the three directories for this mission profile

Requirements Check
Model produced performs calculations and automatically checks results against requirements (pass/fail)

Validated Model
The model produced was validated against Excel data produced by a subcontractor asked to perform the same study

Simulation Template
This template can be used in the future to define and execute the functional architecture of a system for early validation

Model Flexibility
Demonstrate the flexibility of the model developed in this work by exploring contingency modes of operation (e.g. antenna failure), changes to requirements, system spec changes, etc.

Mission Operations Template
Using this model as a basis, produce a model template which will contain early phase functional design artefacts, and which allows the user to develop interrogative Matlab-, state machine-, activity-based simulations

Future Work

Acknowledgements & Contact Details
This research was funded by the EPSRC and Airbus. The authors would like to acknowledge support from Alexandre Corter, Stephane Estable, Ludovic Faure, Thomas Fenal, Joanna O’Rourke, Antonio Prezzavento, Alain Rossignol.


Corresponding Author: Joe Gregory, Department of Aerospace Engineering, University of Bristol, BS81TR, joe.gregory@bristol.ac.uk

Conclusions
This work has demonstrated that by transferring from a document-based to a model-based systems engineering methodology, the design artefacts available at this early stage in the design process (Phase B1) can be executed and used to perform early validation on the high-level functional design of the system.

Future work will develop this model into a template capable of early functional validation using Matlab-, state machine, activity-based interrogative simulations.