
Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1680/jgeot.17.P.102

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via ICE at https://doi.org/10.1680/jgeot.17.P.102 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Strength anisotropy of fibre-reinforced sands under multiaxial loading

A. MANDOLINI*, A. DIAMBRA† and E. IBRAIM†

The strength anisotropy of fibre-reinforced sands in the multiaxial stress space has been investigated using a hollow cylinder torsional apparatus. Probing stress paths under constant cell pressure have been performed on both unreinforced and reinforced sand specimens to assess the influence of the orientation of the principal stress directions on the fibre strengthening contribution. For the first time, a deviatoric strength envelope for fibre-reinforced soils in the multiaxial stress space was identified. The addition of fibres produces an anisotropic increase and a distortion of the deviatoric strength envelope if compared to the unreinforced soil matrix. The fibre strengthening contribution is governed by the tensile strain domain developed and the fibre orientation distribution. Further observations on the effect of the addition of fibres on the volumetric response, principal stress and strain rate non-coaxiality, as well as the shear bands formation of the composite, are presented. An analytical model to capture the anisotropic fibre strengthening contribution is developed and discussed.

KEYWORDS: anisotropy; ground improvement; laboratory tests; reinforced soils; sands; stress path

INTRODUCTION

The strength and deformation characteristics of soils are highly anisotropic. The use of short, discrete, randomly distributed fibres as tension-resisting elements appeared as an attractive engineering option by the prospect of providing soil strength improvement in all loading directions, and thus making the soil behave like a stronger isotropic material. However, evidence from published research suggests that the addition of fibres does not offer any guarantee that the reinforced soil properties will become close to isotropic. In fact, recent laboratory experimental studies on fibre-reinforced sands based on conventional triaxial testing have shown the opposite: although the strength increase is quite significant for compression loading, the fibre effect on ultimate strength is almost negligible for extension loading (Diambra et al., 2010, 2013; Mandolini, 2012). One of the main reasons appears to be the distribution of fibre orientation which, as has already been emphasised by Michalowski & Cermák (2002), seems to have a central role in controlling the mechanical response of fibre-reinforced soils. Diambra et al. (2007), Ibraim et al. (2012) and recently Soriano et al. (2017) demonstrated that, in the laboratory, the fibre orientation induced in specimens by various fabrication techniques may be highly non-uniform, and far from random as is commonly assumed. The fibre and soil mixing, deposition and compaction processes employed in the field (rolling, compaction and/or vibration) are also likely to induce a rather non-uniform fibre orientation distribution, with preferential bedding of fibres, that can result in, or accentuate, the anisotropical mechanical properties of the soil. Similar anisotropical properties are observed for geotextile type reinforced soil, (e.g. Ling & Tatsuoka, 1994; Kongkritkul et al., 2007; Bostwick et al., 2010). As rotation of the principal axes of stress or strain is expected to occur in practice under most types of loading (e.g. Arthur et al., 1980), the characterisation of the strength anisotropy of fibre-reinforced sands presents a need for design and large-scale reinforcement technique implementation that cannot be ignored. Although analytical anisotropic failure criteria of fibre-reinforced soils have been proposed by Michalowski & Cermák (2002), Michalowski (2008) and Gao & Zhao (2013), no experimental data supported these modelling developments. Despite the recent proliferation of experimental studies on fibre-reinforced soils, the exploration of the isotropic/anisotropic properties of these materials is still systematically discounted. Therefore, it is the intention, in the present work, to address this limitation through experimental investigation of fibre-reinforced sand strength anisotropy in multiaxial stress conditions using a hollow cylinder torsional apparatus (HCTA). Stress probing paths characterised by different orientations of the principal stress direction are imposed. The failure strength envelope is identified and a new analytical formulation of the failure criteria for fibre-reinforced soil is proposed. Discussion within the context of previously published failure criteria for fibre-reinforced soils (Michalowski, 2008) is also conducted.

HOLLOW CYLINDER TORSIONAL APPARATUS

The HCTA at the University of Bristol can accommodate hollow cylinder soil specimens with an outer radius \(r_o \) of 50 mm, inner radius \(r_i \) of 30 mm and 200 mm in height \(H \) (Fig. 1(a)). The apparatus allows independent control of four load components: axial load \(W \), axial torque \(T \) applied through the rigid end platens and two confining pressures applied on the specimen’s inner and outer flexible lateral surfaces, \(p_i \) and \(p_o \), respectively (Fig. 1(a)). The degree of stress and strain non-uniformities, which are inevitable in a hollow cylinder specimen as a result of the sample curvature and the restraint at its ends, is directly related to the specimen dimensions. Sayao & Vaid (1991) suggested the following desirable dimensions of the specimen: (a) wall thickness, \(t_w \), between 20 and 26 mm; (b) ratio of inner to outer radius ranging between 0.65 and 0.82; (c) ratio of height to outer diameter from 1.8 to 2.2. The specimen dimensions used in this study satisfy the first and third conditions, while for the second one, the ratio is close to the lower limit. Compared...
with an average value, the shear strain across the wall varies between ±τz/D, where D is the average diameter. A low ratio of wall thickness to diameter would increase the uniformity of the shear strain, but would also increase the gradient of radial stress if internal and external pressures are not the same. A compromise is necessary.

The HCTA is fitted with a submersible combined force/torque load cell with 8 kN/400 Nm capacity placed inside the confining cell. The overall axial displacement (ΔH) and twist (Δθ) measurements are provided by linear variable differential transformers (LVDTs) and a rotary capacitive displacement transducer (RCDT), respectively. Both transducers are located outside the pressurised cell. Two identical volume change devices are also used, one for the measurement of the overall sample volume, and the other for the inner cell variations. Three pressure transducers for continuous recording of the inner cell, p1, outer cell, p2, and pore water, u, pressures also equip the HCTA. Details about the apparatus are given in Yoon (2005), Ibraim et al. (2011) and Mandolini (2014). The relationships for the calculation of the average stresses (axial (σx), radial (σr), circumferential (σθ) and shear (τθ)) and strains (εx, εr, εθ, circumferential (εθ) and shear (γθ)) follow Hight et al. (1983), Miura et al. (1986) and Vaid et al. (1990); they are listed in Table 1. Corrections due to the membrane’s resistances to the applied axial, radial and shear stress have been accounted for using the method suggested by Tatsuoka et al. (1986). However, as the volume changes due to membrane penetration were found to be negligible, no correction has been applied.

The state of stress of a representative soil element can be represented by the mean stress, p, generalised deviatoric component of stress, q, the angle between the major principal stress direction and vertical z-axis, ασ, and the intermediate principal stress ratio, b, parameters defined as

\[p = \frac{\sigma_z + \sigma_r + \sigma_\theta}{3} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3} \]
\[q = \sqrt{\left(\frac{\sigma_z - \sigma_r}{2}\right)^2 + \left(\frac{\sigma_r - \sigma_\theta}{2}\right)^2 + \frac{3}{2} \tau_{\theta z}^2} \]
\[\alpha_\sigma = \frac{1}{2} \tan^{-1} \left(\frac{2 \tau_{\theta z}}{\sigma_z - \sigma_\theta} \right) \]
\[b = \frac{\sigma_2 - \sigma_3}{\sigma_1 - \sigma_3} \]

where σ1, σ2 and σ3 are the major, intermediate and minor principal stresses, respectively (Fig. 1(c)).

In the (σz−σ_0)/2, τ_θz) stress plane, which is commonly employed to plot stress conditions applied in experimental tests using the HCTA, a vector from the origin to the current stress state has a length equal to the radius of Mohr’s circle of stress, and makes an angle equal to 2ασ from the axis (σz−σ_0)/2. The magnitude of the vector is the maximum shear stress, τ_max, applied to the sample

\[\tau_{\max} = \sqrt{\left(\frac{\sigma_z - \sigma_\theta}{2}\right)^2 + \frac{3}{2} \tau_{\theta z}^2} \]

\[\varepsilon_x = \varepsilon_z + \varepsilon_r + \varepsilon_\theta \]

\[\varepsilon_q = \sqrt{\frac{2(\varepsilon_z - \varepsilon_r)^2 + 2(\varepsilon_r - \varepsilon_\theta)^2 + 3 \tau_{\theta z}^2}{3}} \]

The stress components (p, q, τθz) are work-conjugate with the strain components (εx, εr, 3εθ), volumetric strain, εv, deviatoric strain, εq, and shear strain, γθz, with

\[\varepsilon_v = \varepsilon_z + \varepsilon_r + \varepsilon_\theta \]

\[\varepsilon_q = \sqrt{\frac{2(\varepsilon_z - \varepsilon_r)^2 + 2(\varepsilon_r - \varepsilon_\theta)^2 + 3 \tau_{\theta z}^2}{3}} \]

In the (δεz−δε_0, δγ_θz) strain increment plane, the major principal strain increment occurs at an angle αδε to the vertical z-axis

\[\alpha_{\delta \varepsilon} = \frac{1}{2} \tan^{-1} \left(\frac{\delta \varepsilon_{\theta z}}{\delta \varepsilon_z - \delta \varepsilon_{\theta}} \right) \]

Table 1. Equations of average stress and strain components (Hight et al., 1983; Miura et al., 1986; Vaid et al., 1990)

<table>
<thead>
<tr>
<th>Axis direction</th>
<th>Stress equations</th>
<th>Strain equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial normal</td>
<td>[\sigma_z = \frac{p r_0^2 - p_o r_o^2}{r_o^2 - r_i^2} + \frac{W}{\pi(r_o^2 - r_i^2)}]</td>
<td>[\varepsilon_z = -\frac{\Delta H}{H}]</td>
</tr>
<tr>
<td>Radial normal</td>
<td>[\sigma_r = \frac{p r_0^2 - p_o r_o^2}{r_o^2 - r_i^2} + \frac{2(p_o - p)(r_0 r_i)^2 \ln(r_0/r_i)}{(r_o^2 - r_i^2)^2}]</td>
<td>[\varepsilon_r = -\frac{\Delta r_o - \Delta r_i}{r_o - r_i}]</td>
</tr>
<tr>
<td>Circumferential normal</td>
<td>[\sigma_\theta = \frac{p r_0^2 - p_o r_o^2}{r_o^2 - r_i^2} + \frac{2(p_o - p)(r_0 r_i)^2 \ln(r_0/r_i)}{(r_o^2 - r_i^2)^2}]</td>
<td>[\varepsilon_\theta = -\frac{\Delta r_o + \Delta r_i}{r_o + r_i}]</td>
</tr>
<tr>
<td>Circumferential shear</td>
<td>[\varepsilon_{\theta z} = \varepsilon_{\theta r} = \frac{3 T}{2 \pi (r_o^2 - r_i^2)}]</td>
<td>[\gamma_{\theta z} = \frac{2 \pi (r_0^2 - r_i^2)}{3 H (r_o^2 - r_i^2)}]</td>
</tr>
</tbody>
</table>
MATERIALS AND SAMPLE FABRICATION

Materials

Hostun RF (S28) sand is a standard European material for laboratory testing with a high siliceous content (SiO₂ > 98%), and angular to sub-angular grains. Its grain size distribution is shown in Fig. 2(a) and its physical properties are summarised in Table 2.

Loksand crimped cylindrical polypropylene fibres have been used as reinforcing material. These fibres have a diameter of 0·1 mm and they have been cut to length, \(l_f = 17·5 \) mm, which generally corresponds to about 15 mm linear length \((L_f) \) if their crimps are neglected, as shown in Fig. 2(b). The ratio of fibre linear length/HCTA specimen wall thickness is about 0·75, slightly higher than the recommendations of Ang & Loehr (2003), who suggest a limiting value of 0·70 (in order to consider a sample reasonably representative of the mass property of fibre-reinforced soil). However, a compromise was necessary to ensure a measurable fibre strengthening contribution (Diambra & Ibraim, 2015). Other fibre properties are provided in Table 2.

Specimen fabrication procedure

Owing to the sample's thin wall, curvature and height, laboratory fabrication of hollow cylindrical sand samples is relatively challenging. When fibres are used as reinforcement, the sample fabrication requires further attention due to the desire to preserve uniformity of fibre distribution, and avoid segregation of its constituents. Typically, the fibre-reinforced sand specimen fabrication procedure involves two stages: mixing and formation. The process begins with the manual mixing of the sand with a controlled amount of water (10% moisture content). While continuing the mixing, small amounts of fibres are then added progressively, until, by visual examination, the fibres appear to be well distributed throughout the soil mass. The water is required to enable a good blending between the sand and fibres, and also to prevent their segregation. The concentration of fibres \((W_f) \) used in the reinforced specimens is defined as the ratio of the weight of fibres \((W_f) \) to the dry weight of sand \((W_s) \)

\[
W_f = W_f / W_s
\]

(9)

The mixing process is followed by the sample formation. In general, for direct shear and triaxial testing specimens, a number of compacted layers of equal thickness (not higher than 25 mm) are employed in a so-called moist tamping procedure (Ibraim & Fourmont, 2006; Diambra et al., 2010). Therefore, the moist tamping procedure using eight equally compacted layers was initially considered for the hollow cylindrical samples. However, several trials systematically showed poor quality of the hollow cylindrical samples with visible non-uniformities throughout the whole sample height. Based on previous work by Ibraim et al. (2012), an alternative procedure employing a moist vibration technique was subsequently considered. The mechanical responses of reinforced cylindrical samples in triaxial testing, prepared with the two fabrication methods – moist tamping and moist vibration – proved to be qualitatively similar (Ibraim et al., 2012). Therefore, the whole moist fibre-soil mixture was gently transferred inside the specimen's mould, through the use of a specially designed funnel, to avoid structural disturbance. After depositing the mixture,

<table>
<thead>
<tr>
<th>Table 2. Characteristics of the sand and fibres used in the experimental investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostun RF sand</td>
</tr>
<tr>
<td>Siliceous amount: %</td>
</tr>
<tr>
<td>Silica, SiO₂ > 98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fibres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity, (G_f)</td>
</tr>
<tr>
<td>0·91</td>
</tr>
</tbody>
</table>
the sample mould was subjected to a vertically dominated vibration imposed by a shaker under a frequency of about 50 Hz and acceleration of $2g$, and with a constant very light soil surcharge of 2.8 kPa provided by a vertically guided hollow circular top cap. The fibre–sand mixture underwent vibration until the target sample density was achieved. It was decided to transfer the soil into the mould in five equal successive layers, in order to minimise segregation of the fibres, and then vibrate the whole mixture. This procedure led to a good repeatability of the deviatoric stress–strain response for experimental tests carried out in the HCTA following the stress path for a conventional drained triaxial compression test (Fig. 3(a)). The small but noticeable variability of the volumetric response (Fig. 3(b)) can be ascribed to the small variations in void ratio among the tested samples, which are known to affect the volumetric performances more than the shear stress–strain responses, as was thoroughly investigated by Diambra (2010). Sample fabrication details, experimental conditions and the test results for these trial samples are given in Table 3.

Experimental results in the multiaxial stress space

Programme of testing

The experimental programme consisted of a total of 24 drained tests imposing six different probing stress paths with different values of the orientation of the major principal stress direction, α_{σ}, on both unreinforced and reinforced sand specimens, isotropically consolidated to two different cell confining pressures ($p_{10}^{i} = p_{c}^{i} = 100$ and 200 kPa). The probing stress path under constant σ_{c} requires the simultaneous application of small axial and torsional stress increments on the specimen. As unreinforced material exhibited a slight softening behaviour, the shearing was initially conducted in a stress-controlled mode until the deviatoric strain (ε_{d}) reached a value about 0.2%. The control was then switched to the strain-controlled mode, for the latter part of the testing, keeping a strain rate of about 0.3%/min. The samples were tested in fully saturated conditions, with small but noticeable variability of the volumetric response, as was thoroughly investigated by Diambra (2010). Sample fabrication details, experimental conditions and the test results for these trial samples are given in Table 3.

![Image](image_url)

Table 3. Properties of reinforced specimens made for the repeatability assessment

<table>
<thead>
<tr>
<th>Test name</th>
<th>R5-1</th>
<th>R5-2</th>
<th>R5-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{c} (kPa)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>w_{c} (%)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ε_{c}</td>
<td>0.950</td>
<td>0.950</td>
<td>0.960</td>
</tr>
<tr>
<td>ϕ_{f0} (deg)</td>
<td>40.6</td>
<td>40.6</td>
<td>40.6</td>
</tr>
<tr>
<td>q_{f0} (kPa)</td>
<td>374.5</td>
<td>372.1</td>
<td>371.5</td>
</tr>
</tbody>
</table>

Note: e is the fabrication void ratio; ε_{c} is the void ratio after consolidation; ϕ_{f0} and q_{f0} represent the mobilised friction angle and the deviatoric stress at $\varepsilon_{c} = 10\%$, respectively; σ_{c} indicates the effective confining cell pressure employed.

<table>
<thead>
<tr>
<th>Test name</th>
<th>R5-1</th>
<th>R5-2</th>
<th>R5-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test name</td>
<td>R5-1</td>
<td>R5-2</td>
<td>R5-3</td>
</tr>
<tr>
<td>Test R5-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test R5-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test R5-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig. 3.</td>
<td>(a) Deviatoric stress–strain; (b) volumetric trends for the specimens reinforced with $w_{c} = 0.5%$ of fibres tested in HCTA following the stress path for triaxial compression under an effective cell confining pressure of 100 kPa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experimental results

The actual imposed stress paths of all the tests are presented in Fig. 4 and, with only one exception (test H200F05_60, Fig. 4) due to an error on the stress control procedure, follow the prescribed stress paths well.

Deviatoric stress–strain response. The deviatoric stress–strain $(q-\varepsilon_{d})$ responses for the tests performed are shown in Fig. 5, where the comparison between unreinforced and reinforced sand specimens for similar value of α_{σ}, and for both confining pressures, are reported in each sub-figure. The deviatoric strength of both reinforced and unreinforced specimens decreases with increasing value of α_{σ}.
consequence of the reduction of the mean effective stress (p') at failure. The addition of fibres results in a deviatoric strength increase which, as expected, is progressive with the increase of the deviatoric strains during each test. However, the strengthening contribution of fibres decreases with increasing α_s. These results corroborate well with the

Table 4. List of the tests performed investigating the strength anisotropy of fibre-reinforced sands under generalised loading conditions using the HCTA; q_{10}, η_{10} and ϕ'_{10} are, respectively, the deviatoric stress, stress ratio and friction angle at $\varepsilon_q = 10\%$

<table>
<thead>
<tr>
<th>Test name</th>
<th>Loading type</th>
<th>α_s, deg</th>
<th>b</th>
<th>σ'_c, kPa</th>
<th>w_f, %</th>
<th>ε_c</th>
<th>q_{10}, kPa</th>
<th>η_{10}</th>
<th>ϕ'_{10}, deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>H100f00_0</td>
<td>Compression</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0·949</td>
<td>219·0</td>
<td>1·27</td>
<td>31·6</td>
</tr>
<tr>
<td>H100f05_0</td>
<td>Compression</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0·5</td>
<td>0·943</td>
<td>364·7</td>
<td>1·63</td>
<td>39·9</td>
</tr>
<tr>
<td>H200f00_0</td>
<td>Compression</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>0·934</td>
<td>462·7</td>
<td>1·30</td>
<td>32·4</td>
</tr>
<tr>
<td>H200f05_0</td>
<td>Compression</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>0·5</td>
<td>0·933</td>
<td>636·7</td>
<td>1·54</td>
<td>37·8</td>
</tr>
<tr>
<td>H100f00_15</td>
<td>Compression + torsion</td>
<td>15</td>
<td>0·07</td>
<td>100</td>
<td>0</td>
<td>0·943</td>
<td>219·3</td>
<td>1·32</td>
<td>33·0</td>
</tr>
<tr>
<td>H100f05_15</td>
<td>Compression + torsion</td>
<td>15</td>
<td>0·07</td>
<td>100</td>
<td>0·5</td>
<td>0·947</td>
<td>345·0</td>
<td>1·68</td>
<td>41·4</td>
</tr>
<tr>
<td>H200f00_15</td>
<td>Compression + torsion</td>
<td>15</td>
<td>0·07</td>
<td>200</td>
<td>0</td>
<td>0·926</td>
<td>401·2</td>
<td>1·26</td>
<td>31·5</td>
</tr>
<tr>
<td>H200f05_15</td>
<td>Compression + torsion</td>
<td>15</td>
<td>0·07</td>
<td>200</td>
<td>0·5</td>
<td>0·937</td>
<td>552·7</td>
<td>1·51</td>
<td>37·4</td>
</tr>
<tr>
<td>H100f00_30</td>
<td>Compression + torsion</td>
<td>30</td>
<td>0·25</td>
<td>100</td>
<td>0</td>
<td>0·943</td>
<td>219·3</td>
<td>1·32</td>
<td>33·0</td>
</tr>
<tr>
<td>H100f05_30</td>
<td>Compression + torsion</td>
<td>30</td>
<td>0·25</td>
<td>100</td>
<td>0·5</td>
<td>0·947</td>
<td>345·0</td>
<td>1·68</td>
<td>41·4</td>
</tr>
<tr>
<td>H200f00_30</td>
<td>Compression + torsion</td>
<td>30</td>
<td>0·25</td>
<td>200</td>
<td>0</td>
<td>0·945</td>
<td>295·0</td>
<td>1·16</td>
<td>31·4</td>
</tr>
<tr>
<td>H200f05_30</td>
<td>Compression + torsion</td>
<td>30</td>
<td>0·25</td>
<td>200</td>
<td>0·5</td>
<td>0·943</td>
<td>379·3</td>
<td>1·37</td>
<td>37·6</td>
</tr>
<tr>
<td>H100f00_45</td>
<td>Compression + torsion</td>
<td>45</td>
<td>0·50</td>
<td>100</td>
<td>0</td>
<td>0·958</td>
<td>102·3</td>
<td>1·02</td>
<td>32·4</td>
</tr>
<tr>
<td>H100f05_45</td>
<td>Compression + torsion</td>
<td>45</td>
<td>0·50</td>
<td>100</td>
<td>0·5</td>
<td>0·953</td>
<td>126·3</td>
<td>1·20</td>
<td>39·7</td>
</tr>
<tr>
<td>H200f00_45</td>
<td>Compression + torsion</td>
<td>45</td>
<td>0·50</td>
<td>200</td>
<td>0</td>
<td>0·940</td>
<td>193·7</td>
<td>0·96</td>
<td>29·9</td>
</tr>
<tr>
<td>H200f05_45</td>
<td>Compression + torsion</td>
<td>45</td>
<td>0·50</td>
<td>200</td>
<td>0·5</td>
<td>0·934</td>
<td>212·6</td>
<td>1·04</td>
<td>33·1</td>
</tr>
<tr>
<td>H100f00_60</td>
<td>Extension + torsion</td>
<td>60</td>
<td>0·75</td>
<td>100</td>
<td>0</td>
<td>0·932</td>
<td>86·4</td>
<td>1·02</td>
<td>36·7</td>
</tr>
<tr>
<td>H100f05_60</td>
<td>Extension + torsion</td>
<td>60</td>
<td>0·75</td>
<td>100</td>
<td>0·5</td>
<td>0·956</td>
<td>94·6</td>
<td>1·07</td>
<td>39·7</td>
</tr>
<tr>
<td>H200f00_60</td>
<td>Extension + torsion</td>
<td>60</td>
<td>0·75</td>
<td>200</td>
<td>0</td>
<td>0·938</td>
<td>151·9</td>
<td>0·87</td>
<td>30·6</td>
</tr>
<tr>
<td>H200f05_60</td>
<td>Extension + torsion</td>
<td>60</td>
<td>0·75</td>
<td>200</td>
<td>0·5</td>
<td>0·931</td>
<td>185·4</td>
<td>1·02</td>
<td>35·7</td>
</tr>
<tr>
<td>H100f00_90</td>
<td>Extension</td>
<td>90</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0·946</td>
<td>72·9</td>
<td>0·97</td>
<td>35·2</td>
</tr>
<tr>
<td>H100f05_90</td>
<td>Extension</td>
<td>90</td>
<td>1</td>
<td>100</td>
<td>0·5</td>
<td>0·955</td>
<td>75·9</td>
<td>1·00</td>
<td>36·7</td>
</tr>
<tr>
<td>H200f00_90</td>
<td>Extension</td>
<td>90</td>
<td>1</td>
<td>200</td>
<td>0</td>
<td>0·946</td>
<td>136·9</td>
<td>0·88</td>
<td>31·1</td>
</tr>
<tr>
<td>H200f05_90</td>
<td>Extension</td>
<td>90</td>
<td>1</td>
<td>200</td>
<td>0·5</td>
<td>0·933</td>
<td>141·3</td>
<td>0·91</td>
<td>32·3</td>
</tr>
</tbody>
</table>

Note: as inner and outer confining pressures are identical ($p'_i = p'_o$), b and α_s are related through the relation: $b = 2\sin^2\alpha_s$.

![Fig. 4. Imposed stress paths for: (a) and (c) unreinforced specimens; (b) and (d) reinforced specimens under both confining pressures 100 kPa (top figures) and 200 kPa (bottom figures)](image-url)
38% strength increase at 10% deviatoric strain for the probing paths, the addition of fibres produces about 67% and pressure conditions.

The deviatoric strength difference between the reinforced and unreinforced specimens at a representative deviatoric strain of 10%, decreases at a lower rate for \(\alpha_{\sigma} \) values up to 15°–20°, and then at a much higher rate up to a value of \(\alpha_{\sigma} = 45° \). \(\Delta q_{10} \) becomes almost negligible for \(\alpha_{\sigma} \) ranging between 60° and 90°.

Previous studies (Michałowski & Čermák, 2002; Diambra et al., 2010) suggested that the fibre strengthening effect is affected by the fibre orientation distribution in relation with the tensile strains domain developed in the sample, as the strength of only those fibres oriented along tensile strain directions will be mobilised. Ibraim et al. (2012) demonstrated that cylindrical moist vibrated fibre-reinforced specimens fabricated with the same sand and slightly longer fibres present a stronger horizontal fibre bedding: more than 80% of fibres are oriented within ±45° of the horizontal plane. Although the fibre orientation distribution has not been assessed for hollow cylindrical samples, it is conceivable that most of the fibres will still tend to lie horizontally. If the most of the fibres will still tend to lie horizontally. If the

Fig. 5. Deviatoric stress–strain \((q-q_i)\) comparison between unreinforced and reinforced specimens for similar value of \(\alpha_{\sigma} \) and for both confining pressures. Note that ‘P’ in Fig. 5(a) is the point from which the test H200F5F was switched from \(\alpha_{\sigma} = 45° \) to 60°.

observations from triaxial compression and extension tests performed by Diambra et al. (2010). While the fibre strengthening contribution is certainly influenced by different mean effective stresses, \(p' \), at failure for the different probing paths, the addition of fibres produces about 67% and 38% strength increase at 10% deviatoric strain for the \(\alpha_{\sigma} = 0° \) probing stress path at 100 and 200 kPa cell confining pressure, respectively, and only about 4% and 3% for \(\alpha_{\sigma} = 90° \) at the same deviatoric strain level and confining pressure conditions.

The deviatoric strength difference between the reinforced and unreinforced specimens at a representative deviatoric strain of 10%, \(\Delta q_{10} \), is plotted against the imposed rotation of the principal stress axes, \(\alpha_{\sigma} \), in Fig. 6. For both applied confining pressures, the net fibre strength contribution \(\Delta q_{10} \) decreases at a lower rate for \(\alpha_{\sigma} \) values up to 15°–20°, and then at a much higher rate up to a value of \(\alpha_{\sigma} = 45° \). \(\Delta q_{10} \) becomes almost negligible for \(\alpha_{\sigma} \) ranging between 60° and 90°.
amount of fibres (mostly horizontally oriented) is expected to decrease. The residual small increase in strength (amount of fibres (mostly horizontally oriented) is expected to
dilatancy between the principal stress and principal strain increment directions is observed during the early stages of the shearing. The angle difference, especially for tests at ασ = 15°, 30° and 60°, can reach values up to about 15°. ασ is higher than the imposed principal stress direction for the tests at ασ = 15° and 30°, whereas for the tests at ασ = 60° it is smaller, as also observed by Cai et al. (2013). However, as the shearing advances, ασ gradually evolves and the non-coaxiality reduces, and a coaxial condition is reached towards the failure (Ibraim et al., 2010). The lack of any visible effect of the fibres on the stress/strain increment coaxiality may suggest that the overall deformation pattern of reinforced soils is mainly governed by the sand matrix.

Deviatoric strength envelopes and mobilised friction angles. Comparison of the deviatoric strength envelopes for both reinforced and unreinforced materials in the normalised stress plane \((\tau/\sigma_0 - (\sigma_2 - \sigma_0)/2\sigma_0')\) are shown in Fig. 10. The deviatoric strength envelopes for the unreinforced specimens can be well approximated by the Matsuoka–Nakai failure envelope (Matsuoka & Nakai, 1974) using an effective friction angle of 32°. The addition of fibres enlarges and slightly distorts the strength envelope compared with the unreinforced soil case. An analytical solution to describe the strength envelope for the reinforced soil will be developed in the following section.

Failure planes and localisation. In most of the tests, the approach towards the failure conditions was accompanied by the development of one or more shear bands defined as a narrow zone of shear strain localisation. In soil mechanics, the interpretation of the shear localisation is traditionally associated with Coulomb’s force equilibrium theory, suggesting that the failure occurs at the point of maximum obliquity, in which case the inclination of the shear bands is

\[
\tan \varphi = -\frac{\dot{\varepsilon}_v}{\dot{\varepsilon}_q}
\]

(10)

The maximum dilatancy angle (\(\varphi_{\text{max}}\)) plotted against the imposed principal stress direction, \(\alpha_{\text{σ}}\) is reported in Fig. 8. Irrespective of the amount of reinforcement and confining pressure, the results show a rather similar concave variation with a minimum for an \(\alpha_{\text{σ}}\) value of about 45°. Although \(\tan \varphi_{\text{max}}\) should be larger for lower confining pressure levels, data for three pairs of tests (reinforced samples tested at \(\alpha_{\text{σ}} = 0°\) and 90°, and unreinforced samples with \(\alpha_{\text{σ}} = 15°\)) show different trends, perhaps due to the differences in their initial densities.

Principal stress and principal strain increments directions. The co-axiality between the principal stress and principal strain increment directions, \(\alpha_{\text{σ}}\) and \(\alpha_{\text{c}}\), respectively, for both reinforced and unreinforced samples during shearing at different imposed \(\alpha_{\text{σ}}\) is also explored. Trends for all of the tests performed are reported in Fig. 9, where the \(\gamma\)-axis shows the deviator stress (\(q\)), and the \(x\)-axis shows the principal strain increment direction (\(\alpha_{\text{c}}\)). The imposed principal stress directions are also shown by dashed lines. As expected, there is a quasi-perfect coaxiality for the tests with imposed \(\alpha_{\text{σ}} = 0°\) and 90° for both unreinforced and fibre-reinforced samples (Symes et al., 1988; Cai et al., 2013). For all the other tests, regardless of fibre content or confinement pressure, non-coaxiality between the principal stress and principal strain increment directions is visible effect of the fibres on the stress/strain increment}
associated with those planes on which the shear to normal stress ratio is maximum. Based on the Mohr circle of stresses, the theoretical angle, ζ, between the shear band and the direction of the major principal plane is

$$\zeta = \frac{\pi}{4} + \phi/2$$

The theoretically predicted inclinations of shear bands and those visually observed on the failed HCTA samples at the end of the tests (Fig. 12) are listed in Table 5 and a comparison is shown in Fig. 13. The shear band directions were measured at the end of the tests and photographic successive records were taken during the shearing for some specimens. Fig. 12 shows pictures of the unreinforced and reinforced HCTA specimens at the end of the test; the shear bands are indicated by the bold dashed lines. Determination of shear band inclination was conducted directly on the samples after the removal of the HCTA cell. The shear band inclinations for both the theoretical and experimental results appear to match relatively well, with a scatter within a few degrees’ difference (see Fig. 13). The only noticeable discrepancy occurs for the tests with imposed $\alpha_{\sigma} = 15^\circ$ where the predicted inclination of the failure plane is about 12 to 16° higher than the observed ones. Failure for both unreinforced and reinforced samples tested under triaxial compression conditions ($\alpha_{\sigma} = 0^\circ$) is associated with a specimen bulging and development of shear bands. For triaxial extension ($\alpha_{\sigma} = 90^\circ$), a considerable necking can be observed, but shear bands cannot be visually observed. As a general observation, the addition of fibres does not appear to affect the mode of failure of the sample as well as the orientation of the shear bands. However, the number of shear bands in the fibre-reinforced specimens appears to be higher. The thickness of the shear bands seems also to be smaller when fibres

![Figure 7](https://example.com/fig7.png)

Fig. 7. Volumetric trends comparison between unreinforced and reinforced specimens for each given α_{σ}: (a) $\alpha_{\sigma} = 0^\circ$; (b) $\alpha_{\sigma} = 15^\circ$; (c) $\alpha_{\sigma} = 30^\circ$; (d) $\alpha_{\sigma} = 45^\circ$; (e) $\alpha_{\sigma} = 60^\circ$; (f) $\alpha_{\sigma} = 90^\circ$. Note that ‘i’ in Fig. 7(e) is the point from which the test H200f05 was switched from $\alpha_{\sigma} = 45^\circ$ to 60°.
are present. For the tests performed at $\alpha_\sigma = 60^\circ$, it is clear that the fibres avoid the formation of a very thick shear band. Table 5 presents the estimation of the shear band thicknesses (t_{sb}).

ANALYTICAL PREDICTION OF STRENGTH ENVELOPE FOR FIBRE-REINFORCED SOIL

An analytical model representing an attempt to predict the deviatoric strength envelope for fibre-reinforced soil in multiaxial stress space is developed and analysed here. The developments account for the effect of the intermediate principal stress and the model can be applied in the generic $(\tau/p' - (\sigma_2 - \sigma_1)/2p')$ stress plane. The basis of the relation builds on the superposition of fibres and sand matrix effects. The physical meaning of the constitutive parameters is also explored.

The Matsuoka–Nakai strength criterion (Matsuoka & Nakai, 1974), which accounts for the magnitude of the intermediate principal stress, has been adopted to reproduce the strength envelope for the unreinforced soil

$$ K = \frac{I_1}{I_2} $$

where I_1, I_2 and I_3 are three effective stress invariants. The following cubical relationship for the failure criterion results

$$ \frac{8}{9}K \left(\frac{2}{3}b^3 - b^2 - b + \frac{2}{3} \left(\frac{\tau_{\max}}{p'} \right)^3 + \left(1 - \frac{K}{3} \right) \right) $$

However, for simulating the deviatoric strength in the usual $(\tau/p' - (\sigma_2 - \sigma_1)/2p')$ plot HCTA test conditions, it would be more appropriate to express the Matsuoka–Nakai criterion function of τ_{\max}, p' and b set of stress invariants, defined by the equations (5), (1) and (4), respectively. The following cubical relationship for the failure criterion results

$$ \frac{8}{9}K \left(\frac{2}{3}b^3 - b^2 - b + \frac{2}{3} \left(\frac{\tau_{\max}}{p'} \right)^3 + \left(1 - \frac{K}{3} \right) \right) $$

where $b = 2\sin^2\alpha_\sigma$ applies for the boundary conditions $p_i = p_o$ imposed in the experimental programme of this research. It follows that equation (14) offers a direct link between the ratio τ_{\max}/p' and the angle α_σ (through b). Thus, by solving equation (14), it is now possible to plot the Matsuoka–Nakai strength envelope in the required $(\tau/p' - (\sigma_2 - \sigma_1)/2p')$ stress plane.
can be employed to obtain an expression for the strength envelope of fibre-reinforced soil of the following form
\[
\frac{\tau_{\text{max}}}{p'} = \frac{\tau_{\text{max}} + R_f}{p'}
\]
(15)
where \(\tau_{\text{maxR}}\) is the radius of the Mohr’s circle for the reinforced soil, while \(R_f\) is the additional shear strength contribution of the fibres. It is somewhat intuitive to assume that the shear strength contribution of the fibres is dependent on the amount of fibres which are effectively mobilised (or stretched) during a specific shearing test. Thus, introducing \(r_f\), the shear strength contribution per unit fibre volume, it is possible to further write
\[
\frac{\tau_{\text{max}}}{p'} = \frac{\tau_{\text{max}} + \chi \mu_f r_f}{p'}
\]
(16)
where \(\mu_f\) is the total volumetric concentration of fibres and \(\chi\) is the proportion of fibres having orientations within the tensile strain domain (proportion of mobilised fibres).
Equation (16) can then be rewritten as
\[
\frac{\tau_{\text{max}}}{p'} = \frac{\tau_{\text{max}}}{p} \left(1 + \chi \mu_f \frac{r_f}{\tau_{\text{max}}} \right)
\]
(17)

This expression can now be employed to predict the experimental data, imposing a friction angle \(\phi' = 32°\) for the unreinforced soil matrix according to the Matsuoka–Nakai strength criterion (see Fig. 10). The proportion of mobilised fibres \(\chi\) can be back-calculated from the experimental data by integration of the fibre orientation distribution found by Ibraim et al. (2012) within the tensile strain domain for each HCTA test condition. In this procedure, the experimentally recorded values of axial, radial and shear strains at failure (\(\varepsilon_f = 10\%\)) have been used, through the Mohr’s circle of strains, to define the aperture and orientation of tensile strain domain for each of the experimental tests performed and the fibre orientation distribution function in equation (18) has been integrated over this angular domain
\[
\rho(\theta) = A + B \cos^n(\theta)
\]
(18)
with \(A = 0\), \(n = 6\) and \(B = 0.3482\) (Diambra et al., 2007; Ibraim et al., 2012). The previous analysis of experimental data in the section entitled ‘Principal stress and principal strain increments directions’ suggested coaxiality between principal stress and strain rate direction, therefore it was thought convenient to plot the variation of the proportion of fibres \(\chi\) as function of the imposed angle \(\alpha_s\) (Fig. 14), with 93% of fibres mobilised for \(\alpha_s \approx 0°\) and only about 9% of all fibres effective for \(\alpha_s \approx 90°\). The linear fit of experimental data has been used in the following calculations.

The comparison between the experimentally determined strength envelope for fibre-reinforced sands and the predictions from equation (17) is shown in Fig. 15. The strengthening contribution per unit fibre content has been calibrated to fit the experimental test data for \(\alpha_s \approx 0°\) to obtain a value of \(r_f = 3.4\). The model predicts well the experimentally determined fibre-reinforced strengths for the other values of \(\alpha_s\) and reliably captures the overall shape of the fibre-reinforced strength envelope, with a progressively decreasing strengthening effect as \(\alpha_s\) increases. The importance of considering the real orientation distribution of the fibres and the actual amount of the fibres actively engaged to work in tension can be appreciated by analysing the model predictions if an isotropic distribution of fibre orientation is assumed. In this case, the fibre orientation distribution function is independent of the angle \(\theta(q(\theta) = n/2)\) and the parameter \(\chi\) varies slightly with \(\alpha_s\) decreasing from 0-59 to 0-42. Therefore, for an isotropic fibre orientation, the fibre strengthening

plane. For typical values of the mobilised friction angle for sands, equation (14) has three real roots: the bigger solution must be selected for \(\alpha_s > 45°\) and the intermediate solution for \(\alpha_s < 45°\).

The ratio \(\tau_{\text{max}}/p'\) is an expression of the shear strength of the material. Following approaches in the published literature (Zornberg, 2002; Diambra et al., 2013, 2017; Festugato et al., 2018), superposition of sand matrix and fibre effects

\[\begin{align*}
\text{Fig. 10. Matsuoka–Nakai (Matsuoka & Nakai, 1974) failure} \\
\text{envelope (grey line) with experimental strength envelopes, for} \\
\text{unreinforced (solid line) and reinforced samples (dotted line), plotted} \\
\text{considering the stress state at } \varepsilon = 10\% \text{ for samples under:} \\
\text{(a) } 100 \text{ kPa; (b) } 200 \text{ kPa} \\
\end{align*}\]

\[\begin{align*}
\text{Fig. 11. Variation of the friction angle (at } \varepsilon = 10\%) \text{ between} \\
\text{reinforced and unreinforced samples for different } \alpha_s \text{ angles} \\
\end{align*}\]
Fig. 12. Pictures of (a) unreinforced and (b) reinforced specimens at the end of shearing

Table 5. Comparison between theoretically determined (ζ) and observed orientation (ζ_{obs}) of the failure planes in the tested specimens. Thickness (t_{fs}) and brief description of the experimental failure planes are also reported.

<table>
<thead>
<tr>
<th>Test name</th>
<th>alpha: deg</th>
<th>Mohr–Coulomb</th>
<th>Visual observation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\varphi_{\text{vis}}) deg</td>
<td>(\zeta) deg</td>
</tr>
<tr>
<td>H100f00_0</td>
<td>0</td>
<td>31.7</td>
<td>60.8</td>
</tr>
<tr>
<td>H100f00_15</td>
<td>15</td>
<td>33.0</td>
<td>61.5</td>
</tr>
<tr>
<td>H100f00_30</td>
<td>30</td>
<td>33.1</td>
<td>61.5</td>
</tr>
<tr>
<td>H100f00_45</td>
<td>45</td>
<td>32.5</td>
<td>61.2</td>
</tr>
<tr>
<td>H100f00_60</td>
<td>60</td>
<td>36.7</td>
<td>63.4</td>
</tr>
<tr>
<td>H100f00_90</td>
<td>90</td>
<td>35.0</td>
<td>62.5</td>
</tr>
<tr>
<td>H100f05_0</td>
<td>0</td>
<td>41.0</td>
<td>65.5</td>
</tr>
<tr>
<td>H100f05_15</td>
<td>15</td>
<td>42.3</td>
<td>66.2</td>
</tr>
<tr>
<td>H100f05_30</td>
<td>30</td>
<td>42.4</td>
<td>66.2</td>
</tr>
<tr>
<td>H100f05_45</td>
<td>45</td>
<td>39.8</td>
<td>64.9</td>
</tr>
<tr>
<td>H100f05_60</td>
<td>60</td>
<td>39.7</td>
<td>64.8</td>
</tr>
<tr>
<td>H100f05_90</td>
<td>90</td>
<td>36.7</td>
<td>63.4</td>
</tr>
<tr>
<td>H200f00_0</td>
<td>0</td>
<td>32.5</td>
<td>61.2</td>
</tr>
<tr>
<td>H200f00_15</td>
<td>15</td>
<td>32.0</td>
<td>61.0</td>
</tr>
<tr>
<td>H200f00_30</td>
<td>30</td>
<td>31.5</td>
<td>60.7</td>
</tr>
<tr>
<td>H200f00_45</td>
<td>45</td>
<td>30.1</td>
<td>60.1</td>
</tr>
<tr>
<td>H200f00_60</td>
<td>60</td>
<td>30.6</td>
<td>60.3</td>
</tr>
<tr>
<td>H200f00_90</td>
<td>90</td>
<td>31.8</td>
<td>60.9</td>
</tr>
<tr>
<td>H200f05_0</td>
<td>0</td>
<td>38.4</td>
<td>64.2</td>
</tr>
<tr>
<td>H200f05_15</td>
<td>15</td>
<td>38.6</td>
<td>64.3</td>
</tr>
<tr>
<td>H200f05_30</td>
<td>30</td>
<td>37.7</td>
<td>63.8</td>
</tr>
<tr>
<td>H200f05_45</td>
<td>45</td>
<td>32.9</td>
<td>61.5</td>
</tr>
<tr>
<td>H200f05_60</td>
<td>60</td>
<td>35.8</td>
<td>62.9</td>
</tr>
<tr>
<td>H200f05_90</td>
<td>90</td>
<td>34.4</td>
<td>62.2</td>
</tr>
</tbody>
</table>

*The observed failure slope inclination \(\zeta_{\text{obs}}\) was determined considering clockwise angles as positive.
The contribution would be almost independent from the orientation of principal stress, \(\alpha_{\text{pr}} \) resulting in an inaccurate prediction of the fibre-reinforced strength envelope, as shown in Fig. 15.

Michalowski (2008) suggested that the strength anisotropy of fibre-reinforced soils is primary related to the imposed strain rate direction during the test, as the contribution of fibres is largely strain driven. Although this is indeed unquestionable, the obtained prediction of the experimental data in Fig. 15 suggests that the use of a single fibre mobilisation parameter (such as \(\chi \)) – governed by the imposed principal stress direction – may provide a simpler alternative with still satisfactory results. However, ideally, a theoretical model which employs two parameters, one governing the contribution per unit volume of fibres and one related to the fibre orientation distribution, like the one proposed in equation (17) should produce satisfactory simulations of the deviatoric strength envelope for fibre-reinforced soils in the multiaxial stress space.

Application of this theoretical model to mixtures of different fibre and soil types will require the determination of the specific fibre orientation distribution and the re-calibration of the parameter \(r_f \) describing the strengthening contribution per unit fibre, which is expected to be controlled by the fibre and soil characteristics (e.g. fibre length aspect ratio, fibre to grain size ratio) as well as by the applied stress level conditions.

CONCLUSIONS

An experimental programme using the HCTA has been undertaken to investigate the strength anisotropy of fibre-reinforced sands in the multiaxial stress space. The experimental programme comprised 24 monotonic drained tests on both unreinforced and fibre-reinforced granular soil specimens, imposing six probing stress paths each with different orientations of the principal stress axis. Orientations varied between triaxial compression (\(\alpha_{\text{pr}} = 0^\circ \)) and triaxial extension (\(\alpha_{\text{pr}} = 90^\circ \)) conditions, under two equal values of internal and external cell confining pressures. The experimental data provided the following conclusions and points of interest.

(a) Owing to the sample’s thin wall, curvature and height, laboratory fabrication of fibre-reinforced hollow cylinder tests proved to be a challenging task. The commonly adopted moist tamping technique did not lead to fabrication of uniform specimens. The moist vibration technique was found to be more suitable. However, it was necessary to mix the soil and fibres in five different portions, in order to ensure a uniform distribution of fibres (which may be compromised by the deposition process inside the mould) and obtain a satisfactory repeatability of experimental results.

(b) For the first time, a deviatoric strength envelope in the multiaxial stress space has been identified for fibre-reinforced soils. Compared to the unreinforced case, which could be reproduced well using the Matsuoka–Nakai strength criterion imposing a friction angle of 32\(^\circ\), the addition of fibres produces an anisotropic response and thus a distortion of the strength envelope.

(c) The contribution of fibres was at a maximum for the imposed stress path at \(\alpha_{\text{pr}} = 0^\circ \), with a net increase of the friction angle up to 8\(^\circ\); the net increase of the friction angle eventually decreases with the increase of the orientation, \(\alpha_{\text{pr}} \), to reach only about 1\(^\circ\) for \(\alpha_{\text{pr}} = 90^\circ \). A similar trend for the deviatoric strength increase and mobilised tensile strains in the horizontal plane with the imposed orientation of principal stress axes was observed. Considering that fibre orientation for the tested specimens was expected to be mostly horizontal, the fibre strengthening contribution seems to be
proportional to the tensile strain developed along their preferred orientation.

(d) For probing stress paths with a direction of the principal stress different from the vertical and horizontal directions, non-coaxiality between principal stress and strain rate directions was observed during the early stages of shearing. Eventually, coaxiality was restored at large strains, close to the failure conditions. Despite the considerable strength contribution, the fibres seemed to have no influence on the coaxiality of stress and strain rates axes, suggesting that the deformation behaviour of fibre-reinforced specimens is mostly governed by the sand matrix.

(e) Addition of fibres was not found to influence the overall mode of failure of the sample and the orientation of localised shear bands. However, it appeared that the addition of fibres increases the number of visible shear bands, while decreasing their thickness. Fibres also prevent the creation of thick failure planes.

(f) A theoretical model which employs two parameters, one governing the contribution per unit volume of fibres and one relative to the fibre orientation distribution, was developed to describe the failure envelope for fibre-reinforced soils.

It is hoped that the experimental data presented and evidence for the anisotropic failure strength envelope of fibre-reinforced sand under a range of monotonic multiaxial histories will help the development of constitutive models formulated in the multiaxial stress space to be used for numerical analyses. It is believed that the proper and accurate account of the anisotropic strength of fibre-reinforced soils is of the utmost importance for geotechnical design in field applications, where rotations of principal stress axes almost invariably occur within a soil mass.

ACKNOWLEDGEMENT
This work has been supported by the Engineering and Physical Sciences Research Council (EPSRC) grant EP/J010022/1. All underlying data are provided in full within this paper.

NOTATION

\(A, B \) model parameters to describe the distribution of the fibre orientation

\(b \) intermediate principal stress parameter

\(C_0 \) coefficient of gradation (\(= D_{95}/(D_{60} D_{10}) \))

\(C_1 \) coefficient of uniformity (\(= D_{90}/D_{10} \))

\(D \) average hollow cylinder specimen diameter

\(D_{10}, D_{30}, D_{60} \) particle size such that 10, 30 and 60% of the particles are smaller than \(D_{10}, D_{30} \) and \(D_{60} \)

\(D_{50} \) mean particle size

\(d_0 \) fibre diameter

\(e \) void ratio at fabrication stage

\(e_0 \) void ratio after isotropic consolidation

\(e_{\text{min}}, e_{\text{max}} \) minimum and maximum void ratio

\(G_f \) fibre specific gravity

\(G_s \) sand specific gravity

\(H \) initial specimen height

\(I_1, I_2, I_3 \) invariants of the stress tensor

\(K \) Matsuoka–Nakai failure criterion

\(L_0 \) average projected fibre linear length

\(l \) crimped fibre length

\(n \) model exponential to describe the distribution of the fibre orientation

\(p \) mean stress

\(p' \) mean effective stress

\(p, p_o \) inner and outer pressure applied to the hollow cylinder specimen

\(p', p'_o \) effective inner and outer pressure applied to the hollow cylinder specimen

\(q \) deviatoric stress

\(q_{10} \) deviatoric stress at 10% of deviatoric strain

\(R \) overall shear strength contribution of the fibres

\(r_l \) shear strength contribution per unit volume of fibres

\(r_x, r_y \) inner and outer radius of the hollow cylinder specimen

\(T \) torque load

\(t_s \) shear band’s thickness

\(t_w \) wall thickness of the hollow cylinder specimen

\(u \) pore water pressure

\(W \) axial load

\(W_f \) weight of fibres

\(W_s \) dry weight of sand

\(\psi \) percentage of fibre content (= \(W_f/W_s \))

\(\alpha_a \) direction of the major principal stress increment axis relative to the vertical direction

\(\alpha_s \) direction of the major principal stress axis relative to the vertical direction

\(\gamma_0 \) circumferential shear deformation (\(= \gamma_{0l} \))

\(\Delta H \) vertical displacement of the hollow cylinder specimen

\(\Delta q_{10} \) variation of deviatoric stress due to fibre addition at \(\psi = 10\% \) (= \(q_{10} - q_{10l} \))

\(\Delta \alpha_x, \Delta \alpha_y \) variation of inner and outer radius of the hollow cylinder specimen

\(\Delta \theta \) variation of rotation angle (relative to the top of the specimen)

\(\Delta \psi_{10} \) variation of friction angle due to fibre addition at \(\psi = 10\% \) (= \(\psi_{10} - \psi_{10l} \))

\(\delta_{x, y} \) variation of axial and circumferential deformation

\(\delta_{\theta} \) variation of circumferential shear deformation

\(e_d \) deviatoric strain component

\(e_v \) volumetric strain \((e_v = e_x + e_y + e_z) \)

\(e_d, e_v \) axial, radial and circumferential deformation

\(e_{d} \) deviatoric strain increment

\(e_v \) volumetric strain increment

\(\zeta \) theoretical failure plane inclination with respect to the major principal plane direction

\(\zeta_{\text{obs}} \) observed failure plane inclination with respect to the major principal plane direction

\(\eta \) fibre aspect ratio (= \(f_0/d_0 \))

\(\eta \) stress ratio at 10% of deviatoric strain

\(\theta \) fibre orientation from the horizontal plane

\(\mu \) volumetric concentration of fibre

\(\rho(\theta) \) distribution function for fibre orientation

\(\sigma_c, \sigma_t, \sigma_r \) mean total axial, radial and circumferential stress

\(\sigma_{1, 2, 3} \) mean major, intermediate and minor total principal stress

\(\tau_{\text{max}} \) maximum shear stress

\(\tau_{\text{max}} \) maximum shear stress for reinforced soils

\(\tau_{\text{c}} \) mean circumferential shear stress (= \(\tau_{c0} \))

\(\phi_{\text{eff}} \) effective friction angle at failure

\(\phi_{10} \) effective friction angle at 10% of deviatoric strain

\(\phi_{10u} \) effective friction angle at 10% of deviatoric strain for reinforced samples

\(\psi \) proportion of the engaged fibres

\(\psi \) mobilised angle of dilatancy

\(\psi_{\text{m}} \) maximum value of mobilised angle of dilatancy

REFERENCES

Mandolini, A. (2014). Investigation of strength anisotropy of fibre reinforced sands under generalised loading conditions using the HCTA. MSc thesis, University of Bristol, Bristol, UK.

