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Avoiding detection can provide significant survival advantages for prey, preda-
tors, or the military; conversely, maximizing visibility would be useful for
signalling. One simple determinant of detectability is an animal’s colour relative
to its environment. But identifying the optimal colour to minimize (or maxi-
mize) detectability in a given natural environment is complex, partly because
of the nature of the perceptual space. Here for the first time, using image proces-
sing techniques to embed targets into realistic environments together with
psychophysics to estimate detectability and deep neural networks to interpolate
between sampled colours, we propose a method to identify the optimal colour
that either minimizes or maximizes visibility. We apply our approach in two
natural environments (temperate forest and semi-arid desert) and show how
a comparatively small number of samples can be used to predict robustly the
most and least effective colours for camouflage. To illustrate how our approach
can be generalized to other non-human visual systems, we also identify the
optimum colours for concealment and visibility when viewed by simulated
red—green colour-blind dichromats, typical for non-human mammals.
Contrasting the results from these visual systems sheds light on why some
predators seem, at least to humans, to have colouring that would appear detri-
mental to ambush hunting. We found that for simulated dichromatic observers,
colour strongly affected detection time for both environments. In contrast,
trichromatic observers were more effective at breaking camouflage.

1. Introduction

Recently, interest in camouflage among evolutionary biologists has grown con-
siderably [1], and many of the basic principles of how to conceal oneself have
become far clearer. The range of research is wide and empirical support has
been provided for many of the diverse strategies employed in the animal king-
dom. Studies measuring the effectiveness of camouflage tend follow the same
basic format: a small number of colours, patterns or colour/pattern combinations
are generated that capture the proposed camouflage principles; and then the uti-
lity of the camouflage is evaluated, perhaps in the field by measuring predation
rates, or in the laboratory measuring detection speed and accuracy, identification
ability, or capture rate, using either human or non-human subjects. The same
basic method is also used in the assessment of military camouflage (e.g. [2-5]).
If the goal is to compare only a few colours/patterns in a given context then
this strategy has much to commend it, being both simple to analyse and easy to
understand. However, if the question is ‘what is the optimal camouflage strategy
to employ in a given context?’, the approach is ineffective: the range of possible
patterns is too large.
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Optimal camouflage depends on a diverse range of factors:
size, viewing distance, height above the ground, lighting,
occlusion, the nature and variability of the environment, as
well as the characteristics of the visual system of the observer
[1,6-10]. The optimal colours and patterns may also vary
depending on the mechanism by which the camouflage acts,
whether to hinder detection, identification, selection or capture
[1,10]. Consequently, in the animal kingdom, the range of
camouflage patterns and strategies is wide; in human appli-
cations (e.g. military), the range of potential patterns is even
wider because pattern generation is not constrained by biologi-
cal mechanisms [11]. A reliable, systematic means of finding
the optimal coloration and pattern for either minimizing
(camouflage) or maximizing (conspicuity) visibility for a
given range of environments would have wide applicability.

Here we concentrate on one simple but important charac-
teristic of camouflage: its colour. Partly this is because colour
is obviously an important property in determining the visi-
bility of a target but, more importantly, because the space of
all possible colours is far larger than traditionally explored. If
colour could be characterized by a single dimension (say
simply its luminance), then identifying the most (or least) con-
cealing colours in a given context would be straightforward.
We could systematically vary the colour along this single
dimension and use a principled method to assess its visibility:
finding maxima (and minima) in one dimensional spaces is
simple. In contrast, even though colour is relatively low dimen-
sional, an exhaustive evaluation of all colours, even if done at a
coarse scale, scales badly: the number of locations required in
colour space increases exponentially with dimensionality. We
would like a method that could scale to this number of dimen-
sions, and if this works, hopefully scale it to additional
dimensions (such as texture).

Equally, investigating only those colours and patterns seen
in nature (e.g. [12]) omits possibilities that became extinct with-
out leaving a fossil record, or those that evolution has not
realized because of phylogenetic or developmental constraints.
To address the challenges presented by a large multi-
dimensional parameter space, without needing to impose
artificial constraints, we propose a method for identifying opti-
mal colours, patterns or colour/pattern combinations in any
given context that uses deep neural networks. Specifically, we
use them to interpolate smoothly between the colours that
have been (noisily) tested, to other colours that have not.

Neural networks have been used for finding structure in
unlabelled data (unsupervised learning) [13]; classification of
inputs based on previously labelled data [14]; or regression
(predicting real valued measurements) [15]. In some ways
this may be considered a ‘sledge-hammer’ approach: usually
the simple problems such as interpolating a three-dimensional
space would be dealt with a simpler method such as Gaussian
process-based smoothing [16]. However, such methods often
inherit strong assumptions, such as constant variability/
noise for all values of the function. While these assumptions
may be reasonable for the simple three-dimensional problems
studied here, deep neural networks are a more general solution
and can potentially be applied to more complicated spaces.
Here we use deep neural networks to implement nonlinear
regression and use it, after training, to interpolate between
measured inputs and predict responses for unseen inputs.

While the data sampling requirements of our method are
modest compared with contemporary ‘big data’ standards,
they are nevertheless large enough to preclude field trials.

Using computer presentation and human participants, we

can change stimuli rapidly and accurately capture the reaction
times taken to identify them. However, because many camou-
flage strategies (such as concealment of shape based on
countershading [17]) simply do not make sense in a uniformly
illuminated two-dimensional world, and many objects are
effectively impossible to conceal unless partly hidden by the
foreground, we built our stimuli using multiple layers in
order to achieve some level of realism. Our stimuli were built
from three layers: (1) a foreground occlusion layer; (2) a
target layer; and (3) a background layer. We then used these
stimuli to construct a visual search task that in some sense
matches the task of predators and prey, albeit without active
movements through the environment. In this way we can
control each of the dimensions of interest.

To provide some confidence that the approach generalizes,
we demonstrate our method using human participants to
identify targets of single colour in trichromat and simulated
dichromat conditions in two natural environments. Dichro-
matic colour is straightforward to simulate for trichromats,
using image processing; though the downside is the lack of
the lifetime’s experience of dichromacy that a natural prota-
nope has, something returned to in the discussion. The
natural environments we used were temperate forest and
semi-arid desert. We show: (1) that our methods allow rapid
presentation of coloured objects embedded in realistic environ-
ments; (2) how neural networks can be combined with
bootstrap techniques to provide a statistical characterization
of the visibility function (the mapping between the colour of
an object and its geometric mean detection time); and (3) that
the optimally concealed and conspicuous targets depend not
only on the environment they are embedded in, but also on
the nature of the visual system of the observer.

2. Results

2.1. Training networks

Human reaction time data for each condition were combined to
provide a trichromat dataset and dichromat dataset (each one
consisting of 500 trials 10 participants ... 5000) for each geo-
graphical location. In order to be able to interpolate and
predict reaction times for target colours that had not been
sampled during the experiment, and to take account of inter-
subject variability in responses, residual deep neural network
models were built using the high-level neural network API
Keras 2.1.2 [18] running on top of neural network library
TensorFlow 1.5.0 [19], separately for each combination of geo-
graphical location and chromatic condition. Inputs to the
networks were the colour of the target (as RGB triplets), occlu-
sion level and a one-hot array for participant IDs, while the
output was the predicted reaction time. An alternative colour
space such as CIELab or HSV could have been used; however,
as neural networks form their own internal representations of
distances [20] the choice of colour space is irrelevant. To pro-
vide for a measure of accuracy in our predictions (an
estimate of standard error) we created 100 bootstraps of our
networks. The bootstrap method is a test or metric that uses
random sampling with replacement. The bootstrap method
allows assignment of accuracy measures, defined here in
terms of variance and is particularly useful when the value
of interest is, as in the present case, a complicated function
[21]. By averaging the bootstrapped network predictions we
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Figure 1. Mean predicted reaction times from bootstrapped neural networks. Error bars represent 1 s.e.m. (Online version in colour.)

calculate both a data dependent smoothing of the reaction time
function and an estimate of our certainty of its estimate. Each
network was trained on a random sample of 90% of the data
and validated with the remaining 10%. In order to establish
the number of residual blocks to use, networks were trained
with two, four and six residual blocks. By comparing vali-
dation loss we found that four residual blocks gave the
lowest error in all conditions, and accordingly this configur-
ation was used. Further information for details of network
configuration (together with how residual blocks are defined),
comparing validation losses and parameters can be found in
electronic supplementary material.

2.2. Network predictions
The training process resulted in 100 models for each geographi-
cal location and chromatic condition, i.e. four sets of 100
models. Using each set of trichromat bootstrapped models,
we submitted 16777216 colour samples (the whole RGB
gamut), collecting predicted reaction times for each. Similarly,
for each set of dichromat bootstrapped models, we submitted
the entire simulated dichromat gamut (64 229 colour samples).
All network predictions were made using 37.5% occlusion,
which was the average occlusion level across experimental
trials. From the bootstrap values, we found the easiest and
hardest to see colours by averaging across the reaction times
for the 100 bootstraps per condition. In order to compare
predicted reaction times for colours within and between geo-
graphical locations, statistics were calculated using random
permutation tests, all based on 100000 resamples. The pre-
dicted detection times were significantly longer in the
dichromat treatment than in the trichromat treatment for
both locations (all p , 0.0001, figure 1). The difference between
the hardest and easiest to find colours within geographical
locations was also found to be significant for both chromatic
conditions (all p , 0.0001). p-Values were adjusted for multiple
comparisons with false discovery rate [22].

To provide an illustration of how networks predict reaction
times to the respective colour gamuts, we created polar plots

showing the predicted reaction times with respect to the hard-
est to see colour (figure 2). For trichromats in the forest
environment, the top left panel of figure 2 shows that a shade
of dark green/khaki is the hardest to find and shades of red,
magenta and neon green are the easiest to find. In the desert tri-
chromat setting (bottom left panel) trichromats find shades of
beige (plainly reminiscent of light and dark sand) the most dif-
ficult and again neon green the easiest to find. For the forest
dichromat condition, top right panel of figure 2 clearly shows
that a dark olive shade is the hardest to find, while blue,
white and bright yellow stand out most. In the desert trichro-
mat condition (bottom right panel) the hardest to find colour
is a lighter beige shade and the easiest light blue. The white
spaces containing no colour points in figure 2 illustrate that
no (or few) points were found at those reaction times. In
other words, using the top left panel for forest trichromat, the
white space at around 2208 indicates that none of the light
blue hues were difficult to find.

2.3. Validation

To provide a level of confirmation that dichromat colours are
harder to see than trichomat colours and that the ordinality
(in terms of reaction times) was comparable, we conducted a
simple validation experiment using the same method as the
original data collection. The only difference in the procedure
was that colour choices were confined to three categories:
easiest, intermediate (chosen halfway between reaction time
extremes) and hardest. Twenty-five colours were chosen arbi-
trarily within a 25 ms margin of the predicted reaction times
associated with each category (figure 3 illustrates the stimuli
used). This was done because, although we have identified a
single hardest and easiest colour for each condition, characteriz-
ing an entire function simply by its maxima and minima fails to
capture the function completely. Data were analysed using gen-
eralized linear mixed models and we found that the results of
the validation were consistent with predictions from the
neural networks. Further information for details of the data
analysis can be found in electronic supplementary material.
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Figure 2. Polar plots showing the predicted reaction time difference from the hardest to find colours in the centre of the plot for each geographical location and
chromatic condition. The angle is given by hue, representing red starting at 08, yellow (from 608), green (1208), cyan (1808), blue (2408) and magenta (3008).
Distance is given by the difference in reaction time from the hardest to find colour. From the hardest to see colour in the centre of the plot, each contour represents

an additional 100 ms predicted reaction time. (Online version in colour.)

3. Discussion

Based on an approach using simple image synthesis, psycho-
physics and deep neural networks for interpolation, we
identified the optimal colours for camouflage and conspicuity,
an approach not previously tried for multi-dimensional per-
ception-based experiments. We have shown that our method
is capable of predicting entire parameter spaces and demon-
strated its effectiveness with two- and three-dimensional
colour spaces of considerable size. Furthermore, we provided
confirmation that neural network predictions of hardest and
easiest colours were consistent with human participants
using a validation experiment. Interestingly, in some con-
ditions the distribution with respect to hues appears to be
multi-modal; for example, the hardest to find colours for the
trichromat desert condition are either shades of dark beige or
a lighter beige shade (resembling sand). This suggests that,
unsurprisingly, there might be multiple solutions to the same
problem, which intuitively seem to represent what is seen in
natural and human-made camouflage [11].

In both the neural network predictions and the validation
experiment, dichromatic targets were found to be significantly
harder to detect than trichromatic targets for temperate forest
and semi-arid desert conditions. Since our experiments were
carried out using interleaved projected images of forest and
desert scenes, it is important to rule out the possible confound
of a greater switch cost between trials in different chromatic
conditions (e.g. the switch cost is greater in the dichromat
versus trichromat condition). To achieve this, we used an inter-
stimulus interval of a mid-grey screen displayed for 2 s and
checked that the mean luminance differences between trichro-
matic and simulated dichromatic images from the same
geographical locations to the mean luminance of the intersti-
mulus screen were not significantly different in both
locations (temperate forest: t(62).. 20.5206, p ... 0.6045;
semi-arid desert: t(62) ... 20.1397, p ... 0.8893). Consequently
this does not account for the difference between simulated
dichromat and trichromat reaction times.

The result, that trichromatic vision is more effective at
breaking camouflage, seems to run counter to oft-quoted
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Figure 3. Representation of colours at similar reaction times. For each geographical location and colour condition the spheres represent, for illustration, 25 randomly
sampled colours at a given reaction time (=25 ms). The easiest to see colours are shown on the left, intermediate colours (chosen halfway between reaction time

extremes) in the middle, and the hardest on the right. Reaction time steps were: temperate forest trichromat

mat 458 ms, 705 ms, 952 ms; semi-arid desert trichromat
colour.)

historical accounts of the military value of dichromatic
observers and contemporary theories for the maintenance
of visual pigment polymorphisms in many New World
monkey species [23,24]. However, the most recent work in
this area suggests that evidence supporting an advantage
for dichromats in camouflage breaking is, at best, equivocal
[25]. This view seems to be confirmed by a brief survey
of the literature. In one paper, Morgan et al. [26] review litera-
ture from as early as 1940 [27], which claims that dichromatic
benefit would accrue in only limited situations, describing
the early literature as largely descriptive and offering no
empirical support. Morgan et al. [26] go on to describe their
own empirical work with human observers, reporting dichro-
matic advantage, but their experiments were limited to a
precisely controlled geometric display. Another study tested
white-faced capuchins [28], arguing that some benefit accrues
for dichromats; however, it is difficult to untangle the

374 ms, 485 ms, 595 ms; semi-arid desert dichromat

387 ms, 576 ms, 766 ms; temperate forest dichro-
429 ms, 605 ms, 781 ms. (Online version in

confounding effects of different light levels and relative
abundance of target insects.

More ecologically relevant, Lovell et al. [29] investigated
both trichromat and dichromat visual systems with respect
to changes of illuminant in natural scenes, concluding that
a foraging advantage accrues to trichromatic mammals
because their visual system is less confounded by abrupt
and unpredictable changes in illumination [29, p. 2069];
that is, it is less affected by shadows and changes in
illumination. This is consistent with the present results.

An advantage for dichromats under particular conditions,
but overall advantage for trichromats, seems to reflect the
broad findings of this literature; indeed, it is the overall con-
clusion of Troscianko et al. [25]. They found that trichromats
perform better, but under particular conditions dichromats
have an advantage. Our results suggest that, in two dissimi-
lar environments, the average detection times for optimal
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Figure 4. The effectiveness of tiger colouring in the dichromat context is striking. Image of a tiger (Panthera tigris) from the point of view of a simulated dichromat

(a) and trichromat receiver (b). (Online version in colour.)

colours for a trichromatic observer are lower than those for
optimal colours for a simulated dichromatic observer. It
remains possible that the increased ability of the trichromatic
system to break camouflage more effectively might simply be
because the average distance between two colours will
always be equal or greater in a higher dimensional space.
However, discriminability depends on multiple factors
(such as noise and distance from the observer), so it is not
a given that higher dimensionality improves discrimination.
Our data do not provide evidence for or against such a
proposal.
The intuitive statement below seems to sum up much of
the empirical work that has been carried out:
...But for every instance of this kind that might be suggested,
there are innumerable examples in which the colour-blind obser-
ver is at a marked disadvantage, and in other ways would of
course be a source of real danger. Moreover, if the normal
person were provided with pieces of coloured glass, it would
be most unlikely that the colour-blind person would ever be
able to score off him. [28]
Comparing the performance of trichromat and dichromat
observers does not necessarily explain the visual ecology of
real-world examples. What constitutes the best colour for
camouflage of animals depends very much on the visual
system of their prey and/or predator. Consider the coat of a
tiger (Panthera tigris); it has fur that appears orange to a trichro-
mat observer rather than some shade of green, though the latter
should be more appropriate camouflage for an ambush hunter
in forests. However, as illustrated in figure 4a, when viewed as
a dichromat, the tiger’s colour is very effective.

4. Conclusion

Based on our results and given that most non-human mam-
mals have dichromatic colour vision that is unable to reliably
differentiate orange and green, it seems that there is little
benefit to actually become green if the receiver is dichromat.
Hence predators (e.g. tigers), whose main prey is other
mammals (e.g. deer), experience little evolutionary pressure to
evolve green coloration from a trichromatic perspective. Deer
are dichromats [30,31] and, for them, most of their predators,
like tigers, appear green. Moreover, producing a green coat
would require a significant change to mammalian biochemistry
since mammals rely on the large polymers, eumelanin and
phaeomelanin, to produce black and yellow-red colours,
which are the basis of the limited palette we see [32]. Indeed,

the only mammal with a green coat is considered to be the
sloth whose colour is actually due to a green alga (Trichophilus
welckeri) that grows in its fur [33]. For species seeking conceal-
ment from dichromats there appears to be little pressure to
actually become green. In contrast, when hiding from trichro-
mats, simple coloration is not that effective. The open
question is therefore not why predators are not green, but
why their major prey are not trichromats.

5. Methods
5.1. Participants

For collecting training data, five male and five female partici-
pants (each undertaking counterbalanced trichromat and
dichromat experimental sessions) were recruited. Four partici-
pants (three female and one male) none of whom participated
in the training data experiment took part in the validation exper-
iment. All participants had normal or corrected-to-normal vision
and were members of the University of Bristol. Informed consent
was obtained from all participants as stated in the Declaration
of Helsinki. All experiments were approved by the Ethics
Committee of the University of Bristol’s Faculty of Science.

5.2. Stimulus construction (preliminaries)

Stimuli were created from three layers: (1) a foreground occlusion
layer; (2) a target layer containing the search object; and (3) a back-
ground layer. (1) and (3) were taken from two locations, selected to
represent two very different types of natural background (temperate
forest in October 2015 in Leigh Woods, north Somerset, UK, 2838.6'
W, 51827.8' N, and semi-arid desert in April 2016 in the Tabernas
Desert, Almeria, Spain, 2841.3'E, 37802.9 N). Collection of the
images for (3) consisted of choosing representative locations and
taking 2848 4288 pixel photographs with a tripod mounted
Nikon D90 digital SLR camera (Nikon Corp., Tokyo, Japan).
Images for (1) were acquired using a large blue screen (1.8 m
2.8 m blue cotton muslin photography background cloth mounted
on a lightweight frame) that could be easily manoeuvred across the
scene captured for (3). The blue-screen images were used with a
chromakey technique to create occlusion of the search object
during stimulus construction. Again, these images were captured
using the tripod mounted Nikon D90 digital SLR.

The captured occlusion layer images were pre-processed in
order to obtain the location of the blue screen as a mask. This pro-
vided for permissible locations of the centre of the search object
that we wanted participants to find (see below), and identified
all of those pixels that were needed to form the occlusion. This
pre-processing allowed a location for the search object to be rapidly
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Figure 5. Examples of the background and blue screen images. Top left: a semi-arid desert background image. Top right: blue screen image using the same semi-
arid desert scene. Centre: an example of a shaded sphere. Bottom left: an example of a trichromat stimulus displayed to participants using the semi-arid desert
background images. Bottom right: a dichromat stimulus example using the temperate forest background images. (Online version in colour.)

chosen and occlusion created during the experiment. The top
panels of figure 5 show the images used in pre-processing.

A bespoke program, written using Matlab 2017b (The
MathWorks, Inc., Natick, MA, USA) and the Psychtoolbox-3 exten-
sions [34,35], was used to construct and present the stimuli, and to
collect experimental data.

5.3. Stimulus construction (presentation)
During each trial, stimuli were constructed by randomly choosing
a background image, together with its associated occlusion image,
from a pool of 32 images and their permissible locations for the
stimulus, for each geographical location. The occlusion image
was pre-processed from the blue screen image and a matrix pro-
duced (the same size as the background image) containing a
logical ‘true’ for every permissible centre for the search object.
The combination of backgrounds (32 per location) and potential
positions for the search image (mean 284 650 per image) provided
a very large number of possible scenes. The target was a sphere,
128 pixels in diameter, constructed dynamically using a sample
colour with pseudo-realistic shading to achieve a spherical look
(an example of a coloured sphere is shown in the central panel of
figure 5). While we acknowledge that there are few perfectly
round/spherical things in nature, we chose a sphere because it
was easy to create and shade to look realistic. Maintaining a con-
stant size and shape also had the benefit that any effects that
might be attributable to changing shape could be discounted.
Based on the mask, a pixel position was randomly chosen as
the centre point for the sphere and the sphere superimposed on
the background. Also using the mask, the pixels occluding the
sphere were then superimposed onto the sphere. Examples of
the completed stimuli are shown in lower panels of figure 5.
Dichromatic representations of the stimuli were created using

an implementation of the protan equation from Vienot et al.
[36], which creates a representation of a trichromat (RGB)
image as perceived by people with protanopia.

5.4. Procedure

Images were projected onto a 1900 1070 mm screen (Euroscreen,
Halmstad, Sweden) from 3100 mm using a 1920 1080 pixel
HD (contrast ratio 300 000 : 1) LCD projector (PT-AE7000U; Panaso-
nic Corp., Kadoma, Japan). For Yxy measurements of projected
colours, see electronic supplementary material, table S7. Partici-
pants sat behind a table 2m from the display screen with a
keyboard in front of them. The experimental stimulus subtended
avisual angle of 608 by 33.758 and the target sphere 48. Participants
were randomly assigned to one of two colour space conditions
which was presented in the first block (either trichromat or dichro-
mat, the other condition being presented later on a separate
occasion). A central fixation cross on a mid-grey background was
displayed for 2 s prior to stimulus onset. Participants had up to
10 s to find and indicate on which side of the screen the stimulus
sphere was presented. Failure to respond caused the trial to be
recorded as a failure and the experiment to move on the next stimu-
lus. Reaction times and errors were recorded. Each block consisted
of 1000 trials (plus eight practice trials). Trials were based on 500
forest and 500 desert backgrounds presented in a random order.
We used simple uniform random sampling without replacement
to select sphere colours using a 24-bit RGB gamut. Occlusion
levels were chosen randomly between 25% and 50%.

Data accessibility. Details of network configuration, parameters and data
analysis can be found in electronic supplementary material. Datasets
for reaction times to stimuli are available online. Leigh Woods (temperate
forest): https://doi.org/10.6084/m9.figshare.7111214. Tabernas Desert
(semi-arid desert): https://doi.org/10.6084/m9.figshare.7111217.
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