
Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
A Novel PROGRAMMABLE DISAGGREGATED EDGE NODE SUPPORTING HETEROGENEOUS 5G ACCESS TECHNOLOGIES

Arash Farhadi Beldachi1, Thierno Diallo1, Kalyani Rajkumar1, Emilio Hugues Salas1, Rui Wang1, Anna Tzanakaki1,2, Reza Nejabati1, Dimitra Simeonidou1

1High Performance Networks (HPN) Group, University of Bristol, Bristol, UK
2National and Kapodistrian University of Athens, GR
Arash.Beldachi@bristol.ac.uk

Keywords: EDGE NODE, ROGRAMMABLE, TSON, 5G, VOYAGER

Abstract

We demonstrate a programmable disaggregated edge node in support of both metro and long-haul networks. This solution is successfully evaluated through Bristol’s City Metro Network, over 100km and 200km optical fibre with a low power penalty.

1 Introduction

The emergence of new and diverse types of applications available to end users and vertical industries each requiring its own Key Performance Indicators (KPIs) have led to rapid progress in the development of 5G network architectures and technologies, including cell densification. In view of this, optical transport network solutions offering fronthaul, and backhaul services will play an important role in meeting these KPIs specifically in terms of the required delay, bandwidth, and synchronisation. The diversity of applications, their KPIs, as well as the diversity of 5G access network technologies that will share common transport network solutions require a flexible and programmable edge node architecture to offer the interface between the 5G access and transport network. This transport network can be envisioned to extend to both metro and core networks offering connectivity to distributed and centralised compute resources as required. To offer the required flexibility levels, this edge node has to be dynamically configurable and programmable via the network control plane to meet the needs of the different applications and access technologies.

2 Disaggregated Edge Node architecture

Fig.1 shows the proposed Disaggregated Edge Node architecture1, 2 comprising the Time Shared Optical Network (TSON) technology implementation using Field Programmable Gate Array (FPGA) optoelectronic platform, Voyager, and Wavelength Selective Switches (WSS). This highly programmable Software-defined networking (SDN) enabled architecture can aggregate/disaggregate any access traffic combination (i.e. Ethernet, WiFi, LiFi, eCPRI, and etc) to/from a transport network that can support both Metro- and Long-haul networks on demand based on the operator or service provider requirements.

2.1 Time Shared Optical Network (TSON)

TSON technology1,2 has been proposed as a dynamic optical transport network solution to provide high bandwidth and low-latency connectivity in support of the 5G technology requirements. TSON is an active Wavelength Division Multiplexing (WDM) solution which provides variable sub-wavelength switching granularity and the ability to dynamically allocate optical bandwidth elastically1,2 with a unique time-sharing mechanism. The time-sharing mechanism offers dynamic connectivity with different granularity of bandwidth to achieve the required Quality of Service (QoS). This technology is the first multiple protocol programmable...
interface that meets 5G KPIs\(^1\). Fig. 2 illustrates the TSON data plane architecture in support of the disaggregated edge node. This architecture is fully programmable using SDN. The functions for the operation of TSON domains has been implemented in internal modules, within the SDN controller, that collaborate for the on-demand provisioning of connectivity between TSON nodes. The ingress TSON edge nodes are responsible for parsing, aggregation, and mapping of any input traffic combination with different bandwidth (in this implementation less than 10Gbps) into either 10Gbps TSON output with different granularity or converged 40Gbps Ethernet output, while the egress edge nodes have the reverse functionality.

3 Control plane

In order to bring flexibility and scalability to this architecture, a control plane is implemented on top of the disaggregated edge node. The control plane is composed of an SDN controller and device agents that allow to program and dynamically configure the different components of the disaggregated edge node. The SDN controller implements three drivers that can program the FPGA(s), the voyager driver to program the voyager, and the WSS driver to program the WSS. In order to optimize the programming time, the SDN controller uses the Multiprocessing Technic to program each component of the disaggregated edge node. The SDN controller receives a REST request containing the description of the network services to be deployed. This request specifies the FPGA ingress and egress ports, VLAN tags, Transport network functions (TSON or Ethernet), TSON parameters, modulation format, FEC, power and central frequency of the voyager BVT. The SDN controller, based on this request, can separate the parameters into different sets and sends them to the appropriate drivers in order to configure the agents. Several agents can be connected to the same driver. Each driver can identify the required nodes and can send the configuration to the appropriate agent via the REST API. In addition, FPGA and WSS agents have been developed. The FPGA agent receives ports information such as VLAN tags, transport network functions, and TSON parameters. Then, it translates the information to an appropriate format and programs the FPGA configuration registers via its Peripheral Component Interconnect Express (PCIe). Voyager receives the configuration parameters from the voyager driver at the SDN controller. These parameters consist of VLAN tags, ports, modulation format, FEC and power. The WSS agent receives the optical parameters including bandwidth and port. Then, it creates an abstraction of the configuration and configures the WSS.

4 Testbed Setup and Implementation

We have employed Xilinx vcu108 evaluation boards for the implementation. Each edge node contains two FPGAs. Fig. 3 shows the testbed setup architecture with two disaggregated edge nodes. The edge nodes are connected to 10 x 10Gbps ethernet traffic analysers from one side and from the other side to the Bristol City Metro Network and 100km/200km optical link. The 10Gbps traffic streams can be aggregated to 40Gbps traffic that is sent to either the long-haul network via voyager
and WSS or transferred to the metro network based on different control policies.

5 Experimental Results

We have validated the functionality of the edge nodes by applying different control policies on the fly using the SDN controller for both metro and long-haul networks at the same time. Two and three different scenarios are considered for the experimental evaluation of the metro and long-haul networks, respectively. The first scenario involves back-to-back connection of two disaggregated edge nodes for both networks with standard Single Mode Fibre (SSMF).

![Fig. 3 Disaggregated Edge Nodes testbed setup architecture](image)

In the second scenario for the metro network, the proposed nodes are evaluated over the Bristol City Metro network with 8km of optical fibre. In the second and third scenarios for the long-haul network, the nodes are evaluated over 100 km/200 km of optical fibre. We have evaluated the nodes using a fixed frame of 1500B length. Two different bandwidth granularities have been considered to evaluate the metro network: fine and coarse. In the fine granularity case, the TSON packet size is the same as the ethernet frames i.e. 1500B with 10Gbps bandwidth. In the coarse granularity case, the TSON packet size is 15000B with 50% utilisation. This means that two 5Gbps Ethernet clients are mapped to one TSON wavelength to use the full line rate capacity of 10Gbps and each TSON includes 10 Ethernet frames. The Ethernet performance parameters under consideration include Bit Error Rate (BER) and latency. Latency is defined as the time difference between the arrival of a frame at the analyser, and its departure from the analyser.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Traffic Granularity</th>
<th>Latency (us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2B, Metro</td>
<td>Fine</td>
<td>9.5</td>
</tr>
<tr>
<td>B2B, Metro</td>
<td>Coarse</td>
<td>32.5</td>
</tr>
<tr>
<td>8 km</td>
<td>Fine</td>
<td>48.4</td>
</tr>
<tr>
<td>8 km</td>
<td>Coarse</td>
<td>71.2</td>
</tr>
<tr>
<td>B2B</td>
<td>-</td>
<td>12.3</td>
</tr>
<tr>
<td>100 km</td>
<td>-</td>
<td>503.3</td>
</tr>
<tr>
<td>200 km</td>
<td>-</td>
<td>996.2</td>
</tr>
</tbody>
</table>

Table 1 shows the latencies for the mentioned scenarios. The edge nodes latency for the metro network is less than 30% in this case for the fine granularity scenario. For the coarse granularity, the latency is highly dependent on the TSON frame size and data rate. The long-haul latency is increasing linearly with distance as expected. Fig. 4 (a) shows the BER for the metro network case. A negligible penalty lower than 1dB is observed for 8km transmission compare to B2B scenario.

Fig. 4 (a) Metro Network BER, (b) Long-Haul Network BER

6 Conclusion

We have proposed a state-of-the-art SDN enabled programmable disaggregated edge node as an outcome of the EU 5G-PPP, Metro-Haul and 5G-PICTURE projects, suitable to support 5G transport network requirements that can extend to both metro and long-haul network reach. An SDN controller and device agents are developed to program and dynamically configure the different components of the disaggregated edge node. The nodes are evaluated over the Bristol City metro network and 100km/200km of transmission fibre. Results showed that low latency and power penalty for both scenarios.

7 Acknowledgements

This work has been supported by EU H2020 5G-PICTURE and Metro-Haul (grant agreements 762057, 7617727), and EP/L020009/1 “TOUCAN”.

8 References