Boron-Assisted Synthesis of Conformationally Controlled Hydrocarbons

Johan A. Pradeilles

Supervisor: Prof. Varinder K. Aggarwal, FRS

A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Doctor of Philosophy in the Faculty of Science.

University of Bristol, School of Chemistry

March 2019

Word count: 64680
ABSTRACT

This thesis is composed of two chapters reporting contributions to two different projects.

The first chapter presents a research project aiming to develop a new class of helical molecules which, upon activation from an external stimulus, would be able to reversibly switch from one screw-sense to the other. All-syn methyl-substituted hydrocarbons, as described by Aggarwal in 2014, were shown to adopt helical conformations with very high levels of control. More importantly, one of these unique molecules could access either the M or the P screw-sense, depending on its physical state. Therefore, all-syn methyl-substituted hydrocarbons seemed to be promising candidates for the design of a new class of molecular switches. A diamond lattice-based analysis revealed that the number of syn-pentane and gauche interactions in the chain was one of the key parameters that dictated its conformational preference. A series of six compounds of different chain lengths was designed and synthesised using an efficient bidirectional iterative homologation of C2-symmetric boronic esters. A QM/NMR approach was employed to quantitatively describe the conformational landscape of these molecules and confirmed the diamond lattice-based model with a good degree of confidence. A screening of different substituents at the termini revealed that alkyne, hydroxyl, amino or aromatic groups could be considered as ‘small’ groups, favouring the helical conformer with both terminal dihedral angles in a gauche conformation. However, the combined effects of two tert-butyl groups might force both terminal dihedral angles to adopt an antiperiplanar conformation, thus favouring the opposite screw-sense. These findings set the experimental basis to design a new molecular switch.

The first part of the second chapter describes the development of a new decarboxylative borylation methodology and its application to the synthesis of α-amino boronic esters. Some medicinal chemistry-type examples and three additional natural products have been added to the substrate scope. Key mechanistic experiments were conducted to prove the radical pathway and provide support for an outer sphere radical trapping process. In the second part, a study on the decarboxylative borylation of amino acids was conducted. First, the reaction conditions were optimised on a proline derivative. With these new conditions in hand, other activated amino acids were tested. However, most of them did not afford the desired products. To identify the cause of failure, a number of parameters were investigated (the effects of free N–H bonds, redox potentials and protecting groups). A different mode of activation involving the use of hypervalent iodine derivatives was attempted but failed to provide the desired products. Finally, a limited substrate scope composed of proline derivatives was subjected to the reaction conditions. Unfortunately, none of these examples gave the desired product.
ACKNOWLEDGEMENTS

First, I wish to express my deepest gratitude to my supervisor, Professor Varinder K. Aggarwal. His unfailing support over my entire Ph.D. has made me more confident, both in the lab and as a person. These four years in his research group have been an extraordinary experience. I have learned a lot and met amazing scientists.

Secondly, I would like to thank Dr. Eddie L. Myers for his wise patience and invaluable advice. My Ph.D. would not have been the same without his guidance and suggestions. I am indebted to his enthusiasm and support.

My sincere acknowledgements also go to Dr. Siying Zhong. I have been very lucky to share a research project with such a great chemist and friend. I have been amazed by the amount and the diversity of work that she was able to carry out. I am sure that she will have a brilliant career.

During the course of my Ph.D., I have met amazing friends who made my life in the lab such an enjoyable experience. In particular, I wish to thank Joseph Batemen (my brother-in-chemistry), Dr. Teerawut Bootwicha (who taught me how to perform assembly-line synthesis and how to cook Pad-Thai), Lorenz Löffler (The Prince of Denmark), Dr. Damien Mailhol (¡ gracias hombre!), Dr. Alba Millán Delgado, Dr. Ana Varela, Dr. Cristina García Ruiz, Dr. Daniel Pflästerer, Dr. Giorgia Casoni, Dr. Murat Kucukdisli, Dr. Nandakumar Meganathan, Dr. Olivier Wagnières and the many others who I have failed to mention here. Special thanks to Dr. Alexander Fawcett who trusted me and gave me the opportunity to work on an exciting project.

I am deeply grateful to all the people who helped me by proofreading this thesis: Dr. Adam Noble, Dr. Andreas Lerchen, Dr. Beatrice Lefanu Collins, Dr. Belén Rubial, Charlotte Gregson, Dr. Daniel Kaiser, Dr. Durga Prasad Hari, Dr. Felix Pape, James Fordham, Lydia Dewis, Dr. Mattia Silvi, Dr. Nils Winter, Oliver Dutton, Pradip Songara, Dr. Raffael Schrof, Riccardo Mega, Rory Cameron Mykura, Sheenagh Aiken, Steven Bennett and Dr. Valerio Fasano.

I also owe my deepest gratitude to Laura, Morgane, Julie P., Julie M. and Benjamin who have always been present despite the distance.

Finally, my warmest thank goes to my family. I am eternally indebted for your help and support, and everything you do. Thomas, nothing would have been possible without you.
AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the requirements of the University's Regulations and Code of Practice for Research Degree Programmes and that it has not been submitted for any other academic award. Except where indicated by specific reference in the text, the work is the candidate's own work. Work done in collaboration with, or with the assistance of, others, is indicated as such. Any views expressed in the dissertation are those of the author.

SIGNED: ... DATE: ...
ACRONYMS AND ABBREVIATIONS

4-AcPy 4-acetylpyridine
4-MeOPy 4-methoxypyridine
4-MePy 4-methylpyridine
4-NCPy 4-cyanopyridine
4-tert-BuPy 4-tert-butylypyridine
9-BBN-H 9-borabicyclo[3.3.1]nonane
Ac acetyl
acac acetylacetonate
app. apparent
aq. aqueous
Ar aryl
b.p. boiling point
B3LYP Becke exchange with Lee-Yang-Parr correlation
B3LYP-D2 B3LYP with Grimme’s D2 dispersion correction
Bn benzyl
Boc tertio-butoxycarbonyl
br. broad
Bu butyl
cat. catalytic amount
Catal. catalytic amount
Cb diisopropylcarbamoyl
Cbz benzylloxycarbonyl
CD circular dichroism
COSY homonuclear correlation spectroscopy
CPBA chloroperbenzoic acid
Cy cyclohexyl
d doublet
d.r. diastereoisomeric ratio
DABCO 1,4-diazabicyclo[2.2.2]octane
dba dibenzylideneacetone
DCC dicyclohexylcarbodiimide
DFT density functional theory
DIAD diisopropyl azadicarboxylate
DIC diisopropylcarbodiimide
DIPEA N,N-diisopropylethylamine
DMAc N,N-dimethylacetamide
DMAP N,N-dimethylanilminopyridine
DMF N,N-dimethylformamide
DMI 1,3-dimethyl-2-imidazolidinone
DMPPU N,N'-dimethylpropyleneurea
DMSO dimethylsulfoxide
DMPU N,N'-dimethylpropyleneurea
DTBM-SEGPHOS 1,1',4,4',8,8'-hexamethyl[1,1'-bi-1,3-benzodioxole]-5,5'-diylbis[1,1-bis[3,5-bis(1,1-
dimethylethyl)-4-methoxyphenyl]phosphine

E.r. enantiomeric ratio
EDA electron donor–acceptor
El electron ionisation
equiv. equivalent(s)
ESI electrospray ionisation
Et ethyl
et al. et alia
FID flame ionisation detector
FT Fourier transform

\(g \) gauche

GC gas chromatography

GP general procedure

hept heptet

HMBC heteronuclear multiple-bond correlation spectroscopy

HMDS hexamethyldisilazane

HPLC high performance liquid chromatography

HRMS high resolution mass spectroscopy

HSQC heteronuclear single-quantum correlation spectroscopy

\(i^- \) iso

\(i.e. \) id est

IEFPCM integral equation formalism polarisable continuum model

IR infrared

IUPAC International Union of Pure and Applied Chemistry

L ligand

LDA lithium diisopropylamide

LED light-emitting diode

LG leaving group

m multiplet

\(M \) left-handed

\(m^- \) -meta-

m.p. melting point

MAD mean absolute deviation

MALDI matrix-assisted laser desorption/ionisation

Me methyl

MM molecular mechanics

MMFF Merck molecular force field

MS mass spectroscopy

\(n^- \) normal-

nbhd 2,5-norbornadiene

NBS N-bromosuccinimide

NHPI N-hydroxyphthalimide

NMR nuclear magnetic resonance

NOE nuclear Overhauser effect

Nu nucleophile

\(P \) right-handed

\(p^- \) para-

pent pentet

pin pinacolato

Piv pivaloyl

PMP para-methoxyphenyl

Pr propyl

q quartet

QM quantum mechanics

quant. quantitative

QUINAP 1-(2-diphenylphosphino-1-naphthyl)isoquinoline

r.t. room temperature

s singlet

\(s^- \) sec-

SAR structure–activity relationship

SCE saturated calomel electrode

SET single-electron transfer

sext sextet

SFC supercritical fluid chromatography
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp</td>
<td>sparteine</td>
</tr>
<tr>
<td>StDev</td>
<td>standard deviation</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>t</td>
<td>trans</td>
</tr>
<tr>
<td>TBAF</td>
<td>terabutylammonium fluoride</td>
</tr>
<tr>
<td>TBS</td>
<td>tertio-butylidimethylsilyl</td>
</tr>
<tr>
<td>tert-</td>
<td>tertio-</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TIB</td>
<td>2,4,6-triisopropylbenzoyl</td>
</tr>
<tr>
<td>TIPS</td>
<td>triisopropylsilyl</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TMU</td>
<td>tetramethylurea</td>
</tr>
<tr>
<td>Tol</td>
<td>tolyl</td>
</tr>
<tr>
<td>Tr</td>
<td>trityl</td>
</tr>
<tr>
<td>TSA</td>
<td>toluenesulfonic acid</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>VCD</td>
<td>vibrational circular dichroism</td>
</tr>
<tr>
<td>w/w</td>
<td>weight per weight</td>
</tr>
<tr>
<td>μ.w.</td>
<td>microwave</td>
</tr>
</tbody>
</table>
CONTENTS

CHAPTER 1 – TOWARDS THE SYNTHESIS OF NEW MOLECULAR SWITCHES................................. 1

1.1. Introduction ... 1
 1.1.1. Reactivity of organoboron compounds ... 1
 1.1.2. Functionalisation of boronic esters .. 2
 1.1.3. Homologation of boronic esters ... 5
 1.1.4. Conformational analysis of flexible molecules ... 11
 1.1.5. Definition and applications of molecular switches ... 14
 1.1.6. Research proposal ... 18

1.2. Results and discussion ... 23
 1.2.1. Synthesis of the first targets ... 23
 1.2.2. Preliminary NMR analysis and Molecular Mechanics .. 30
 1.2.3. Towards a new stereochimical model ... 33
 1.2.4. Design of new targets ... 36
 1.2.5. Synthesis and preliminary NMR results ... 37
 1.2.6. Application of the QM/NMR approach ... 42
 1.2.7. Vibrational Circular Dichroism analysis ... 47
 1.2.8. Influence of the end-groups on the conformation .. 48
 1.2.9. Towards a new helical switch ... 55

1.3. Conclusion ... 62

CHAPTER 2 – DECARBOXYLATIVE BORYLATION METHODOLOGY AND ITS APPLICATION TO α-AMINO BORONIC ESTERS ... 65

2.1. Introduction ... 65
 2.1.1. Applications and synthesis of α-amino boronates ... 65
 2.1.2. Development of a new decarboxylative borylation methodology 68
 2.1.3. Other decarboxylative borylation methodologies ... 74
 2.1.4. Research proposal ... 76

2.2. Results and discussion ... 77
 2.2.1. Improvement of the substrate scope ... 77
 2.2.2. Unsuccessful substrates .. 78
 2.2.3. Optimisation study on cyclopropane derivatives .. 80
 2.2.4. Further mechanistic investigations .. 81
 2.2.5. Decarboxylative borylation of proline ... 82
 2.2.6. Effect of N–H bonds ... 83
 2.2.7. Effect of redox potentials .. 85
 2.2.8. Optimisation study on activated glycine ... 87
CHAPTER 1 – TOWARDS THE SYNTHESIS OF NEW MOLECULAR SWITCHES

1.1. Introduction

1.1.1. Reactivity of organoboron compounds

The history of asymmetric synthesis is indubitably linked to the development of organoboron chemistry. After the publication of the first example of enantioselective hydroboration of alkenes by Brown in 1961,3 a variety of methods have been explored to introduce boron atoms into organic molecules in a stereocontrolled manner.4 These efforts find their justification in that the boryl functional group can serve as a useful handle to further functionalise a molecule through stereospecific carbon–boron bond transformations.5 Most of these stereospecific reactions rely on the ability of organoborons to accept a nucleophilic electron pair into their boron-centred empty p-orbital to form boronate complexes6 (Scheme 1a).

Scheme 1. a. Boronate complex formation. b. Stereospecific 1,2-metallate rearrangement. Nu = nucleophile; LG = Leaving group.

If a leaving group is geminal to the negatively-charged boron atom, the boronate complex can undergo a 1,2-metallate rearrangement, which is defined as the 1,2-migration of a boron-bound substituent to the adjacent atom, with concomitant release of the leaving group (Scheme 1b). The migration only proceeds when the σ-orbital of the migrating group is aligned with the σ*-orbital of the leaving group (i.e., when the migrating and leaving groups adopt an antiperiplanar relationship).7 Such a concerted mechanism usually leads to the complete inversion of configuration at the α-boryl carbon centre, and retention of configuration of the migrating group.8

This mechanism is encountered in the hydrogen peroxide-mediated stereospecific oxidation of organoboron derivatives.9 Here, an organoboron species (4) reacts with a peroxide anion to form boronate complex 5, which undergoes 1,2-metallate rearrangement to deliver the corresponding alcohol 8, after hydrolysis of the boron–oxygen bond (Scheme 2). Through this concerted process, the chiral information is transferred from organoboron species 4 to alcohol 8 with the highest degree of fidelity.
At its early stage, organoboron chemistry focused mainly on organoboranes (9). These species, composed of a boron atom linked to three carbon atoms, are highly electrophilic and can react with a wide range of nucleophiles; however, such reactivity comes with disadvantages in terms of air and moisture sensitivity. In fact, boranes are generally unstable compounds, prone to oxidation and cannot be isolated by column chromatography. To circumvent this problem, new methodologies involving boronic esters such as 10 (i.e., a boron atom bound to one carbon and two oxygen substituents) have been developed during recent decades. In particular, due to their higher stability, pinacol boronic esters (RBpin) have become the functional group of choice in modern organoboron chemistry.\(^ {10,11} \) Indeed, \(\pi \)-donation from the lone pair of an oxygen atom into the empty p-orbital of the boron centre (Chart 1) reduces its electrophilic character with respect to boranes and renders pinacol boronic esters stable at room temperature, under air and compatible with silica gel purification.

1.1.2. Functionalisation of boronic esters

Although boronic esters are less electrophilic than boranes, they still exhibit the same type of reactivity towards nucleophiles. Not only can they easily be derivatised to their corresponding alcohols using basic peroxide, they also give access to other classes of molecules, such as alkene derivatives. Inspired by seminal work by Zweifel on organoboranes,\(^ {12} \) Matteson and Evans independently showed that boronic esters could successfully be converted to \(E- \) or \(Z- \) alkenes.\(^ {13-16} \) In this transformation (Scheme 3), negatively-charged vinyl boronate complex 11 reacts with iodine to form iodonium intermediate 12. Both charges are neutralised when the alkyl group attached to
boron migrates, with concomitant ring-opening of the iodonium moiety. The resulting β-ido-
doboronic ester 13 undergoes anti-elimination upon treatment with sodium methoxide to deliver
the corresponding alkene 14.

Scheme 3. Mechanism of Zweifel olefination using boronic esters as substrates.

Recently, Aggarwal and co-workers developed a related methodology\(^{17}\) to synthesise alkyne
derivatives from boronic esters (Scheme 4). They reacted boronic esters 17 with α-lithiated vinyl
carbamate 16 to form vinyl boronate complexe 18. When treated with iodine and methanol, these
species undergo a Zweifel olefination-type iodination/elimination sequence to give the corre-
sponding 1,1-disubstituted alkene 21. Addition of a base (tert-BuLi or LDA) leads to elimination
of the leaving group and gives rise to alkyne anion 22. These nucleophiles can be quenched by
addition of electrophiles to give corresponding internal alkynes 23 or with water to obtain termi-
nal alkynes.

Scheme 4. Mechanism of Aggarwal alkynylation.

The concept of electrophile-triggered 1,2-metallate rearrangement observed in the Zweifel ole-
fination has been extended to aryl boronate complexes by Aggarwal,\(^{18-26}\) who engaged lithiated
(hetero)aryl derivatives and boronic esters in a successful enantiospecific sp\(^2\)-sp\(^3\) cross-coupling
to obtain substituted (hetero)aryl compounds in good to excellent yields and perfect enantiospec-
ificity. In the proposed mechanism, 1-naphthyl lithium 25 attacks boronic ester 17 to generate
boronate complex 26. Upon addition of N-bromosuccinimide 27, the electron-rich aromatic group
undergoes a bromination reaction with concomitant 1,2-migration of the alkyl substituent from
the boron centre to the aromatic moiety. A subsequent nucleophile-assisted elimination leads to the re-aromatisation of the system and delivers cross-coupling product 30 (Scheme 5).

Scheme 5. Mechanism of Aggarwal’s transition metal-free cross-coupling.

Another example of useful derivatisation of boronic esters was proposed by Morken and co-workers in 2012, who reported a stereospecific amination methodology. Specifically, boronic ester 17 is treated with methoxyamine-derived lithium nitrenoid 32 to form a boronate complex. Then, a stereospecific 1,2-metallate rearrangement occurs at 60 °C to give, after addition of Boc₂O, protected amine 36 (Scheme 6a). However, this methodology was limited to primary and secondary boronic esters. Presumably, in the case of more sterically-demanding tertiary boronic esters, lithiated methoxyamine 32 fails to efficiently bind the boron centre and undergoes decomposition to nitrene 33 upon heating.

The same research group reported alternative conditions which involved mixing boronic ester 17, methoxyamine 31 and potassium tert-butoxide in toluene at 80 °C. Under these conditions,
methoxyamine is deprotonated after coordination to the organoboron substrate (Scheme 6b). Hence, the formation of highly unstable nitrenoid is avoided and the desired product is formed in good yield with excellent enantiospecificity.

In all these previous examples (Schemes 2–6), the initial boronic ester moiety is not present in the final molecule (cleavage by hydrolysis or by nucleophile-triggered elimination). A different approach consists of utilising the boronic ester functional group to form new carbon–carbon bonds while maintaining the boryl moiety in the final product for further functionalisation. This process is commonly referred to as homologation of boronic esters.

1.1.3. Homologation of boronic esters

1.1.3.1. Seminal studies

In 1963, Matteson and co-workers reported an unusual nucleophilic substitution.29 In this experiment (Scheme 7), they reacted α-bromoboronic ester 39 with different Grignard reagents (40), forming boronate complex (41) that rearranged upon warming to room temperature to displace the α-halogen and generate a new boronic ester (42).

\[
\text{Scheme 7. Boron-assisted nucleophilic substitution reaction.}
\]

Twenty years later, drawing on this observation, Matteson developed a new methodology for carbon–carbon bond formation, involving sp3 carbenoids such as 43.30 Due to their nucleophilicity, they can react with boronic esters at low temperature to form boronate complexes. As described above, these boronates can undergo stereospecific 1,2-migration, with concomitant displacement of the chloride leaving group.8 The product is an α-chloroboronic ester that can be further elaborated through addition of a Grignard reagent (Scheme 8). By treating boronic ester 17 with (dichloromethyl)lithium 43, Matteson and co-workers could form boronate complex 44 that underwent 1,2-migration to give homologated α-chloroboronic ester 45. Subsequently, another nucleophile could be added, forming a new boronate (46) that rearranged upon warming, displacing the second chloride. Finally, oxidation of the C–B bond revealed alcohol 48 in good yield.31
Matteson also showed that this method can be rendered asymmetric by using chiral boronic esters such as 51 (Scheme 9), which allowed the formation of contiguous stereocentres with high levels of stereocontrol when performed iteratively. As this method operates under substrate control, there are associated drawbacks. The main drawback of this methodology appears when one wishes to create two stereocentres with opposite chirality: before the second homologation, a ligand-exchange sequence is necessary to remove the chiral diol ligand on the boronic ester and replace it with its opposite enantiomer.

This problem can be overcome by employing a reagent-controlled approach, where the stereochemical information is transferred through the use of a chiral reagent (Scheme 10). A variety of methods can be used to generate chiral carbenoids, such as deprotonation of sulfonium salts or sulfoxide-metal exchange of α-sulfinyl chlorides.
1.1.3.2. Sparteine-mediated asymmetric deprotonation

Selective deprotonation of O-alkyl carbamates 64 has been widely explored by Hoppe and co-workers.39–42 In the presence of (−)-sparteine, s-BuLi could generate enantioenriched α-lithiated carbamates (67), which were found to be chemically and configurationally stable at −78 °C. These chiral organolithium compounds then react with electrophiles with retention of configuration40 (Scheme 11).

Later, Hoppe and co-workers described the electrophilic trapping of their lithiated carbamates 70 with trisopropyl borate to generate boronic ester intermediate 71, which was transesterified with pinacol under acidic conditions.7 The resulting pinacol boronic ester 72 was then treated with a Grignard reagent (73) at low temperature to form boronate complex 74. Upon warming to room temperature, the 1,2-metallate rearrangement took place to deliver homologated boronic ester 76 and released the carbamate moiety (Scheme 12). In this particular case, the carbamate plays two crucial roles: first, it acts as a directing group in the deprotonation step, forming a pre-lithiated species with s-BuLi, and then as a leaving group in the migration step.
1.1.3.3. Homologations using α-lithiated carbamates or benzoates

In 2006, Kociensky and co-workers reported the first one-step homologation of a boronic ester, using Hoppe’s lithiated carbamates in the synthesis of (S)-(−)-N-acetylcolchinol. More generally, this method was found to be an efficient way to access chiral secondary alcohols, as proven by Aggarwal and co-workers shortly afterwards (Scheme 13).

The presence of weak Lewis acids, such as MgBr₂, can promote this 1,2-migration, and are sometimes added when this process is slow. Inspired by the work of Hammerschmidt, Aggarwal also showed that sparteine-mediated deprotonation of O-alkyl 2,4,6-triisopropylbenzoates (O-alkyl TIB) 82, as described by Beak and co-workers, leads to suitable carbenoids for the homologation of boronic esters. As the benzoate moiety is a better leaving group than the carbamate, no Lewis acid is needed to promote the 1,2-migration (Scheme 14).
1.1.3.4. Iterative homologation of boronic esters

In 2007, Blakemore and co-workers used sulfoxide-derived enantioenriched carbenoids 88 to homologate boronic ester 87 three times\(^\text{38}\) (Scheme 15). Depending on the configuration of the carbenoid used, they could selectively synthesise four diastereoisomers of alcohol 90 in excellent enantiomeric ratio (e.r.) and low diastereoisomeric ratio (d.r.) due to chiral amplification. Notably, in this sequence, each intermediate was purified by column chromatography.

The first example of fully stereocontrolled iterative homologation of boronic esters was reported by Aggarwal and co-workers.\(^1\) In this report, nine iterative homologations were performed by using enantiopure carbenoids derived from corresponding \(\alpha\)-stannyl benzoates 93, which were synthesised by sparteine-mediated asymmetric deprotonation of \(O\)-ethyl benzoate 91, electrophilic trapping with trimethyltin chloride and recrystallisation in methanol. (Scheme 16a).
This process thereby converts a simple boronic ester into a highly complex molecule with just a single purification step and can be assimilated to a molecular assembly line (Scheme 16b). Practically, α-stannyl methyl benzoate 93 is subjected to tin–lithium exchange, using n-BuLi, to reveal carbenoid 94. Boronic ester 17 is then added and quickly forms a boronate complex. Upon warming to room temperature, the 1,2-migration occurs, releasing the benzoate moiety and generating a new boronic ester that can be engaged in the next homologation. Very high levels of purity were observed because each homologation reaction occurs with >99% efficiency and with >99% stereocontrol.

Scheme 16. a. Synthesis of enantiopure (S)- and (R)-α-stannyl benzoates 93. b. ‘Assembly-line synthesis’ as described by Aggarwal and co-workers in 2014.

Interestingly, the conformation of the final molecules was found to be highly dependent on the relative configuration of the methyl substituents along their main carbon chains. These compounds are therefore typical examples of fully-flexible molecules with controlled conformations.
1.1.4. Conformational analysis of flexible molecules

1.1.4.1. Syn-pentane interactions and conformational control

Hoffmann devoted an important part of his career to the study of flexible molecules with defined shape.49-69 Considering that the conformation of a molecule is closely related to its function in biological systems, his research contribution aimed to understand and rationalise the rules that nature employs to confer specific spatial arrangements on active compounds. He articulated a useful description of the conformation of hydrocarbons as being defined by a sequence of dihedral angles involving the carbon atoms of the principal chain, with the terms g^+, g^-, and t, denoting dihedral angles of about $+60^\circ$, -60°, and 180°, respectively (Figure 1a).

According to this notation, a syn-pentane interaction appears when a g^+ dihedral angle is directly followed by a g^- dihedral angle. In this case, the distance between both groups of atoms is about 2.5 Å and the resulting steric penalty can reach $3.5 \text{ kcal mol}^{-1}$70 An emblematic example of syn-pentane interactions is encountered between two axial methyl groups in cyclohexane chair-type structures58,71.

The energy cost associated with such interactions is high enough to constrain flexible molecules to avoid syn-pentane-containing conformations. For example, in the case of n-pentane (Figure 1b), the only conformer bearing a syn-pentane interaction represents 0.5% of the overall conformational landscape at room temperature.70 This general principle found applications in conformational analysis and molecular design.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{diagram.png}
\caption{a. Hoffmann’s description of dihedral angles. b. Analysis of steric interactions in n-pentane. MP4SDQ 6-31G(d) level of theory was used to calculate the relative energies.70}
\end{figure}

A thorough theoretical analysis brought Hoffmann and co-workers to predict that a disyndiotactic (alternating syn–anti) hydrocarbon such as 97 would adopt a $(t)_n$ dihedral angle sequence (i.e., a
linear conformation) to avoid syn-pentane interactions. For the same reason, the researchers suggested that the lowest-energy conformer of threo-diisotactic (all-syn) isomer 98 would be helical with a \((t \, g^*)_n\) dihedral angle sequence (Chart 2).

![Chart 2](image)

Chart 2. As predicted by Hoffmann and proved by Aggarwal, the substitution pattern of contiguously methyl-substituted hydrocarbons dictates the conformational behaviour of these molecules in solution and solid state.

Based on this seminal work, Aggarwal and co-workers predicted that the avoidance of syn-pentane interactions would force alternating syn-anti diastereoisomer 99 to display a linear shape in solution, and all-syn isomer 100 to adopt a helical conformation. The authors could confirm Hoffmann’s predictions by synthesising both molecules and analysing them using a combined experimental and computational approach.

1.1.4.2. Quantum Mechanics/Nuclear Magnetic Resonance approach

The rate of conformational interconversion of a small flexible molecule is generally faster than the nuclear magnetic resonance (NMR) timescale. As a consequence, only time-average signals can be observed by NMR spectroscopy. Due to this limitation, it is not trivial to quantify conformer populations of a given flexible molecule by NMR analysis. Such a precise conformational description would require information about NMR parameters (chemical shifts \((\delta)\), scalar coupling constants \((J)\) and inter-nuclear distances) of individual conformers.

To estimate these NMR parameters, theoretical values can be generated using quantum mechanical calculations for each conformer. One of the quickest ways to find low-energy conformers is to perform a molecular mechanics (MM) conformational search calculation. In this ‘ball and spring’ model, the overall energy of a molecule is defined by the sum of bond stretching energy \((E_{\text{stretch}})\), bond angle bending energy \((E_{\text{bend}})\), torsional angle rotations energy \((E_{\text{torsion}})\), electrostatic interactions energy \((E_{\text{coulomb}})\) and van der Waals interactions energy \((E_{\text{vdW}})\). This steps finds the local minima and the global minimum within a given energy threshold.
Once low-energy conformers have been generated, quantum mechanics (QM), and more specifically density functional theory (DFT), is employed to optimise their geometries and estimate their Gibbs free energies (considering zero-point energy correction, entropy and solvation), which are used to calculate the Boltzmann-averaged populations of conformers at room temperature. These DFT-computed geometries are then used to calculate NMR parameters (δ, J and NOE-derived interproton distances) of each individual conformer. These values are subsequently Boltzmann-averaged to access the ensemble-averaged NMR properties of the compound. Finally, this theoretical picture is quantitatively compared to the experimental data to establish the conformational landscape of the molecule. This methodology was called Quantum Mechanics/Nuclear Magnetic Resonance (QM/NMR) approach (Figure 2).

![Figure 2](image_url)
Figure 2. Workflow of QM/NMR approach for the conformational analysis of molecules in solution.

As mentioned above, Aggarwal and co-workers successfully applied this method to contiguously methyl-substituted hydrocarbons (99 and 100). They used molecular mechanics (MM3 force field), followed by DFT calculations (DF-LMP2-F12 VDZ-F12//B3LYP-D2 6-311+G(d)) to generate the optimised conformers. The Boltzmann-averaged population of isomer 99 showed that 95% of the conformers would adopt a linear conformation, while 74% of the conformers of isomer 100 would adopt a helical conformation (Chart 2). J_H-H, J_H-C and NOE-derived distances were calculated by DFT (mPW1PW91 6-311G(d,p)//B3LYP-D2 6-311+G(d)), Boltzmann-averaged, and compared to experimental data. In both cases, computed values were in good agreement with measured parameters, with 1 Hz error in the comparison of coupling constant values and 5% error in the comparison of NOE-derived distances.

1.1.4.3. Vibrational Circular Dichroism

The QM/NMR approach is not the only methodology available to obtain information about the structural features of a flexible molecule. Conformational behaviour of foldamers is generally determined by a complementary set of analytical techniques, such as NMR, single crystal X-
ray crystallography79–82 or circular dichroism (CD).83–85 Although less frequently employed, vibrational circular dichroism (VCD) has also been found to be very useful to probe the conformation of organic compounds.

This technique measures the differential absorption of left- and right-handed circularly polarised radiation (Figure 3) in the infrared region,86 where vibrational transitions occur in the ground electronic state of a molecule. The combination of measured vibrational spectra and theoretical calculations provides unambiguous insights on the absolute configuration and the conformation of the compound of interest.87–89 For example, this method was used to determine the major conformation of dialkyl tartrates in different solvents,89–91 in complexation equilibrium with cyclodextrins92 or confined in micelles.93 One could imagine that VCD analysis could give additional evidence for the conformational control observed by Aggarwal and co-workers in the case of methyl-substituted hydrocarbons.1

1.1.5. Definition and applications of molecular switches

Miniaturisation appears to be one of the main challenges for future technology.94–100 Engineering organic materials at the molecular level benefits from the possibility to adjust a wide range of physical properties by subtle changes in the structure, as well as the opportunity to address fundamental problems through the isolation and full characterisation of single molecular components.101–103 Amongst a variety of possible applications, transport systems,104–106 control of nanoscale architectures,107–109 catalysts,110,111 surface properties of materials,106,112–118 mechanical devices,119–128 target-directed delivery systems129 or nano-sensors130–132 can be envisioned.

As an illustration of the potential of organic materials for miniaturisation purposes, the Nobel Prize in Chemistry was jointly awarded to Feringa, Sauvage and Stoddart in 2016 for the design and synthesis of molecular machines. In parallel to their contributions, key discoveries in the fields of nano-structures133–135 and patterned surfaces136–142 with defined organisation of discrete entities, according to the principles of self-assembly phenomena,143–151 have also emerged.
A compound can be defined as a molecular switch if it can exist in two different forms, which can be interconverted. This unusual feature is called bistability and finds its origin in a range of physical properties such as complexation affinities, rate of isomerisations or electron transfers. The interconversion process can be triggered by a change in pH, pressure, temperature, light irradiation, magnetic or electric fields, or by chemical modification of the molecular structure.¹⁵²–¹⁵⁷

When the interconversion occurs upon modifications of light irradiation, one can speak of photochromism. Photoreversible molecules usually exist in two different states presenting distinct absorption spectra.¹⁵⁸–¹⁶³ The properties of a range of photoreversible compounds have been explored, including azulenes, stilbenes, fulgides, diarylethenes, azobenzenes, spiropyrans, viologens or salicylideneimines (Chart 3). The photochromic processes associated with these types of molecules are photocyclisation, isomerisation, keto–enol tautomerism or photoinduced electron transfer.¹⁵⁰–¹⁶¹

![Diagram of photoreversible compounds](image_url)

Chart 3. Selection of photoreversible compounds.

A remarkable application of these concepts was reported by Clayden and co-workers in 2016.¹⁶⁴ The control of stereoisomerism by light irradiation, in combination with foldamer chemistry, allowed the authors to synthesise a biomimetic system, bound in a phospholipid bilayer, in which...
an azobenzene moiety was attached to a helical peptide. In its trans form, the azobenzene group forced the peptide chain to adopt a left-handed (M) helical conformation. Upon irradiation at 365 nm, the photoisomerisation of the N=N double bond occurred, switching from trans to cis, and the conformational control of the helical peptide decreased dramatically (i.e., more equal populations of left- (M) and right-handed (P) helices were observed). Irradiation at 455 nm caused the azobenzene moiety to switch back to its initial state (trans), restricting the peptide oligomer in its M form (Figure 4). As shown by this example, the inherent screw-sense reversibility of helical molecules establishes them as privileged scaffolds for the design of molecular switches.

Among a large variety of geometrically defined molecular shapes, helical structures have been widely studied since the fundamental discoveries of the helical architectures of proteins by Pauling165 and DNA by Watson and Crick166 in the early 50’s. In the same decade, Natta demonstrated that synthetic polyhydrocarbons could also adopt a helical conformation.167 Following his pioneering investigations on the synthesis and tacticity of polypropylene, other helical molecular scaffolds, such as annulated arenes, oligoarylamides, polyisocyanates, polyolefins, polycetylenes, synthetic polypeptides, polysilanes and para-terphenyls, have been designed, synthesised and thoroughly studied.168 These helical macromolecules have become synthetic targets of choice due to their interesting optical and electronic properties,169,170 their ability to induce asymmetry in chemical reactions,171 and to display functionality in a predictable pattern.172 Most of these
valuable properties strongly rely on screw-sense control.173,174 Therefore, scientists have developed useful tools to influence the helicity of such molecules. For example, the incorporation of one enantiomeric form of an additional element of chirality either at the termini81,175,176 or as part of a repeating substituent along the chain177 can lead to a preference for either M (left-handed) or P (right-handed) screw-sense.

Small molecules do not benefit from the same amplification rules observed in polymers178 and therefore chemists had to adopt different strategies to synthesise smaller helical entities. For instance, hydrogen bond networks in polyamides,179 salt, disulfide and lactam bridges in oligopeptides180 or electrostatic interactions in polyfluoroalkanes181 were successfully employed to impart or reinforce the helical conformation of such molecules. Another challenge appears if one wants to design small helical hydrocarbons. The propensity of non-functionalised small chains to fold into helices in a constrained environment has been studied by Rebek and co-workers through the encapsulation-induced folding of n-alkanes.182,183 In these examples, linear hydrocarbons prefer adopting a helical conformation to fit in the cavity of self-assembled host capsules. However, in the absence of external constraints, conformational control must arise from a subtle combination of steric interactions brought by a precise substitution pattern along the chain, as shown by the invaluable work conducted by Hoffmann and co-workers50,55,58,64,184 in the 90’s.

Interestingly, Aggarwal and co-workers observed that all-syn isomer 100 with hydroxyl and biphenyl terminal groups adopted an M helix in solution, while its crystalline benzoate derivative 110 adopted a P helix in the solid state1 (Chart 4). This result showed that both P and M helical forms were accessible to the molecule. Although a single helical form was favoured in solution, this preference could be over-ridden by crystal packing forces in the solid state. This research project is aimed at understanding the origin of the sense of helicity, particularly in solution, and design a new class of molecular helical switches, thereby building a theoretical framework from which technological applications in catalysis, materials, and medicine could arise.

\textbf{Chart 4.} Compounds 100 and 110 have the same absolute configuration. Although they both adopt helical conformations, 100 folds into an M helix in solution while 110 crystallises as a P helix.
1.1.6. Research proposal

Based on the fact that a single chiral centre at one extremity of a foldamer can induce a strong conformational preference on the whole structure,\(^\text{81}\) it has been suggested by Huc and co-workers that, at the stereogenic centre of the end-group, the largest group points away from the helix, the medium group aligns itself with the helical backbone and the small group points towards the helix. Therefore, by assigning a new configuration \((R^S\text{ and } S^S)\) to the stereogenic centre based on steric hindrance \((\text{helix} \succ \text{aryl} \succ \text{methyl} \succ \text{H})\)—rather than on the classic Cahn–Ingold–Prelog rules—, \(R^S\) and \(S^S\) chirality favours \(M\) and \(P\) helicity, respectively (Figure 5).

![Figure 5. Huc’s model: The large group (L) points away from the helix. The medium group (M) aligns itself with the helical backbone. The small group (H) points to the helix.](image)

Such an analysis brings up an important consideration for helical compounds such as 111 and 112 (Chart 5). For compounds in which the terminal groups are separated by an even number of methyl-substituted methines, both end-groups will favour the same helical screw-sense and changing the relative size of the end-groups should not induce helical switching. However, for compounds in which the end-groups are separated by an odd number of carbon atoms, the termini will have different configurations \((R^S\text{ and } S^S)\) and the sense of helicity will presumably depend on which end-group is dominant, thus allowing switching to be possible. As a corollary, molecules with an even number of methine units, should adopt more stable helical forms than those with an odd number of methine units because the termini will have the same configuration and thus will cooperate to enforce the same sense of helicity.

![Chart 5. Huc’s analysis applied to theoretical model compounds.](image)
To determine whether Huc’s model can be used to reliably predict the helical screw-sense of these molecules, compounds 116 and 119 will be prepared (Scheme 17). Although these compounds could be prepared by elaborating a precursor one carbon unit at a time, a building-block strategy, which the Aggarwal group has previously employed in the context of the total synthesis of natural products, will be attempted here. Compounds will be prepared by the stitching together, through lithiation–borylation, of advanced intermediates. The boryl group in 115 and 118 will be transformed into a methyl group using the Matteson homologation followed by protodeboronation.

Advanced intermediates 113 and 117 will be prepared using iterative reagent-controlled homologation of boronic ester (R)-120 involving enantiopure lithiated benzoates 94 generated through tin–lithium exchange of the corresponding α-stannyl benzoates 93 (Scheme 18). The aryl bromide, which will form part of the left-hand end-group, can later be functionalised through Buchwald–Hartwig, Stille, or Suzuki–Miyaura coupling to introduce varying degrees of steric hindrance at this end.
Advanced intermediate 114 (respectively, ent-114) will be generated using a novel iterative bi-directional lithiation–borylation\cite{191} of C_2-symmetric bis(boronic ester) 122 (respectively, ent-122), which will in turn be prepared through Morken asymmetric diboration\cite{192,193} of trans-butene 121 (Scheme 19). C_2-symmetric bis(boronic ester) intermediate 123 (respectively, ent-123) will be oxidized to the corresponding diol and esterified using Mitsunobu conditions. The naphthyl-based right-hand end-group will be introduced through lithiation–borylation using MeBpin 125, followed by metal-free stereoretentive cross-coupling\cite{18} of boronic ester 126 (respectively, ent-126).

The QM/NMR approach (Section 1.1.4.2.) will be used to exhaustively explore the conformational space for all compounds. In parallel, attempts will be made to crystallise the compounds, so that their helical structure and screw-sense can also be determined through X-ray crystallography. The expectation is that 116 should fold into a M helix. On the other hand, the naphthyl group in compound 119 is expected to be the dominant group and thus force the molecule to
adopt a \(P \)-helical conformation. The percentage of helical conformers is predicted to be higher for 116, owing to the end-groups having matched helical preferences.

To confer helical switchability to these molecules, an azobenzene moiety will be introduced (Section 1.1.5.) into the left-hand end-group by using a methodology developed by Cho and co-workers,\(^{194} \) that is, Buchwald–Hartwig-type hydrazination of aryl bromide 119 to give a diaryl \(N \)-Boc hydrazine, followed by oxidation to reveal the \(N=\N{} \) bond (Scheme 20). The conformational space, vicinal coupling constant values, and NOE-derived interproton distances for the \(cis \) and \(trans \) azobenzene isomers of 127 will be estimated computationally and compared with experimental values obtained from NMR experiments of the compound kept in the dark (the \(trans \) isomer) and that exposed to \textit{in situ} laser irradiation\(^{195} \) (the photostationary \(cis \) isomer). For the \(cis \) isomer, the left-hand end-group should have the greater steric impact on the helix, thus enforcing an \(M \) screw-sense. However, the right-hand naphthyl group should be dominant when the azobenzene is \(trans \), thus maintaining a \(P \) screw-sense.

\begin{center}
\textbf{Scheme 20.} Synthetic plan for the preparation and isomerisation of compound 127.
\end{center}
With a design for a polymethylated linear hydrocarbon with switchable helicity that can tolerate at least one large substituent in the middle of the chain in hand, a triarylphosphine derivative will be prepared and tested as a switchable ligand in asymmetric Pd-catalysed hydrosilylation. In a related application, Suginome and co-workers showed that helical poly(quinoxaline-2,3-diyl) copolymers \(128\), that contain chiral and achiral units, can switch from one helical form to another by changing the solvent, a characteristic that was exploited in catalysis by incorporating triarylphosphine-appended monomers. In one helical form, the polymer mediated a palladium-catalysed hydrosilylation of styrenes to give the desired product with very high levels of enantioselectivity. In the other helical form, the product of opposite configuration was obtained (Scheme 21) with similar selectivity.

\[
\text{Switchable copolymer:}
\]

\[
P \text{ helix in chloroform}
\]

\[
M \text{ helix in } 1,1,2\text{-trichloroethane/toluene (3:1)}
\]

\[
\begin{align*}
\text{(S)-130} & \quad 94\% \text{ e.e.} \\
\text{(R)-130} & \quad 95\% \text{ e.e.}
\end{align*}
\]

Scheme 21. By introducing triarylphosphine moieties to a switchable polymer, Suginome and co-workers developed a switchable ligand for palladium-catalysed asymmetric hydrosilylation of styrenes.

The phosphine moiety at C6 will be introduced through stereoretentive cross-coupling: the Aggarwal group has recently developed conditions allowing the boryl group to be retained in such a process through its migration into an ortho position. The boryl group will then be hydrolysed to the boronic acid and transformed into a triaryl phosphine moiety using a nickel-catalysed P–H activation of a secondary phosphine oxide, followed by copper-catalysed reduction (Scheme 22). The azobenzene moiety will be introduced as outlined above (Scheme 20).
Scheme 22. Synthetic plan for the preparation of a new photo-responsive ligand for the asymmetric hydrosilylation of styrenes.

The conformation and switching behaviour of 131 will be analysed by computation and NMR analysis. Once the helicity switching is confirmed, the compound will be ligated to a palladium centre and the resulting complex analysed. The Pd–131 complex will then be tested for its ability to asymmetrically catalyse the hydrosilylation of styrene 129, both in the dark and under UV light irradiation. The sense of enantioinduction in the dark and under UV light will be determined through chiral HPLC analysis of the corresponding silanes (S)-130.

1.2. Results and discussion

1.2.1. Synthesis of the first targets

The first task of this project was to prepare both enantiomers of stannane 93 to serve as building blocks for the iterative homologation of boronic esters.\(^1\) Benzoate 91 was successfully synthesised using a known phase-transfer catalysis method (Scheme 23). Pleasingly, increasing the scale of this reaction up to 40 grams of starting material did not affect the yield, which remained quantitative. This material was subsequently engaged in asymmetric stannylation reactions, on large scales (i.e., 10.00 g of starting material), using (+)- or (−)-sparteine 65 as chirality inducers to generate (R)- or (S)-93, respectively. Both species were recrystallised from methanol to improve their enantiomeric ratios up to 99.9:0.1. These masked carbenoids can then be stored, or treated with n-butyllithium to undergo a stereospecific tin–lithium exchange reaction, revealing the lithium carbenoid building blocks (R)- or (S)-94 for the assembly-line synthesis.
Scheme 23. Preparation of enantiopure building block \((R)-93\) for the iterative homologation of boronic esters. The enantiomer \((S)-93\) was synthesised using \((-\)-sparteine instead of \((+\)-sparteine.

To test whether secondary benzylic boronate complex formation was faster than an aromatic bromine–lithium exchange reaction, boronic ester \((R)-120\) was synthesised in two steps from commercially available 3-bromo-4-methoxybenzaldehyde. First, a Wittig reaction gave alkene 133, which was successfully converted to enantioenriched boronic ester \((R)-120\), using an efficient asymmetric hydroboration methodology developed by Yun and co-workers.\(^{200}\) It is important to emphasise that a thorough purification of all the reagents involved in this chemical reaction was key to obtain the desired product with the required enantiomeric ratio \(i.e., \geq 98:2\ e.r.\). The first attempt of the homologation reaction on \((R)-120\) gave an inseparable mixture of extended boronic esters 134a and 134b in a 70:30 ratio (Scheme 24).

These results suggested that the boronate complex formation was the first reaction to take place, but the excess of lithium carbenoid \((R)-94\) used (+0.30 equiv.) was subsequently engaged in a
bromine–lithium exchange process to generate the de-halogenated product 134b. An easy way to circumvent this problem would be to reduce the number of carbenoid equivalents (i.e., from 1.30 to 1.00 equiv.). However, it has been reported that an excess of lithiated benzoate was crucial to obtain a full conversion of the starting material.1 Another synthetic plan was therefore envisioned, where the bromine atom would be introduced at a later stage.

Scheme 25. Preparation of fragments 136 and 137 using Aggarwal’s iterative homologation methodology.

Yun’s asymmetric hydroboration procedure was applied to 4-methoxystyrene to generate boronic ester (R)-135 in 99.4:0.6 e.r. This molecule served as a starting point for a three–round iterative homologation sequence, using (R)-94, (S)-94 and (R)-94 successively, to deliver boronic ester 136 in 61% yield over three homologations without intermediate purification (Scheme 25). Part of this material was then converted to fragment 137, using the same homologation methodology.

Scheme 26. Morken’s asymmetric diboration methodology applied to trans-butene.

A unidirectional assembly-line synthesis was required to obtain fragments 136 and 137 as the 4-methoxyphenyl moiety could not be installed in a stereospecific manner at a later stage. However, a more efficient bidirectional chain-extension process was investigated to access fragment 114. First, trans-butene 121 was subjected to Morken’s asymmetric diboration methodology.192,193 Despite the relatively small size of its substituents, this gaseous substrate gave C2-symmetric boronic ester 122a in good yield (Scheme 26). Interestingly, a substantial amount of isomer 122b was obtained, however with poor e.r. This side product most likely arose from the isomerisation of the double bond in the presence of the rhodium catalyst prior to the diboration.
reaction. The lack of stereocontrol around this terminal olefin is in line with Morken’s results, when this methodology was applied to monosubstituted alkenes. The mixture of isomers was directly engaged in the next step to give, after recrystallisation, pure boronic ester 138 in perfect d.r. The relative configuration of the methyl groups was confirmed by X-ray crystallography.

Scheme 27. Bidirectional synthesis of dibenzoate 124.

A bidirectional Matteson homologation,201 followed by oxidation and double Mitsunobu reaction, delivered benzoate 124 in 82% yield over three steps (Scheme 27). Compound 124 was then desymmetrised by (+)-sparteine-mediated asymmetric deprotonation and subsequent trapping of the carbenoid intermediate with methyl boronic ester 125, which itself was easily synthesised in one step from methyl pinacol boronic acid.202 Unfortunately, the first attempt gave the desired product (126) in only 18% yield (Scheme 28a).

In situ IR spectroscopy was used to monitor and optimise this lithiation–borylation reaction, as the starting material 124, carbenoid intermediate Li-124 and boronate-complex ate-124 have strong and sharp $\nu_{\text{C=O}}$ bands at 1728, 1634 and 1667 cm$^{-1}$, respectively, which importantly did not overlap with any other signals. The experiment showed that the full deprotonation of benzoate 124 was achieved in only one hour after the addition of s-BuLi (1.00 equiv.). However, the boronate-complex formation was found to be slower than the usual borylation reaction times and reached a plateau three hours after the addition of the solution of boronic ester 125 (1.00 equiv.) in diethyl ether (Figure 6).

![Figure 6](image)

Figure 6. Lithiation–borylation reaction monitored by *in situ* IR spectroscopy. Concentrations of starting material 124 (in blue), carbenoid Li-124 (in green) and boronate complex ate-124 (in red) over time.

In their recent study on the borylation of diamine-ligated α-lithiated benzoates, Myers and Aggarwal determined that solvent had a dramatic impact on the borylation reaction time. They showed that by adding the boronic ester in tetrahydrofuran (THF) instead of diethyl ether, they could facilitate the borylation step through displacement of the bulky diamines coordinated to the lithium carbenoid, with no erosion of e.r. This solvent effect was successfully employed to shorten the problematic borylation step and promote the formation of boronate-complex ate-124. However, in the above case, the migration step seemed to be troublesome too: after sixteen hours at room temperature, 11B NMR analysis revealed that boronate-complex was still present.
Figure 7. When the migrating group is a methyl group, the required antiperiplanar conformation is disfavoured. Therefore, the migration step becomes slower than usual. Charges have been omitted for clarity.

The poor migrating ability of the methyl group can be rationalised by analysing steric interactions within the boronate-complex (Figure 7). In fact, the 1,2-migration only occurs when the migrating group and the leaving group are antiperiplanar. Generally, in the case of large \(R^1 \) groups, the migrating group positions itself antiperiplanar to the leaving group to prevent any steric clash between them, thus enhancing the rate of the migration step. However, in the case of the small methyl group, this steric clash is reduced. More importantly, the pinacol moiety, which is now bulkier than the migrating group, sits antiperiplanar to the benzoate moiety, favouring the wrong conformation for alkyl 1,2-migration.\(^{204}\)

Scheme 29. Transition metal-free cross-coupling between 1-bromonaphthalene and boronic ester 126.

It has been shown that a solvent switch from diethyl ether or tetrahydrofuran to a less coordinating solvent such as chloroform or toluene allows the Lewis acidic lithium counter cation to bind more efficiently to the leaving group and thus increase the effectiveness of the 1,2-metallate rearrangement.\(^{187}\) This second solvent effect was also used in the above case to increase the rate of the migration. After optimisation, this desymmetrisation reaction delivered boronic ester 126 in 68% yield (Scheme 28b). Finally, a transition-metal-free cross-coupling methodology\(^{18}\) was utilised to obtain fragment 114 (Scheme 29).
The coupling reaction between 114 and 137 was expected to be challenging, as lithiation–borylation methodology was sensitive to steric hindrance. For this reason, the reaction was again followed by in situ IR spectroscopy. It turned out that the lithiation step was quite slow (seven hours) and the borylation step inefficient (no boronate-complex formation was observed after two hours). These results can easily be understood by looking at the structure of carbenoid/(+)-sparteine complex 146 (Scheme 30). The reactive centre is flanked by the triisopropylbenzoate moiety, the methylated backbone and the sparteine ligand. In these conditions, there is no room for a bulky boronic ester such as 137 to approach the carbanion and form a boronate-complex. Adding boronic ester 137 in THF helped to form the desired boronate complex. However, the yield of the reaction remained very low.

![Scheme 30](image)

Scheme 30. Due to steric hindrance, the coupling reaction between carbenoid 146 and boronic ester 137 was not successful.

Due to the unsuccessful coupling of fragments 114 and 137, the first convergent strategy was abandoned. Instead, a more familiar linear sequence was employed to generate intermediate 148. Boronic ester 135 was subjected to nine rounds of homologation (Scheme 31), alternating between the enantiomers of stannane 93, to deliver intermediate 148 in 48% yield over nine steps. One more homologation step was necessary to access intermediate 150. Using the same transition-metal-free cross-coupling methodology as described above, both targets 149 and 151 were synthesised in 66% and 57% yield, respectively. With both compounds in hand, their conformational behaviour in solution was studied by 1H NMR.
1.2.2. Preliminary NMR analysis and Molecular Mechanics

For both compounds, $^3J_{HH}$ coupling constant values were studied by 1H NMR analysis. In the case of 149, most of the core CH signals were overlapped, and a constrained rotation, due to steric effects of the naphthyl group, broadened signals 22 and 24 (Chart 6). Nevertheless, $^3J_{H6-H8} = 9.9$ Hz and $^3J_{H8-H10} = 2.8$ Hz could be obtained.

Chart 6. Atom numbering of target compound 149.

According to Karplus equation,206 the first value (9.9 Hz) suggested that H6 and H8 were likely to be in an antiperiplanar relationship in the major conformer, and thus depicted C5–C6–C8–C10 as a gauche dihedral angle. The second coupling constant (2.8 Hz) showed that H8 and H10 stood in a gauche relationship, indicating that C6–C8–C10–C12 was an antiperiplanar dihedral angle in the major conformer. Despite the lack of information concerning the other dihedral angles,
these initial results indicated that compound 149 presented a certain conformational preference in solution.

The same analysis was applied to compound 151 (Chart 7): the first and the last coupling constant values, $^3J_{H6-H8} = 7.0$ Hz and $^3J_{H24-H26} = 6.9$ Hz, were extracted from the 1H NMR spectrum. These values of 7.0 and 6.9 Hz were unexpected but can be interpreted in two different ways.

Chart 7. Atom numbering of target compound 151.

The first explanation is that dihedral angle C5–C6–C8–C10 (respectively, C22–C24–C26–C27) can adopt two different conformations in solution: a gauche conformation with $^3J_{H6-H8} > 7$ Hz (respectively, $^3J_{H24-H26} > 7$ Hz) and an antiperiplanar conformation with $^3J_{H6-H8} < 7$ Hz (respectively, $^3J_{H24-H26} < 7$ Hz), with each conformation accounting for 50% of the overall dihedral angle population. The NMR spectrum would then represent the average of both conformations, with the resulting average coupling constant of 7 Hz. This interpretation could suggest that the molecule exists as a 50:50 mixture of the left-handed (M) helix and the right-handed (P) helix. A second explanation is that both dihedral angles do not have any conformational preference. This would also result in an average coupling constant of 7 Hz. Assuming that the other dihedral angles behave in the same way, this second interpretation could imply that the molecule does not adopt any controlled conformation in solution.

Molecular mechanics was employed to confirm the presumed conformational preference of 149 and better interpret the results obtained in the case of compound 151. Pleasingly, a Monte Carlo molecular mechanics conformational search (using the MMFFs force field, 500,000 iterations and in the gas phase) corroborated the strong conformational preference expected for 149. As shown in Figure 8, molecular mechanics predicted that the most populated conformers of 149 would exhibit backbones with an alternating gauche/antiperiplanar dihedral angle sequence. The three-dimensional structure of the molecule can be represented on a diamond lattice (Figure 9a), with dihedral angle values rounded to 60° for each gauche dihedral angle and 180° for each antiperiplanar dihedral angle. As a result, an M helix is obtained, as predicted by Huc’s model81 for compounds bearing end-groups with a (R9) configuration.
Figure 8. Bubble plots representing the different populations of dihedral angles in the backbone. The size of the bubble is proportional to the percentage of the corresponding calculated Boltzmann population. These data were extracted and processed by Dr. Siying Zhong.

However, in opposition to Huc’s model, Newman projections along C6→C8 or C24→C22 axes (Figure 9b) show that the larger groups (i.e., para-methoxyphenyl and naphthyl groups) are not pointing away from the helix but instead are set themselves as if they are part of the continued backbone. Therefore, the accordance between the prediction of Huc’s model and the observed screw-sense is assumed to be a coincidence.

Figure 9. a. Compound 149 represented as a left-handed helix on a diamond lattice, according to its bubble plot showed above. b. The Newman projections at both chain-ends showed that the aromatic groups were not pointing away from the helix. PMP = para-methoxy-phenyl.

Moreover, in the case of compound 151, Huc’s model predicts that if the end-groups have different absolute configurations, the biggest end-group (here, the naphthyl group) would dominate and dictate the screw-sense. However, the same molecular mechanics conformational search of 151 predicted that 12% of the overall population would exist as a left-handed helix, 8% as a right-handed helix and 80% would adopt non-helical conformations (Figure 8). These results are in
line with the coupling constant values obtained by 1H NMR. This indicates that the second interpretation is correct and discredits, once again, the applicability of Huc’s model to such molecules. Therefore, the development of a new stereochemical model accounting for the experimental observations is essential to better understand the conformational preference of these all-\textit{syn} methyl-substituted compounds.

\subsection*{1.2.3. Towards a new stereochemical model}

A diamond lattice analysis reveals that, for a chain containing ten stereocentres such as \textit{ent-111}, only two conformers bear no \textit{syn}-pentane interaction (Figure 10). One of these conformers is a left-handed (M) helix and the other conformer a right-handed (P) helix.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{diagram}
\caption{Equilibrium between left- and right-handed helices bearing an even number (10) of stereocentres in the backbone drawn on a diamond lattice.}
\end{figure}

From this initial three-dimensional analysis, it appears that any antiperiplanar dihedral angle ($\tau = 180^\circ$) in the M helix becomes a \textit{gauche}^- dihedral angle ($g^- = -60^\circ$) in the P helix after a conformational switch. Similarly, any \textit{gauche}^+ dihedral angle ($g^+ = +60^\circ$) in the M helix becomes an antiperiplanar dihedral angle ($\tau = 180^\circ$) in the P helix. The dihedral angle sequence in the M conformer could then be described as $t, g^-, t, g^-, t, g^-, t, g^-, t, g^-$, whereas the dihedral angle sequence in the P conformer could be described as $g^-, t, g^-, t, g^-, t, g^-, t, g^-$.
Newman projections of t, g^+ and g^- dihedral angles (Figure 11) reveal that each t dihedral angle generates three gauche interactions, while each g (g^+ or g^-) dihedral angle generates only two gauche interactions. Based on this observation, the dihedral angle sequence in the M helix ($5 \times t + 4 \times g^-$) creates 23 gauche interactions, whereas the dihedral angle sequence in the P helix ($5 \times g^+ + 4 \times t$) creates only 22 gauche interactions. Consequently, according to these numbers, the P conformer is expected to be dominant in this case (i.e., for this specific absolute configuration). More generally, for any given absolute configuration and assuming that all the gauche interactions are equivalent in terms of energy penalty, an all-syn methyl-substituted chain with an even number of stereocentres should favour the conformer which bears no syn-pentane interactions and with the smallest number of t dihedral angles in the backbone.

Figure 12. Equilibrium between left-handed helix, right-handed helix and non-helical conformers with an odd number (11) of stereocentres in the backbone drawn on a diamond lattice. The same diamond lattice analysis on a chain composed of eleven stereocentres shows that only two conformers can exist with no syn-pentane interactions (Figure 12). As for a chain with an even number of stereocentres, one of these conformers is an M helix, while the other is a P helix.
The same dihedral angle interconversions from g^+ to t and from t to g^- is observed when the molecule switches from M to P. The dihedral angle sequence in the M form can be described as $g^+, t, g^+, t, g^+, t, g^+, t, t$, whereas the dihedral angle sequence in the P form can be described as $t, g^-, t, g^-, t, g^-, t, g^-, t, g^-$. However, in this case, the number of gauche interactions is identical for both helices ($5 \times t + 5 \times g = 25$). As a consequence, the ratio between the population of helical conformers adopting a M-helical conformation and the population of helical conformers adopting a P-helical conformation should be close to 50:50.

Interestingly, a molecular mechanics (MM) conformational search of 112 (eleven stereocentres) predicted that only 20% of the overall population would adopt a helical conformation (Figure 8), in a 60:40 $M:P$ ratio. This suggests that, with eleven stereocentres, the helical conformers (i.e., conformers with no syn-pentane and 25 gauche interactions) are very close in energy to the non-helical structures which necessarily contain a syn-pentane interaction. Most likely, both C–C bonds involved in this syn-pentane interaction do not lie in the exact same plane to reduce the energetic cost of the steric clash (this type of interaction could be described as a pseudo- or relaxed syn-pentane interaction).

Assuming that any all-syn methyl-substituted hydrocarbon with an even number (respectively, odd number) of stereocentres possesses the same conformational behaviour as compound 149 (respectively, compound 151), an initial model can be established (Table 1) to predict the screw-sense of such molecules.

<table>
<thead>
<tr>
<th>Absolute configuration</th>
<th>Even number of stereocentres</th>
<th>Odd number of stereocentres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted screw-sense</td>
<td>Right-handed helix (P)</td>
<td>Mixture of M, P and non-helical conformers</td>
</tr>
</tbody>
</table>

Table 1. Screw-sense prediction table.

However, this new model relies only on a combination of molecular mechanics results and highly congested 1H NMR spectra of only two compounds with two different chain lengths (ten and eleven stereocentres). Therefore, to confirm the general applicability of the model, it was necessary to prove that the screw-sense can be successfully predicted for any chain lengths.
1.2.4. Design of new targets

The objective was to design and synthesise a series of compounds with different chain lengths to study their conformations using the QM/NMR approach. One of the limitations of this technique appears when NMR spectra are too congested, preventing the extraction of NMR parameters, such as chemical shifts or coupling constants. To avoid this issue, only C_2-symmetric and *meso* compounds were selected. Indeed, introducing symmetry elements creates pairs of chemically equivalent atoms, reducing the number of NMR signals and, therefore, lowers the risk of spectrum congestion.

The nature of the end-groups would certainly play a role in the conformational behaviour of these molecules. To avoid any steric interactions with the backbone, terminal alkynyl groups were chosen as the end-groups. Their linear geometry and small size ($d_{C\equiv C} \approx 1.2 \, \text{Å}$) would prevent terminal alkynes from generating any steric hindrance and the electron density of the C≡C triple bond would spread the NMR chemical shifts and thus reduce the number of overlapping NMR signals.

Finally, in terms of synthesis, the target molecules would ideally be accessible from the same synthetic intermediate, using the iterative homologation of boronic esters. According to all of the requirements listed above, a series of six molecules (three C_2-symmetric and three *meso* compounds) were chosen (Chart 8) to validate the new stereochemical model.

Chart 8. Two series of target molecules were designed to study the impact of the chain length on the conformation in solution.

According to the proposed model, one could represent the three C_2-symmetric compounds C6, C8 and C10 on a diamond lattice (Figure 13a). The scalar coupling constant value $^3J_{H-H}$ for each pair of consecutive protons attached to the backbone could then be theoretically estimated, based on the Karplus equation. According to Karplus’ graph, an antiperiplanar (t) H–C–C–H dihedral angle would give a coupling constant value $> 8 \, \text{Hz (large)}$, whereas a gauche (g) H–C–C–H dihedral angle would give a coupling constant value $< 6 \, \text{Hz (small)}$. For example, in compound C10, the predicted H–C–C–H dihedral angle sequence being t, g^+, t, g^+, t, g^+, t, the $^3J_{H-H}$
sequence was expected to be large, small, large, small, large, small, large, small. If the experimental measurements showed the opposite $^3J_{\text{H-H}}$ sequence (i.e., small, large, small, large, small, large, small, small, small, large, small), it would suggest that the opposite helix was dominant in solution (Figure 13b). If the experimental values were all about 7 Hz, the conclusion would be that there was no dominant conformer in solution. Consequently, a simple 1H NMR measurement would establish the accuracy of the model. After these theoretical considerations, the next task was to synthesise the target compounds.

![Diagram of predicted conformers for compounds C6, C8, and C10](image)

Figure 13. a. Predicted conformers for compounds C6, C8, and C10 drawn on a diamond lattice. b. Expected coupling constant values for both helical conformers of compound C10.

1.2.5. Synthesis and preliminary NMR results

Boronic ester 138 was bidirectionally homologated once to give intermediate 152 (containing six stereocentres), twice to obtain compound 153 (with eight stereocentres) and, finally, three times to access boronic ester 154 bearing ten stereocentres. Remarkably, compounds 153 and 154 were
generated in an iterative manner, with only one purification step at the end of the homologation sequence (Scheme 32). The extraction of the $^3J_{\text{H-H}}$ values by 1H NMR analysis revealed that the conformational behaviour of the three compounds was in line with the prediction of the new model. Surprisingly however, an X-ray crystal structure of 154 (Scheme 31) showed that the molecule underwent a helical switch from P helix in solution to M helix in the solid state. It would seem that for efficient crystal packing, the pinacol boronic ester moieties adopt an extended conformation, forcing the chain to switch (as a consequence of the avoidance of syn-pentane interactions).

Scheme 32. Preparation of C_2-symmetric boronic esters 152, 153 and 154 using bidirectional iterative homologation methodology.

Figure 14. a. X-ray crystal structure of boronic ester 154 Ellipsoids shown at 50% probability. Hydrogen atoms and solvent molecules have been omitted for clarity. b. Conformation of compound 154 in the solid state drawn on a diamond lattice.
Scheme 33. Example of desymmetrisation of a C_2-symmetric boronic ester (here 152) to access two target compounds (here, C6 and C7). Carbamate 15 was synthesised in one step from the corresponding carbamoyl chloride.207

The C_2-symmetric intermediates were then desymmetrised using the alkynylation methodology developed in the Aggarwal group in 2016.17 Each desymmetrisation reaction resulted in a mixture of starting material, monoalkyne and dialkyne. After isolation of each of these three species, monoalkyne intermediates were protected, homologated, alkanylated and finally deprotected to access the last three target molecules (Scheme 33).

Figure 15. a. HA and HA’ are chemically equivalent but magnetically inequivalent. b. 1H NMR signal of the proton pair HA/HA’.

Pleasingly, no signal overlap was observed when NMR spectra were recorded in deuterated toluene. In the case of C_2-symmetric molecules, measurements of $^3J_{HH}$ were relatively straightforward, except for the HA–HA’ proton pair depicted in Figure 15a. HA couples to HB with $^3J_{HA\text{-}HB}$ and to HB’ with $^4J_{HA\text{-}HB’}$ whereas HA’ couples to HB with $^4J_{HA’\text{-}HB}$ and to HB’ with $^3J_{HA’\text{-}HB’}$.
Therefore, HA and HA‘ are chemically equivalent but not magnetically equivalent to each other. As a consequence, the 1H NMR signal of HA/HA‘ appears as a complex multiplet (Figure 15b) from which no $^3J_{H-H}$ could be extracted. This limitation was not observed for meso compounds where all the coupling constants could be obtained. Gratifyingly, these preliminary results (Table 2) are in accordance with the proposed model (Table 1). Unlike boronic ester 154, dialkyne C10 was found to adopt the same conformation in solution and in the solid state, as shown by its X-ray crystal structure (Figure 16).

<table>
<thead>
<tr>
<th></th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
<th>C10</th>
<th>C11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^3J_{H1-H2}$</td>
<td>9.2 Hz</td>
<td>6.8 Hz</td>
<td>9.2 Hz</td>
<td>6.9 Hz</td>
<td>9.2 Hz</td>
<td>6.9 Hz</td>
</tr>
<tr>
<td>$^3J_{H2-H3}$</td>
<td>2.8 Hz</td>
<td>5.6 Hz</td>
<td>3.4 Hz</td>
<td>5.3 Hz</td>
<td>3.6 Hz</td>
<td>6.9 Hz</td>
</tr>
<tr>
<td>$^3J_{H3-H4}$</td>
<td>-</td>
<td>6.5 Hz</td>
<td>8.5 Hz</td>
<td>6.7 Hz</td>
<td>8.8 Hz</td>
<td>6.8 Hz</td>
</tr>
<tr>
<td>$^3J_{H4-H5}$</td>
<td>-</td>
<td>6.1 Hz</td>
<td>3.1 Hz</td>
<td>6.8 Hz</td>
<td>-</td>
<td>6.6 Hz</td>
</tr>
<tr>
<td>$^3J_{H5-H6}$</td>
<td>-</td>
<td>6.6 Hz</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2. Extraction of $^3J_{H-H}$ values from 1H NMR spectra of compounds C6, C7, C8, C9, C10 and C11. The atom numbering refers to Figure 13a.

As expected, the simultaneous addition of two stereocentres at both ends of 152 to give 153 led to an inversion of screw-sense from C6 (P helix) to C8 (M helix). The same interesting phenomenon was observed when 153 was bidirectionally homologated to deliver 154, resulting in a second screw-sense inversion from C8 (M helix) to C10 (P helix). According to the model, this phenomenon can be rationalised by the tendency of the chain to reduce the number of gauche interactions (Figure 17). This iterative bidirectional homologation process can therefore be described as a remarkable example of helical switching by bidirectional chain extension.
Pleasingly, the same analysis revealed that compounds with an odd number of carbon atoms in the backbone (C7, C9 and C11) exhibited an average coupling constant value ($\langle \delta J_{\text{H-H}} \rangle \approx 7 \text{ Hz} \rangle$) for each proton pair. As discussed in Section 1.2.3., one interpretation could be that both helical conformers were dominant in solution and present in a 50:50 ratio, or a second explanation could be that the conformational ensemble did not have a preferred conformation.
At that time, all of these results only relied on preliminary 1H NMR measurements. To support them, a more thorough quantitative conformational analysis was required. In the case of fully flexible molecules with controlled conformations, one of the most powerful techniques to confidently describe the populations of conformers in solution was the QM/NMR approach, as shown by Butts and Aggarwal1,188 over the last few years. This approach was employed to validate the conclusions depicted above and obtain the structures and ratios of the different populations of conformers of the target compounds.

1.2.6. Application of the QM/NMR approach

This part of the project was conducted by Dr. Siying Zhong who extracted all the required NMR parameters, including NOE-distances, and performed all the molecular mechanics (MM) and density functional theory (DFT) calculations. Her results208 were included in this thesis to provide a complete picture of the project.

First, the conformational landscape of compound C10 was explored by molecular mechanics (MM). A Monte Carlo MM conformational search predicted that 90% of the overall population would adopt a helical conformation (Figure 18). The energy difference between both P and M conformers was found to be quite small ($\Delta E \approx 1.0$ kJ mol$^{-1}$), resulting in a 50:50 ratio of right- and left-handed helices.

![Figure 18](image.png)

Figure 18. Dihedral angle populations of dialkyne C10 predicted by MM (left) and DFT (right) and represented as bubble plots. Red dots belong to a P helix, blue dots belong to an M helix, orange dots belong to non-helical conformers.

By contrast, DFT geometry optimisation and frequency calculations using B3LYP-D2/6-311G(d) level of theory gave a different outcome. According to this method, 65% of the overall population would fold into a P helix, 14% would exist as an M helix and 21% would present non-helical conformations. The energy difference between both helical populations was predicted to be about
1 kcal mol\(^{-1}\), a difference that is in line with the expected energy penalty for the one extra gauche interaction between methyl groups in the \(M\) conformers.\(^{70}\)

Prior to performing DFT calculations to predict the ensemble-average scalar coupling constants, it was necessary to find the optimal level of theory for calculating conformer geometries and energies. The predictions of eleven sets of DFT methods, involving four different functionals (mPW1PW91, B3LYP, B3LYP-D2 and M06-2X), in combination with five basis sets (6-31G(d), 6-311G(d), 6-311+G(d), 6-311G(d,p) and 6-311+G(d,p)), were compared to experimentally-derived NOE-distances. Pleasingly, B3LYP-D2/6-311G(d) level of theory in gas phase provided the best fit to the experimental values.

After optimisation of the DFT method to calculate conformer geometries and energies, the coupling constant values of the major conformers (making up 90% of the overall population) were subjected to DFT calculations using mPW1PW91/6-311G(d,p) level of theory, with implicit toluene (IEFPCM), to establish the ensemble-averaged scalar coupling constants. The \(^4J_{HH}\) coupling constant between the terminal alkyne proton and the first CH of the chain was not included in this analysis because it did not give any information about the conformation of the backbone. Moreover, this computed \(^4J_{HH}\) value (4.2 Hz) deviated significantly from the experimental value (2.4 Hz), probably because the sp orbitals of the alkyne bond were not described accurately by the level of theory employed here. Apart from this coupling constant, all the NMR parameters were in good agreement with the measured values (Table 3 and Figure 19).

<table>
<thead>
<tr>
<th></th>
<th>MAD</th>
<th>StDev</th>
<th>(\chi^2) (reduced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1\text{H}--\text{H}) scalar coupling</td>
<td>0.6 Hz</td>
<td>0.7 Hz</td>
<td>0.44</td>
</tr>
<tr>
<td>NOE distances</td>
<td>3.8%</td>
<td>4.9%</td>
<td>1.97</td>
</tr>
</tbody>
</table>

Table 3. Mean averaged deviation (MAD), standard deviation (StDev) and \(\chi^2\) (reduced) values for calculated NMR parameters of \(\text{C10}\).

Figure 19. a. Comparison of DFT-computed ensemble-averaged \(^1\text{H}--\text{H}\) scalar coupling constants and \(^1\text{H}--\text{H}\) distances to the experimental values. b. DFT-predicted lowest energy conformer (P helix) of \(\text{C10}\). c. X-ray crystal structure of \(\text{C10}\) Ellipsoids shown at 50% probability. Hydrogen atoms and solvent molecules have been omitted for clarity.
Encouraged by these results, the same Monte Carlo MM conformational search was applied to compounds C6 and C8. The resulting conformations were then subjected to DFT geometry optimisation and energy calculations, using the appropriate level of theory B3LYP-D2/6-311G(d), with a correction derived from single point energy calculations with a bigger basis set 6-311G(d,p) and solvation (toluene, IEFPCM). About 86% of the overall conformer population of C6 and 80% of the overall conformer population of C8 were predicted to be helical. As anticipated by the diamond lattice-based model, compound C6 mainly existed as a P helix, whereas compound C8 preferred to fold into an M helix (Figure 20). The energy difference between M and P helices was, in both cases, around 1 kcal mol\(^{-1}\). For both compounds, the calculated averaged NMR parameters were in good agreement with experimental data (Table 4).

Interestingly, the fraction of helical conformers in the overall population was inversely proportional to the chain length of the compound. Presumably, adding more rotatable bonds to the molecule increased the entropic cost associated with the conformational control.
Table 4. Mean averaged deviation (MAD), standard deviation (StDev) and χ^2 (reduced) values of calculated NMR parameters for compounds \textbf{C6} (left) and \textbf{C8} (right).

<table>
<thead>
<tr>
<th></th>
<th>MAD</th>
<th>StDev</th>
<th>χ^2 (reduced)</th>
<th>MAD</th>
<th>StDev</th>
<th>χ^2 (reduced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H–1H scalar coupling</td>
<td>0.5 Hz</td>
<td>0.7 Hz</td>
<td>0.80</td>
<td>0.1 Hz</td>
<td>0.1 Hz</td>
<td>0.02</td>
</tr>
<tr>
<td>NOE distances</td>
<td>2.9%</td>
<td>1.8%</td>
<td>1.6</td>
<td>4.3%</td>
<td>5.4%</td>
<td>2.6</td>
</tr>
</tbody>
</table>

The next step was the QM/NMR analysis of compounds with an odd number of stereocentres. \textbf{C7} was subjected to the same methodology as described above. Although helical conformers still remained the lowest-energy conformers, DFT calculations predicted that only 63% of the overall conformer population would adopt a helical shape, with a 50:50 ratio of \textit{M} and \textit{P} helices, as symmetry rules require (\textbf{Figure 21}). Helical conformations still represented the local minima but were really close in energy to non-helical structures (<1 kcal mol$^{-1}$). The computed ensemble-averaged 1H–1H coupling constants were in agreement with the experimental values (\textit{i.e.}, the mean averaged deviation (MAD) and the standard deviation (StDev) were both lower than 0.25 Hz with a χ^2 (reduced) value of 0.08). However, the same calculations applied to an artificial population containing only helical conformers (with the same 50:50 ratio of \textit{M} and \textit{P} helices) also gave an ensemble-averaged 1H–1H coupling constants in good agreement with the measure $J_{\text{H-H}}$ values (both MAD and StDev <0.36 Hz and χ^2 (reduced) = 0.24). Hence, the analysis of coupling constants alone was not enough to determine whether non-helical conformers were present in the population or not.

\textbf{Figure 21.} Dihedral angle populations of dialkyne \textbf{C7} predicted by DFT and represented as a bubble plot. Red dots belong to a \textit{P} helix, blue dots belong to an \textit{M} helix, orange, purple and turquoise dots belong to non-helical conformers.
To face this problem, two distinct sets of ensemble-averaged NMR parameters ($\delta H, \delta C, J$ values and NOE-derived $^1\text{H}--^1\text{H}$ distances) were calculated by DFT. The first set of parameters derived from the initial predicted population—consisting of 63% of helical conformers (50:50 $M:P$ ratio) and 37% of non-helical conformers—whereas the second set of parameters was based on a population containing only helical conformers (with the same 50:50 $M:P$ ratio). The comparison of both sets of data to the experimental values revealed that computed chemical shifts (δH and δC) and coupling constants (J) were insensitive to the change in conformer population, giving similar χ^2 (reduced) values in both cases. By contrast, the calculated NOE-derived $^1\text{H}--^1\text{H}$ distances were found to be affected by the presence of non-helical conformers in the population. Indeed, the χ^2 (reduced) value for NOE distances generated from the population containing non-helical conformers was 3.76 while the other set of NOE distances derived from a population containing only helical conformers gave a χ^2 (reduced) value of 6.08. These values indicated that non-helical conformers were present in solution. DFT calculations showed that helical conformations still represented the local minima but were really close in energy to non-helical structures (<1 kcal mol$^{-1}$).

![Dihedral angle populations of dialkynes C9 and C11 predicted by DFT and represented as bubble plots. Red dots belong to a P helix, blue dots belong to an M helix, green, purple and turquoise dots belong to non-helical conformers.](image)

Figure 22. Dihedral angle populations of dialkynes C9 and C11 predicted by DFT and represented as bubble plots. Red dots belong to a P helix, blue dots belong to an M helix, green, purple and turquoise dots belong to non-helical conformers.

The same computational analysis was applied to compounds C9 and C11. In both cases, DFT results showed a mixture of non-helical and helical conformers (**Figure 22**). As expected for meso compounds, the helical population was composed of a 50:50 ratio of M and P helices. Interestingly, the percentage of helical conformers (i.e., combined M and P helices) dramatically decreased as the chain length increased (from 63% for C7 to 27% for C11) (**Figure 23**). Once again, the entropic cost associated with the conformational control of a higher number of rotatable bonds could be invoked to rationalise this observation.
In conclusion, a thorough QM/NMR approach confirmed the theoretical results predicted by the new diamond lattice-based model. It showed that C_2-symmetric compounds such as C6, C8 and C10 had a strong conformational preference towards helical conformations, P helix for C6 and C10, M helix for C8. These observations proved that the remarkable ‘helical switching by bidirectional chain extension’ described in Section 1.2.5. indeed occurred. Meso compounds such as C7, C9 and C11, displayed a very different conformational behaviour. Interestingly, this series of molecules revealed a rare odd–even effect in alkanes that is not associated with bulk intermolecular interactions. To further confirm the QM/NMR results, vibrational circular dichroism was employed.

1.2.7. Vibrational Circular Dichroism analysis

This part of the project was conducted by Márton Baglyas and György Tarczay who performed the calculations to access the vibrational circular dichroism (VCD) theoretical spectra and measured the experimental VCD response of compound C10. Their results were included in this thesis to provide a complete picture of the project.

With the optimised geometries of both helical conformers of C10 in hand, the vibrational circular dichroism (VCD) spectra of both helices could be simulated *in silico*. Surprisingly, although both conformers did not form a pair of enantiomeric structures, their calculated VCD spectra were almost mirror images of each other. They displayed maximal absorptions at the same wave-numbers (1420, 1065 and 980 cm$^{-1}$) but with opposite intensities (*Figure 24*). The measured experimental response showed the same pattern of absorption, slightly shifted towards the higher wavenumbers (1450, 1080 and 1010 cm$^{-1}$). The sign of these signals clearly indicated the presence of a P helix in solution. These results confirmed the previous QM/NMR studies performed by Dr. Siying Zhong.

![Figure 23. Combined helical conformer population of C6, C7, C8, C9, C10 and C11.](image-url)
Figure 24. Comparison of calculated and experimental VCD spectra. **a.** Calculated VCD spectrum of the optimised lowest energy M conformer of C10. **b.** Calculated VCD spectrum of the optimised lowest energy P conformer of C10. **c.** Experimental VCD response of C10 in chloroform-d (the signals between 1150 and 1200 cm$^{-1}$ correspond to the solvent).

1.2.8. **Influence of the end-groups on the conformation**

Having established the rules that dictated the conformation preference of the backbone itself, the next task of the project was to study the influence of the end-groups on the conformation of the chain. In the previous part of the study, all the gauche interactions were considered to be equivalent in terms of energy penalty. In this section, it was necessary to distinguish the different types of gauche interactions encountered in such molecules. To do so, a more careful inventory was made based on the proposed model. To simplify the analysis, C_2-symmetric molecule were chosen to begin with.
For example, in the case of a compound with ten stereocentres in the backbone and with the absolute configuration depicted in Figure 25, one could count nine Methyl–Methyl, two R–Methyl, eight Chain–Methyl and four Chain–Chain gauche interactions in the M conformer. On the other hand, in the P conformer, one could identify nine Methyl–Methyl, two R–Chain, eight Chain–Methyl and three Chain–Chain gauche interactions. By crossing out the interactions present in both helices, it was established that the P form would be favoured if the energy penalty (E) of two R–Chain gauche interactions was lower than the sum of the energy penalty of two R–Methyl gauche interactions and one Chain–Chain gauche interaction. Conversely, the M form would be favoured if the energy penalty of two R–Chain gauche interactions was higher than the sum of the energy penalty of two R–Methyl gauche interactions and one Chain–Chain gauche interaction, as summarised by these two equations:

(I) \[P \text{ helix favoured } \iff 2 \times E(\text{R–Chain}) < 2 \times E(\text{R–Methyl}) + 1 \times E(\text{Chain–Chain}) \]

(II) \[M \text{ helix favoured } \iff 2 \times E(\text{R–Chain}) > 2 \times E(\text{R–Methyl}) + 1 \times E(\text{Chain–Chain}) \]

Intuitively, it seemed really difficult to find an end-group (R) able to satisfy equation (II). A first idea to reach this goal was to install large groups at the end of the chain to generate a steric clash with the backbone and make the helix switch. It was important to notice that compounds such as 158 did not show any helicity change, in spite of bulky TIPS groups attached to their alkyne moieties. However, in these examples, the sterically demanding silyl group was separated from the backbone by a 4.6 Å-long linear spacer composed of one C–C single bond (≈ 1.5 Å), one C≡C triple bond (≈ 1.2 Å) and one C–Si bond (≈ 1.9 Å). The bulky group needed to be closer to the chain to interact in an efficient manner.
One of the easiest ways to increase the size of the alkyne terminal group was to make it react with an azide-containing molecule to generate a triazole ring. According to this strategy, compound C10 was engaged in a 1,3-dipolar cycloaddition reaction with phenyl azide to obtain triazole 168 (Scheme 34). Unfortunately, 1H NMR analysis revealed that both end-groups were in a predominantly gauche conformation, characteristic of a P helix for this absolute configuration.

Scheme 34. Synthesis of triazole 168 using a 1,3-dipolar cycloaddition methodology.

Having one large group at the end of the chain was not enough to make the screw-sense change. Therefore, the next molecule synthesised from boronic ester 154 via the transition metal-free cross-coupling reaction described above was compound 169 (Scheme 35). The bicyclic naphthyl ring was thought to be substantially bigger than a triazole ring and therefore have a better chance to interact significantly with the chain. Sadly, the first two CHs of the backbone gave very broad signals by 1H NMR—probably because of constrained rotation of the aromatic rings—and their $^3J_{H-H}$ values could not be extracted from the spectrum.

Scheme 35. Preparation of compound 169 using a transition metal-free cross-coupling methodology.

Yet, an X-ray structure of compound 169 could be obtained (Figure 26) and showed that the aromatic rings presented their flat face to the chain, reducing their steric hindrance. In this conformation, the naphthyl group became a small group which did not interact with the backbone.
Figure 26. a. X-ray crystal structure of 169. Ellipsoids shown at 50% probability. Hydrogen atoms and solvent molecules have been omitted for clarity. b. Conformation of compound 169 in the solid state drawn on a diamond lattice.

According to the model, for compounds with an odd number of stereocentres in the chain, the helical conformers would have one end-group in a gauche conformation and the other in an anti conformation. One could then design a molecule with a bulky end-group which would prefer to stand in an anti conformation and a small group which would adopt a gauche conformation. Based on this analysis, compound 172 was synthesised in three steps from boronic ester 154 (Scheme 36). 1H NMR showed that the naphthyl group oriented the first dihedral angle towards the gauche conformation ($^3J_{H-H} = 7.9$ Hz) and the second angle towards the antiperiplanar conformation ($^3J_{H-H} = 4.6$ Hz). However, apart from these two bonds, the rest of the chain did not exhibit any conformational preference (5.1 Hz < $^3J_{H-H}$ < 7.0 Hz). As shown by QM/NMR results in Section 1.2.6, the effect of entropy might have been too strong in this case (eleven rotatable C–C bonds). The desired control might be achieved using the same end-group design but on a small chain (i.e., containing seven or nine stereocentres).

Scheme 36. Preparation of alkyne 172 from C_2-symmetric boronic ester 154.
The previous results clearly showed that an aromatic group was not large enough to verify equation (II). Consequently, the next objective was to install a bulkier end-group, such as a tert-butyl group. Steric hindrance was not the only advantage of the tert-butyl moiety. A few years ago, Hoffmann pointed out that having a tert-butyl group at the end of a non-substituted aliphatic chain could control the conformation of the first three bonds by avoidance of syn-pentane interactions, forcing the first dihedral angle of the chain to adopt an antiperiplanar conformation.64,184,209,210 This conformation was in agreement with equation (II). From these considerations, attaching a tert-butyl group to the chain seemed to be the best option to observe the opposite helicity (\textit{M}). However, from a more practical point of view, 1H NMR signals of an aliphatic molecule with no heteroatom were likely to be overlapped and thus the extraction of NMR parameters might be difficult. Therefore, one oxygen atom was included in the target molecule via oxidation of desymmetrised boronic ester 163 (Scheme 37). Finally, the tert-butyl group was installed using the methodology developed by Bartoli and co-workers.211

![Scheme 37. Synthesis of alkyne 174 via oxidation of boronic ester 163 and alkylation of intermediate 173.](image)

Preliminary 1H NMR analysis revealed that the switch did not occur. Starting from the alkyne group, the first four coupling constant values were 7.9 Hz, 4.5 Hz, 7.6 Hz and 4.0 Hz. This \textit{large}, \textit{small}, \textit{large}, \textit{small} sequence accounted for a \textit{P} helix. However, it was important to notice that these constants were significantly different from the values observed for dialkyne C10. By direct comparison of these numbers, one could infer that the conformational preference towards the \textit{P} conformer was reduced due to the presence of a tert-butyl group.

To obtain more information about the effect of the tert-butyl group on the conformation of the chain, the QM/NMR approach described in Section 1.1.4.2. was applied to compound 174 in collaboration with Dr. Siying Zhong. Once again, a significant difference was observed between MM and DFT results (Figure 27b). Although MM predicted that 86% of the overall population would adopt a helical shape with an 81:19 \textit{M}:\textit{P} ratio, DFT geometry and energy calculations
showed that only 50% of the conformers would be helical with a strong conformational bias towards the opposite screw-sense (16:84 M:P ratio). The DFT-derived ensemble-averaged $J_{\text{H-H}}$ coupling constants were in good agreement with the measured values (MAD = 0.7 Hz; StDev = 0.9 Hz, χ^2 (reduced) = 0.9 Hz). Yet, the calculated ensemble-averaged $^1\text{H}^–^1\text{H}$ distances did not fit the experimental values, with a χ^2 (reduced) value of 4.60 (Figure 27c). At this stage, two explanations were plausible: either DFT inaccurately estimated the ratio between M and P helices, or inaccurately predicted the ratio between helical and non-helical populations.

![Figure 27. a. Dihedral angle numbering for compound 174. b. Dihedral angle populations of compound 174 predicted by MM (left) and DFT (right) and represented as a bubble plot. Red dots belong to a P helix, blue dots belong to an M helix, orange dots belong to non-helical conformers. c. Comparisons of DFT-computed ensemble-averaged $^1\text{H}^–^1\text{H}$ scalar coupling constants and $^1\text{H}^–^1\text{H}$ distances to the experimental values.](image)

To better understand the effect of a tert-butyl group on the conformation of the chain, an analogue bearing two tert-butyl groups, compound 176, was synthesised in two steps from boronic ester 154 (Scheme 38). Intermediate diol 175 was isolated and analysed by NMR in a non-protic solvent to establish whether the propensity of the hydroxyl group to make intermolecular hydrogen bonds would encourage the molecule to aggregate and thus force the backbone to stand in an
extended conformation (i.e., \(M \) helix). Unfortunately, once again, a \(P \) helix was observed in toluene-\(d_8 \), with the following coupling constant sequence: 8.1 Hz (large), 3.4 Hz (small) and 8.5 Hz (large). An X-ray structure (Figure 28) showed that hydrogen bonding was still allowed, despite the \(P \)-helical conformation of the chain.

![Scheme 38](image)

Scheme 38. Oxidation of boronic ester 154 to obtain diol 175 and subsequent double alkylation to give ether 176.

Concerning compound 176, the extraction of chemical shifts, \(J_{\text{H-H}} \) values and NOE distances was very difficult due to spectrum congestion. All the protons of the backbone were overlapped except the ones geminal to the oxygen atoms, which coupled to the next protons with a constant of 5.8 Hz. This rather small coupling constant might be indicative of a conformational change. At least, by comparison with compounds C10 and 174, one could infer that the \(P \) form was even more destabilised by the presence of a second tert-butyl group. Unfortunately, due to the lack of information about experimental NMR parameters (\(\delta \text{H, } \delta \text{C, } J_{\text{H-H}}, \text{NOE distances} \)), the QM/NMR approach was not applied to compound 176 and therefore the effect of the tert-butyl groups remains unclear.

![Figure 28](image)

Figure 28. a. X-ray crystal structure of 175. Ellipsoids shown at 50% probability. Hydrogen atoms and solvent molecules have been omitted for clarity. b. Conformation of compound 175 in the solid state drawn on a diamond lattice.
To summarise, the proposed theoretical model was refined based on the identification of different types of gauche interactions. These qualitative observations were translated into two equations which describe the relationship between the screw-sense of the molecule and the steric interactions involving end-groups and backbone. Six additional compounds with different combinations of end-groups were synthesised and analysed by 1H NMR. This non-exhaustive “structure–conformation relationship” screening revealed that small substituents such as an alkyne group or a hydroxyl group verified equation (I). According to this study, aromatic groups could also be considered as small groups. The presence of one tert-butyl group seemed to decrease the helical preference described by equation (I). Interestingly, a molecule with two tert-butyl groups might verify equation (II) and therefore display the opposite screw-sense. Unfortunately, this hypothesis could not be validated nor refuted due to the lack of structural information about compound 176. Nevertheless, the comparison of coupling constant values of compounds C10, 174 and 176 suggested that the combined effects of two tert-butyl groups could be used to design a switchable system.

1.2.9. Towards a new helical switch

The ultimate goal of this project was to design a helical molecule with the ability to switch from one screw-sense to another, in response to an external stimulus. In this section, the ability of such a compound to switch after chemical modification of its chain-ends was studied. In terms of potential applications, a reversible helical switch seemed to be more appealing than a non-reversible system. For this reason, only high-yielding reversible reactions were investigated.

![Hypothesis 1](image)

Figure 29. Hypothetical reversible helical switching from diketone 177 to diacetal 178.

Based on previous results, the design of a switchable all-syn methyl-substituted chain might be achieved using the effect of tert-butyl groups. Ideally, a small end-group favouring one helical conformation would be transformed into a bulky tert-butyl group to induce a conformational
change. After that, the reverse conformational switch could be triggered by converting the tert-butyl group back to the initial small group. According to the previous section, end-groups with a sp² geometry could be considered as small groups and therefore should verify equation (I). They were generally easy to install by C–B bond derivatisation. However, the addition and removal of a tert-butyl group was more challenging in terms of synthesis. It appeared more practical to design a target molecule bearing an analogous end-group (i.e., with the same geometry as the tert-butyl group), which could be efficiently installed and cleaved under mild conditions. Actually, the formation of an acetal from a ketone met all of the requirements. Indeed, in the course of this reversible reaction, the hybridisation of the carbon centre is modified from sp² in the ketone to sp³ in the acetal, the latter acting as a tert-butyl mimic to force the first dihedral angle to adopt an antiperiplanar conformation (Figure 29). With this strategy in mind, diketone 177 was prepared in three steps, starting from dialkyne C10, in 58% overall yield (Scheme 39).

Scheme 39. Synthesis of diketone 177 via double alkylation of C10, followed by hydroboration and subsequent oxidation.

¹H NMR analysis of compound 177 was extremely surprising. Contrary to the predictions, the observed ³J_H-H sequence was 4.1 Hz (small), 7.8 Hz (large), 4.0 Hz (small), 7.8 Hz (large). For the first time with this absolute configuration, a strong preference towards the M form was clearly identified. Counting the number of gauche interactions in both helical conformers of 177 did not fully rationalise this observation. In fact, these numbers depended on the position of the methyl-ketone group. To avoid syn-pentane interactions, the end-group could adopt two different orientations in each conformer (Figure 30). In the P helix, the end-group could generate either one or two gauche interactions; therefore, the overall number of gauche interactions in the molecule could be 24, 25 or 26. However, in the M helix, both orientations of the end-group created only one gauche interaction and therefore the overall number of gauche interactions was invariably
25. As a result, the molecule preferred adopting a M-helical conformation, which meant the end-group had a reduced steric impact.

![Diagram](image)

Figure 30. The end-group of compound 177 could adopt four different conformations to avoid syn-pentane interactions. The rotation of the end-group in the P helix was more constrained than in the M helix.

To test whether one directing group could dictate the screw-sense of the chain in the presence of another directing group with the opposite induction effect, an asymmetric compound (183) bearing one alkyne group, which favoured the P form, and one methylketone group, which was an M-helix inducer, was designed and synthesised (Scheme 40). 1H NMR analysis revealed that, starting from the alkyne group, the first and the last coupling constants were close to 7 Hz (5.9 Hz $< 3J_{H-H} < 7.0$ Hz). Unfortunately, all the other CH signals were overlapped. Nevertheless, these average values indicated that compound 183 was likely to exist as a 50:50 mixture of P and M helices in solution.

![Scheme](image)

Scheme 40. Preparation of ketone 183 by desymmetrisation of dialkyne C10.
With diketone 177 being an M helix, the initial strategy to form the acetal group and trigger a helical switch was abandoned. Alternatively, another approach was envisaged in which diol 175 (P helix) would be converted to diacetate 184 (Figure 31). This diester was structurally very similar to diketone 177 and, therefore, was expected to display the same conformational preference (M helix). To switch back to the P-helical conformation, a simple hydrolysis under basic conditions would then regenerate the starting diol. Pleasingly, a DMAP-catalysed esterification reaction with acetic anhydride delivered diacetate 184 in quantitative yield (Scheme 41).

![Hypothesis 2]

Figure 31. Hypothetical reversible helical switching from diol 175 to diacetate 184.

Once again, 1H NMR analysis was surprising. Instead of the expected small, large, small, large sequence, the first three coupling constant values were 7.8 Hz (large), 4.2 Hz (small) and 7.8 Hz (large), characteristic of a right-handed (P) screw-sense for this absolute configuration. This result might be rationalised by considering the A-value of an acetate group. According to the literature, 212,213 this ester possesses an A-value between 0.60 and 0.79 kcal mol$^{-1}$. For comparison, the A-value of a methyl group is about 1.70 kcal mol$^{-1}$. These numbers showed that the acetate group was very small in terms of steric hindrance. For this reason, compound 184 verified equation (I) and thus folded into a P helix.

![Scheme 41](image)

Scheme 41. Synthesis of diacetate 184 by esterification of diol 175.

A different strategy was then envisaged based on the helical switching by chain extension described in Section 1.2.5. Indeed, the conformational preference of the backbone changed each time that two new stereocentres were added at both extremities. The chain switched from P to M to P as it grew from six to eight to ten stereocentres. One more bidirectional homologation would
then give an M helix with twelve stereocentres. From this observation, a new plan was designed involving diamine 185 (Figure 32). This primary amine bore ten stereocentres. According to its absolute configuration, it should behave like dialkyne C10 and exist as a P helix in solution. Then, after alkylation, the molecule would be structurally analogous to a compound with twelve stereocentres and, therefore, should favour the M form to avoid syn-pentane interactions. In other words, the alkylation reaction would mimic a bidirectional chain extension.

![Hypothesis 3](image)

Figure 32. Hypothetical reversible helical switching from primary amine 185 to tertiary amine 186.

Boronic ester 154 was subjected to Morken’s amination conditions to obtain, after basic work-up, desired diamine 185 (Scheme 42). However, the crude compound was too polar to be purified and was converted to dicarbamate 187 to facilitate isolation. Finally, a palladium-catalysed hydrogenolysis gave the desired molecule in 50% yield over three steps.

![Scheme 42](image)

Scheme 42. Synthesis of primary amine 185 using Morken’s methodology. The crude primary amine was directly transformed into carbamate 187 to facilitate purification.

1H NMR confirmed that the molecule adopted a right-handed helical conformation in solution, with the following coupling constant sequence: 7.9 Hz (large), 3.7 Hz (small), 8.3 Hz (large) and
Then, treatment with benzyl bromide afforded tertiary amine 186 in 64% yield. Unfortunately, 1H NMR showed that the molecule still folded into a P helix, with an unusually high level of control. The first three $^3J_{H-H}$ values were 10.0 Hz (large), 2.4 Hz (small) and 9.9 Hz (large). Once again, the number of gauche interactions was key to understanding this result. The initial hypothesis relied on the fact that, for this absolute configuration, a chain containing twelve stereocentres bore 28 gauche interactions in the P-helical conformation and only 27 gauche interactions in the M form. Therefore, a left-handed helix was expected in solution. However, a closer look at the benzyl moieties revealed that the phenyl groups were involved in four additional gauche interactions in the P conformer and generated six additional gauche interactions in the M conformer (Figure 33a). As a consequence, the overall number of gauche interactions in the M helix (33) was higher than in the P helix (32), which became the lowest energy conformer, both in solution and in the solid state (Figure 33b,c).

Figure 33. a. Phenyl groups were also involved in steric conflicts. They created four more gauche interactions in the P conformer and six more gauche interactions in the M helix. b. Major conformer (P helix) of amine 186 in solution, drawn on a diamond lattice. c. X-ray crystal structure of 186. Ellipsoids shown at 50% probability. Hydrogen atoms and solvent molecules have been omitted for clarity.

In 1999, Hoffmann and co-workers showed that the conformation of 4-methylpentan-2-amine depended on the protonation state of the amino group. They observed the conformational
switching of the C–C–C–N dihedral angle, from *gauche* to antiperiplanar, when acetic acid was added in the NMR tube. Based on this study, another strategy was proposed (Figure 34). According to Hoffmann’s results, one could imagine that the *P* conformer of diamine 185 could undergo a helical switching in the presence of acid. Such a compound would therefore be described as a pH-responsive molecular switch and could eventually find practical applications.

![Hypothesis 4](image)

Figure 34. Hypothetical reversible helical switching from primary amine 188 to ammonium 189.

To test this hypothesis, compound 185 was mixed with two equivalents of acetic acid in deuterated DMSO. Unfortunately, only the first coupling constant (5.0 Hz) could be extracted due to spectrum congestion. To face this problem, a shorter version of the molecule, diamine 188, was synthesised (Scheme 43), using the same methodology as mentioned above. 1H NMR confirmed that it adopted a right-handed conformation in solution. Addition of acetic acid in DMSO-d_6 led to the same overlap issues. Moreover, this time, the first coupling constant reached 5.9 Hz, which was less encouraging. In previous examples, the use of deuterated toluene improved the quality of the 1H NMR spectrum. Therefore, diamine 188 was solubilised in toluene-d_8 and two equivalents of acetic acid were added. Immediately, a white precipitate formed, rendering the NMR analyses impossible. At that point, it seemed more sensible to replace acetic acid with a more organic proton source to improve the solubility of the resulting ammonium salt. Hence, two equivalents of nonafluorobutanesulfonic acid were added to a solution of diamine 188 in deuterated toluene. Pleasingly, no precipitation was observed and $^1J_{HH}$ values could be obtained. The first two coupling constants were found to be 6.3 Hz and 5.0 Hz. Sadly, these values were not indicative of an M helix. They showed that either the molecule was present as a mixture of both conformers or it completely lost its conformational preference. Due to a lack of time, no further hypotheses were explored.
1.3. Conclusion

This research project aimed to develop a new class of helical molecules which, upon activation from an external stimulus, would be able to reversibly switch from one screw-sense to the other. All-syn methyl-substituted hydrocarbons, as described by Aggarwal in 2014, were shown to adopt helical conformations with very high levels of control. More importantly, one of these unique molecules could access either the M or the P screw-sense, depending on its physical state. Therefore, all-syn methyl-substituted hydrocarbons seemed to be promising candidates for the design of a new class of molecular switches.

To achieve this goal, it was necessary to understand what controlled the conformation of such molecules. A first assumption suggested that a link existed between the absolute configuration of the termini, the relative size of the end-groups and the screw-sense of the backbone. To test this hypothesis, two target molecules (with ten and eleven stereocentres in their backbones) were designed and synthesised. Unfortunately, the initial convergent synthetic route failed due to the unsuccessful lithiation–borylation coupling between two bulky advanced intermediates. Consequently, a more linear approach was employed, involving nine or ten iterative homologations of boronic ester via a methodology called ‘assembly-line synthesis’, to prepare both target compounds. Their analysis by 1H NMR and MM was surprising. While the first molecule with an even number of stereocentres displayed the expected controlled helical conformation, the second
compound with an odd number of stereocentres showed a more disordered conformational landscape. This observation served as a starting point to establish a new stereochemical model able to predict the screw-sense of such helical hydrocarbons.

<table>
<thead>
<tr>
<th>Absolute configuration</th>
<th>Even number of stereocentres</th>
<th>Odd number of stereocentres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted screw-sense</td>
<td>Right-handed helix (P)</td>
<td>Left-handed helix (M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mixture of M, P and non-helical conformers</td>
</tr>
</tbody>
</table>

Table 5. Screw-sense prediction table.

A diamond lattice-based analysis revealed that the number of gauche interactions in the chain was one of the key parameters that dictated its conformational preference. The model established that, to completely avoid syn-pentane interactions, these compounds could adopt two conformations, an M helix or a P helix. However, in the case of a molecule with an even number of stereocentres, one of these two helical conformers possessed one more gauche interaction and therefore was higher in energy. In the case of a molecule with an odd number of stereocentres, both helical conformers showed the same number of gauche interactions. They could reduce this number by allowing their terminal dihedral angles to adopt a gauche conformation. However, by doing so, the helicity of the chain was broken, diminishing the percentage of helical conformers in the overall population. Therefore, by minimizing the number of gauche interactions, molecules with an even number of stereocentres increased their conformational preference towards one helical form, whereas molecules with an odd number of stereocentres tended to expand their non-helical conformer populations.

To validate this model, the relationship between conformational control and chain length was studied. A series of six compounds of different chain lengths (from six to eleven stereocenters) was designed and synthesised using an efficient bidirectional iterative homologation of C_2-symmetric boronic esters. A QM/NMR approach was employed to quantitatively describe the conformational landscape of these molecules. This technique relies on the comparison of DFT-derived NMR parameters (δH, δC, J_{H-H}, NOE distances) to experimental values. Once all the predicted parameters are in good agreement with the measured values, the corresponding DFT-derived conformational population has a high probability to reflect the reality. Pleasingly, this approach confirmed the theoretical model with a good degree of confidence. Another analytical technique, VCD analysis, also corroborated these results.
In this study, the link between screw-sense and end-groups was investigated. Based on the different types of *gauche* interactions present in the backbone, two equations were established to model this relationship.

(I) \[P \text{ helix favoured } \iff 2 \times E(R - \text{Chain}) < 2 \times E(R - \text{Methyl}) + 1 \times E(\text{Chain} - \text{Chain}) \]

(II) \[M \text{ helix favoured } \iff 2 \times E(R - \text{Chain}) > 2 \times E(R - \text{Methyl}) + 1 \times E(\text{Chain} - \text{Chain}) \]

A screening of different substituents at the termini revealed that alkyne, hydroxyl, amino or aromatic groups could be considered as ‘small’ groups, favouring the helical conformer with both terminal dihedral angles in a *gauche* conformation. In line with Hoffmann’s work,64,184 tert-butyl groups were found to have a dramatic impact on the backbone conformation. According to QM/NMR analysis, one of these bulky end-group was not enough to induce the helical switching. However, the combined effects of two tert-butyl groups might force both terminal dihedral angles to adopt an antiperiplanar conformation, thus favouring the opposite screw-sense.

These findings set the experimental basis to design a new molecular switch. Several strategies were attempted, involving reversible chemical reactions (ketone to acetal, alcohol to acetate, amine to benzyl-protected amine, amine to ammonium). However, none of them were successful, due to a series of unexpected and surprising results. To avoid these issues in the future, more computation is required to refine the proposed stereochemical model. A more systematic screening of different end-groups *in silico* would save time and support the structural design of the required molecules.
CHAPTER 2 – DECARBOXYLATIVE BORYLATION
METHODOLOGY AND ITS APPLICATION TO α-AMINO BORONIC ESTERS

The data presented in this chapter has been partially published in: Fawcett A., Pradeilles J., Wang Y., Mutsuga T., Myers E. L., Aggarwal V. K., Science 2017, 357, 283. Where indicated (†), the data presented was obtained by Dr. Alexander Fawcett, Dr Yahui Wang or Dr Tatsuya Mustuga, and is included in this thesis to provide a complete picture of the work.

2.1. Introduction

2.1.1. Applications and synthesis of α-amino boronates

In the early 1970s, boronic acids were found to inhibit enzymatic processes. More precisely, they showed promising activities against serine proteases, a class of enzymes involved in the cleavage of peptidic bonds. Since then, boron-containing molecules have become an important class of anticancer agents, as exemplified by two marketed drugs: bortezomib (192) and ixazomib (193). These protease inhibitors are prescribed to treat lymphoma and myeloma, respectively. Oncology is not the only field of medicinal chemistry in which boronic acid-derived approved drugs can be found (Chart 9). Vaborbactam (194) is used in combination with β-lactam-type antibiotics to treat bacterial infections due to its ability to inhibit bacterial β-lactamases. And tavaborole (195), an antifungal compound, has applications in the treatment of onychomycosis.

Chart 9. Four examples of boron-containing marketed drugs.

The typical mode of action by which boron-containing bioactive compounds inhibit enzymatic processes is via the formation of boronate complexes as described in Section 1.1.1. For example, in the case of serine proteases, the pendant hydroxyl group on the side chain of a serine
residue in the active site of the enzyme can interact with the sp²-hybridised boron centre of the drug to form a stable tetrahedral boronate complex which prevents the natural substrate of the protease entering the active site²²⁶ (Scheme 44).

Scheme 44. a. Cleavage of peptide bonds by serine proteases. b. Inhibition of serine proteases by boron-containing drug molecules.

Interestingly, the improved specificity of bortezomib and ixazomib was achieved by thorough design of their peptide chains.²²⁷,²²⁸ Based on this observation, methodologies providing access to α-amino boronic acids (or esters) appear to be valuable synthetic tools to develop potent and selective anticancer molecules.

Matteson contributed to this field in the early 1980s, reporting that α-amido-boronic esters could be synthesised by nucleophilic substitution of the chlorine atom in α-chloro-boronic esters, such as 204, with lithium hexamethyldisilazane, followed by cleavage of N–Si bonds and protection of the free amine with acetic anhydride²²⁹ (Scheme 45a). In a related application, Molander and co-workers described the alkylation of primary and secondary amines with potassium trifluoro(iodomethyl)borate (210)²³⁰ (Scheme 45b). More recently, Bode also reported the synthesis of α-amino trifluoroborate salts from potassium acyltrifluoroborates (213). This reaction proceeds via the initial formation of trifluoroborate-iminium zwitter ions (214) by condensation with secondary amines.²³¹ Then, a nucleophile attacks the electrophilic sp²-hybridised carbon centre to deliver the compounds of interest (Scheme 45c).
Another strategy, initially developed by Ellman and further explored by Zhihua, involved a copper-catalysed addition of a diboron reagent to chiral N-tert-butanesulfinyl imines (Scheme 46). The resulting boronic ester, generally obtained in almost perfect d.r. (>98:2), gives, after acid-mediated cleavage of the chiral auxiliary, the α-amino boronic ester in excellent e.r.

Other methodologies to access chiral α-amino boronic esters from achiral starting materials have also been reported. For instance, the addition of B₂pin₂ to aldimes 220 or 223, α-arylenamides 225 or β-amidoacrylates 227 can be rendered highly enantioselective when a chiral ligand is used in combination with copper, platinum or rhodium catalysts (Scheme 47). Alternatively, a copper-catalysed enantioselective hydroamination of vinyl boronates reported by Hirano and Miura afforded a range of α-amino boronates in good to moderate yields and high e.r.
2.1.2. Development of a new decarboxylative borylation methodology

In 2016, Baran and co-workers reported that alkyl carboxylic acids—activated as their corresponding tetrachloro-\(N\)-hydroxyphthalimide redox-active esters—\(^{246-250}\) and aryl boronic acids could be engaged in a nickel-catalysed alkyl--aryl cross-coupling.\(^{251}\) The substrate scope was found to be broad, including primary and secondary carboxylic acids, and substituted (hetero)aromatic boronic acids. In the proposed mechanism (Scheme 48), bipyridine--nickel(I) complex \(229\) undergoes transmetalation with aryl boronic acid \(230\) in the presence of triethylamine and water to generate complex \(232\). This species reduces activated ester \(233\), through single-electron...
transfer (SET), which then undergoes a radical cascade leading to the decarboxylation event and, eventually, to the formation of alkyl radical 236. This radical adds to positively-charged nickel(II) complex 235 to afford a nickel(III) centre which, upon a reductive elimination process, is reduced to nickel(I) and delivers the cross-coupled product 239.

Scheme 48. Proposed mechanism of Baran’s nickel-catalysed cross-coupling of redox-active esters with boronic acids. Brackets have been omitted for clarity.

Inspired by this interesting study, one could envisage an analogous mechanism in which the aryl boronic acid coupling partner could be replaced with a diboron reagent (B₂(OR)₂) to synthesise alkyl boronic esters. Such a two-step methodology (i.e., activation of the carboxylic acid substrate, followed by borylation of the corresponding activated ester) would be described as a net decarboxylative borylation process. To test this hypothesis, an initial screening of reaction conditions involving model compound 249 and a variety of diboron sources, nickel catalysts, ligands, organic and inorganic bases, solvents and temperatures was conducted.† Unfortunately, no desired product was observed under these different sets of conditions.

Another strategy was then explored in which a diboron reagent is activated by complexation to a nucleophile or a Lewis base to generate an electron-rich boronate complex prone to oxidation. This species would transfer an electron to a redox-active ester, thus enhancing the decarboxylation process. The resulting alkyl radical would then recombine with a stabilised boryl radical (or with another molecule of activated diboron reagent) to afford the desired alkyl boronic ester. The key redox step would be facilitated by light irradiation. Indeed, N-phthalimide esters are known to easily undergo single electron transfers in their photoexcited state, with a redox potential of +1.6 V vs SCE. For example, Fu and co-workers used these activated esters...
to oxidise thiolate anions (243) in the presence of cesium carbonate, under visible-light irradiation, in the absence of a photocatalyst (Scheme 49).

Scheme 49. Proposed mechanism of Fu’s decarboxylative arylthiation reaction.

A second screening of conditions was carried out by Dr. Alexander Fawcett according to this strategy. Model compound 249 was mixed with various boron sources (1.00 equiv.) and cesium carbonate (1.50 equiv.) in N,N-dimethylformamide (DMF) under blue light irradiation at room temperature. After 14 hours, pinacol and triethylamine were added to form a more stable pinacol boronic ester before GC–FID analysis. Pleasingly, desired boronic ester 250 was formed in 8% yield when bis(catecholato)diboron (B$_2$cat$_2$) was used as the boron source. Further optimisation screening† showed that cesium carbonate was inhibiting the transformation. In fact, when the reaction was conducted in the absence of this inorganic base, the desired product was formed in 69% yield. This observation quickly led to the discovery of optimised conditions (Scheme 50) which, after isolation by column chromatography, gave pinacol boronic ester 250 in 87% yield. Interestingly, the reaction only took place when amide- or urea-based solvents, such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N,N’-dimethylpropyleneurea (DMPU), tetramethylurea (TMU) or 1,3-dimethyl-2-imidazolidinone (DMI), were used. Degassing the solvent and purging the reaction vessel with nitrogen or argon was necessary to obtain high yields and reproducible results. Finally, light irradiation was found to be crucial for the reaction to reach acceptable levels of conversion.
Scheme 50. Optimised conditions for transition metal-free photoinduced decarboxylative borylation.†

In terms of substrate scope, this new methodology successfully converted a broad range of primary and secondary alkyl activated esters to the corresponding boronic esters in high yields. In addition, the reaction conditions showed excellent functional group tolerance, which allowed the transformation of carboxylic acid-containing natural products into their previously-unreported boronic ester analogues (Chart 10). Unfortunately, aryl, vinyl, allyl and flexible tertiary alkyl activated esters failed to deliver the decarboxylative borylation products. The reaction was also unsuccessful when the starting material bore a heteroatom in the α-position, making α-amino acids unsuitable substrates.

Chart 10. Selection of pinacol boronic esters synthesised according to Aggarwal’s decarboxylative borylation methodology.†

The mechanistic investigation started with the identification of the light-absorbing species in solution. A UV–visible spectroscopy study† revealed that isolated reagents in solution (DMAC) only absorbed in the UV region (303 nm for B₂cat₂ and 314 nm for activated ester 249). Knowing that blue LEDs used in the reaction emit between 452 and 475 nm, it seemed unlikely that any of the reagents absorbed light independently. However, when both reagents were mixed together in
DMAc according to the optimised reaction conditions (i.e., 0.125 M for B_2cat_2 and 0.10 M for activated ester 249), a bathochromic shift was observed in the absorption spectrum (Figure 35a), suggesting the presence of a new species in solution absorbing in the blue light domain. Interestingly, the intensity of this new absorption shoulder linearly increased with B_2cat_2 concentration (Figure 35b).

Further 11B NMR studies showed that B_2cat_2 gave a single signal at 29.7 ppm in dichloromethane. Interestingly however, in DMAc, this diboron reagent gave two different signals, at 25.7 and 13.8 ppm (Figure 36). This observation indicated that, in amide-based solvents, B_2cat_2 existed in an equilibrium between a non-coordinated form (free B_2cat_2) and a solvent-complexed form (DMAc–B_2cat_2 adduct). When activated ester 249 was added to a solution of B_2cat_2 in DMAc, the 11B NMR spectrum remained the same.

Based on these UV–visible and NMR spectroscopy experiments, it has been suggested that a blue light-absorbing π-stacking electron donor–acceptor (EDA) complex was formed between the electron-deficient phthalimide aromatic ring of activated esters and electron-rich...
catechol aromatic ring of $B_2\text{cat}_2$ when both species are mixed in DMAc (Scheme 51). After absorbing a photon, excited EDA complex 264 undergoes intra-complex electron transfer from a catechol moiety to the phthalimide ring. After diffusive separation of both charged radical species, compound 265 fragments to afford phthalimide by-product 266, carbon dioxide and alkyl radical 236. In parallel, the B–B bond in radical 271 is cleaved to generate stabilised boryl radical 268 and positively-charged DMAc adduct 272, which can eventually recombine with phthalimide by-product 266 to give compound 270. Alkyl radical 236 then reacts with $B_2\text{cat}_2$266 to provide desired alkyl boronic ester 267 and another stabilised boryl radical 268. This highly reactive species can reduce a molecule of activated ester 240, thus initiating a chain reaction process.

Scheme 51. Proposed mechanism of Aggarwal’s decarboxylative borylation. Brackets have been omitted for clarity.

Evidence for a radical pathway was identified when substrates 273 and 274 were subjected to the reaction conditions (Scheme 52). In the case of 273, only linear boronic ester 253 could be observed and isolated after work-up, suggesting that the initially-generated radical intermediate underwent ring opening (rate constant $= 1.3 \times 10^8$ s$^{-1}$) before being trapped by the boron source. In
addition, activated ester 274, engaged as a single diastereoisomer (>95:5 d.r.), gave corresponding boronic ester 275 in only 57:43 d.r. This erosion of diastereopurity also suggested that the reaction proceeds though a radical pathway.

\[
\begin{align*}
\text{B}_{\text{cat}} & \quad 1.25 \text{ equiv.} \\
\text{DMAC, r.t.} & \quad \text{blue LEDs} \\
\text{then pinacol} & \quad 4.00 \text{ equiv.} \\
\text{Et}_{3}N & \quad 25.00 \text{ equiv.} \\
\text{DMAC, r.t.} & \quad (56\%) \\
\rightarrow \quad & \quad \text{Bpin} \\
\text{MeO}_{2}C & \quad \text{253}'
\end{align*}
\]

2731'

\[
\begin{align*}
\text{B}_{\text{cat}} & \quad 1.25 \text{ equiv.} \\
\text{DMAC, r.t.} & \quad \text{blue LEDs} \\
\text{then pinacol} & \quad 4.00 \text{ equiv.} \\
\text{Et}_{3}N & \quad 25.00 \text{ equiv.} \\
\text{DMAC, r.t.} & \quad (82\%) \\
\rightarrow \quad & \quad \text{Bpin} \\
\text{MeO}_{2}C & \quad \text{275}'
\end{align*}
\]

2741'

>95:5 d.r.

Scheme 52. Experimental proofs of a radical reaction pathway.†

2.1.3. Other decarboxylative borylation methodologies

A few other examples of decarboxylative borylation were reported in the literature shortly after submission of the manuscript describing Aggarwal’s methodology.267 Further investigations on nickel-catalysed cross-couplings led Baran and co-workers to discover a related procedure268 in which an \textit{in situ}-activated carboxylic acid (280) is reduced by a nickel(I)–bipyridine complex in the presence of a pre-activated boron source and magnesium bromide to afford alkyl radical 283 which, after recombination with the nickel centre and subsequent reductive elimination gives the desired pinacol boronic ester 285 (Scheme 53). The substrate scope was found to be very broad, for example, valuable \(\alpha \)-amino boronic esters could be accessed using this method. However, the borylation step involved the use of six different reagents (including sensitive methyl lithium), which must be mixed in different reaction vessels, sonication and transfer of suspensions from one flask to another. To improve the practicability of the method, Baran and co-workers reported a simpler copper-catalysed decarboxylative borylation reaction269 one year after their initial publication. This transformation follows the same reaction pathway as the nickel-catalysed method. However, \(\alpha \)-amino acids could not be converted to the corresponding \(\alpha \)-amino boronic esters using these conditions.
Scheme 53. Mechanism of nickel-catalysed ($M = Ni, R^2 = Me, X = Br$) and copper-catalysed ($M = Cu, R^2 = OH, X = Cl$) decarboxylative borylations. $Z = Cl$ or phthalimide anion 266. Brackets have been omitted for clarity.

A different approach involving the use of an iridium photocatalyst was developed by Li and co-workers270 (Scheme 54). Upon light irradiation, the catalyst reaches an excited state and can then transfer an electron to activated ester 240. After decarboxylation, alkyl radical 236 is trapped by the boron source to afford the desired product. The authors suggested that boryl radical 292 is able to reduce iridium(IV) to iridium(III), thus closing the catalytic cycle. Interestingly, no example of tertiary boronic ester or α-amino boronic ester was reported in this article and most of the final products were isolated as potassium trifluoroborate salts.

Scheme 54. Proposed mechanism of Li’s decarboxylative borylation. Brackets have been omitted for clarity.
Additional complementary strategies for the decarboxylative borylation of aryl carboxylic acids were also disclosed. A first report by Glorius and co-workers271 showed that aryl activated esters undergo decarboxylation under purple light irradiation in the presence of a boron source, pyridine and cesium carbonate in ethyl acetate (Scheme 55a). Fu and co-workers272 also described an analogous thermal process involving aryl activated esters, a boron source and a catalytic amount of tert-butyl isonicotinate ester at 110 °C (Scheme 55b). These methodologies could not be used to convert alkyl carboxylic acids into alkyl boronic esters.

![Scheme 55. a. Proposed mechanism of Glorius’ decarboxylative borylation. b. Proposed mechanism of Fu’s decarboxylative borylation. Brackets have been omitted for clarity.](image)

2.1.4. Research proposal

The first objective of this project was to improve the substrate scope of the decarboxylative borylation methodology developed in the Aggarwal lab and this was achieved before its publication.2 As the main idea of this research program was to provide a new synthetic tool to be used in medicinal chemistry, it was necessary to include substrates containing some structural motifs commonly encountered in drug-like molecules. In addition, a few more examples of natural products had to be tested under the reaction conditions, notably to test the functional group tolerance of the method and to prove that it could be used in a late-stage functionalisation.
The second task, also completed before publication, was to perform more experiments to confirm the postulated radical mechanism. Usual radical trap experiments or radical cyclisation experiments were investigated to obtain additional evidences in favour of a radical pathway.

Finally, the ultimate ambition of applying this new methodology to \(\alpha \)-amino acids will be reconsidered. Two issues needed to be addressed here: first, the purification procedure had to be optimised to isolate amino boronic esters as pure compounds; then, new conditions allowing for the decarboxylative borylation of proteogenic amino acids had to be discovered through optimisation studies.

2.2. Results and discussion

2.2.1. Improvement of the substrate scope

To prove the general applicability of this new methodology, a broader substrate scope was explored. More precisely, some medicinal chemistry-type building blocks such as fluorine-substituted cyclohexanes, phenylcyclopropanes and pyridine derivatives were tested under the reaction conditions (Scheme 56). Carboxylic acids 304 and 307 were successfully activated and converted to the corresponding boronic esters 306 and 309 in 66% and 60% yield, respectively.

![Scheme 56](image)

Scheme 56. Photoinduced decarboxylative borylation applied to medicinal chemistry-type building blocks. (a) \(N \)-hydroxyphthalimide 1.00 equiv., DIC 1.00 equiv., DMAP 0.10 equiv., \(\text{CH}_2\text{Cl}_2 \), r.t.; (b) \(\text{B}_2\text{cat} \text{e} \) 1.25 equiv., DMAc, blue LEDs, then pinacol 4.00 equiv., \(\text{Et}_3\text{N} \) 25.00 equiv., r.t.; (c) \(N \)-hydroxyphthalimide 1.00 equiv., DCC 1.00 equiv., THF, r.t.
Interestingly, boronic ester 309 was obtained in a 98:2 d.r. This result suggested that the trapping of the cyclopropyl radical was very sensitive to steric hindrance. Pyridine derivative 310 was activated using slightly different activation conditions. DCC (dicyclohexylcarbodiimide) coupling reagent was employed instead of DIC to circumvent previously observed purification issues. Subsequent borylation step gave the desired boronic ester 312 in 42% NMR yield. Unfortunately, this molecule was highly unstable on silica gel and decomposed upon purification, resulting in a 16% isolated yield.

To expand the scope even more, natural products such as arachidonic acid, succinic acid, lithocholic acid or penicillin G were activated and subjected to the optimised conditions (Scheme 57). Pleasingly, boronic ester 315 was isolated in 58% yield. As predicted by Baldwin’s rules, 4-exo-trig or 5-endo-trig intra-molecular cyclisations were not observed. Succinic acid gave bis(boronic ester) 318 in 41% yield, showing that the reaction could occur twice on the same substrate molecule.

![Scheme 57. Photoinduced decarboxylative borylation applied to natural products. (a) N-hydroxyphthalimide 1.00 equiv., DIC 1.00 equiv., DMAP 0.10 equiv., CH₂Cl₂, r.t.; (b) B₂cat: 1.25 equiv., DMAc, blue LEDs, then pinacol 4.00 equiv., Et₃N 25.00 equiv., r.t.; (c) N-hydroxyphthalimide 2.00 equiv., DIC 2.00 equiv., DMAP 0.20 equiv., CH₂Cl₂, r.t.; (d) B₂cat: 5.50 equiv., DMAc, blue LEDs, then pinacol 8.00 equiv., Et₃N 25.00 equiv., r.t.](image)

2.2.2. Unsuccessful substrates

Unfortunately, activated penicillin G 326 decomposed under the reaction conditions (Scheme 58). Presumably, generating a radical next to a strained system (β-lactam) and in β-position with
respect to the sulphur atom led to an intramolecular side-reaction pathway which degraded the molecule before the boron trapping step.

Scheme 58. Unsuccessful decarboxylative borylation of penicillin G. (a) N-hydroxyphthalimide 1.00 equiv., DCC 1.00 equiv., THF, r.t.; (b) B$_2$cat$_2$ 1.25 equiv., DMAc, blue LEDs, then pinacol 4.00 equiv., Et$_3$N 25.00 equiv., r.t.

Penicillin G was not the only substrate which could not be converted to the desired product. Although benzylic starting materials 329 and 332 were fully consumed, no corresponding boronic esters could be identified after 14 hours of reaction (Scheme 59).

Scheme 59. Unsuccessful substrates. (a) N-hydroxyphthalimide 1.00 equiv., DIC 1.00 equiv., DMAP 0.10 equiv., CH$_2$Cl$_2$, r.t.; (b) B$_2$cat$_2$ 1.25 equiv., DMAc, blue LEDs, then pinacol 4.00 equiv., Et$_3$N 25.00 equiv., r.t.; (c) oxalyl chloride 1.10 equiv., DMF cat., CH$_2$Cl$_2$, 0 °C then N-hydroxyphthalimide 1.00 equiv., DIPEA 1.50 equiv., CH$_2$Cl$_2$, 0 °C to r.t.; (d) N-hydroxyphthalimide 1.00 equiv., DIPEA 1.00 equiv., CH$_2$Cl$_2$, 0 °C to r.t.

An explanation might be that, in both cases, the intermediate benzylic radical species had been oxidised to the benzylic carbocation before being trapped by the boron source. The nature of the oxidant remains unknown. Similarly, the radical intermediate derived from the decarboxylation
of activated ester 335 could be too unstable to be trapped or maybe the desired product itself might decompose under the reaction conditions.

2.2.3. Optimisation study on cyclopropane derivatives

Considering all the unsuccessful examples, another optimisation study was conducted on phenylcyclopropane derivative 308. Its average yield of 60% obtained under standard conditions seemed to be a good starting point to observe substantial changes in reaction outcome. Phthalimide substitution, boron sources, light sources, solvents, concentrations and transesterification conditions were investigated (Table 6).

![Diagram of compounds 308 and 309](image)

<table>
<thead>
<tr>
<th>X</th>
<th>Boron source</th>
<th>Light source</th>
<th>Solv.</th>
<th>Conc.</th>
<th>Transesterification conditions</th>
<th>Isolated yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>B₂cat₂ 1.25 equiv.</td>
<td>blue LEDs</td>
<td>DMAc</td>
<td>0.10 M</td>
<td>pinacol 4.00 equiv., Et₃N 25.00 equiv., 1.5 h, r.t.</td>
<td>60%</td>
</tr>
<tr>
<td>H</td>
<td>B₂cat₂ 1.50 equiv.</td>
<td>blue LEDs</td>
<td>DMAc</td>
<td>0.10 M</td>
<td>pinacol 4.00 equiv., Et₃N 25.00 equiv., 1.5 h, r.t.</td>
<td>28%</td>
</tr>
<tr>
<td>H</td>
<td>B₂cat₂ 1.00 equiv.</td>
<td>blue LEDs</td>
<td>DMAc</td>
<td>0.10 M</td>
<td>pinacol 4.00 equiv., Et₃N 25.00 equiv., 1.5 h, r.t.</td>
<td>38%</td>
</tr>
<tr>
<td>H</td>
<td>B₂cat₂ 0.50 equiv., B₂(OH)₄ 1.00 equiv.</td>
<td>blue LEDs</td>
<td>DMAc</td>
<td>0.10 M</td>
<td>pinacol 4.00 equiv., Et₃N 25.00 equiv., 1.5 h, r.t.</td>
<td>41%</td>
</tr>
<tr>
<td>H</td>
<td>B₂cat₂ 1.25 equiv.</td>
<td>blue LEDs</td>
<td>DMAc</td>
<td>0.20 M</td>
<td>pinacol 4.00 equiv., Et₃N 25.00 equiv., 1.5 h, r.t.</td>
<td>47%</td>
</tr>
<tr>
<td>H</td>
<td>B₂cat₂ 1.25 equiv.</td>
<td>blue LEDs</td>
<td>DMAc</td>
<td>0.05 M</td>
<td>pinacol 4.00 equiv., Et₃N 25.00 equiv., 1.5 h, r.t.</td>
<td>50%</td>
</tr>
<tr>
<td>H</td>
<td>B₂cat₂ 1.25 equiv.</td>
<td>blue LEDs</td>
<td>DMF</td>
<td>0.10 M</td>
<td>pinacol 4.00 equiv., Et₃N 25.00 equiv., 1.5 h, r.t.</td>
<td>44%</td>
</tr>
<tr>
<td>H</td>
<td>B₂cat₂ 1.25 equiv.</td>
<td>40W blue lamp</td>
<td>DMAc</td>
<td>0.10 M</td>
<td>pinacol 4.00 equiv., Et₃N 25.00 equiv., 1.5 h, r.t.</td>
<td>50%</td>
</tr>
<tr>
<td>H</td>
<td>B₂cat₂ 1.25 equiv.</td>
<td>white bulb</td>
<td>DMAc</td>
<td>0.10 M</td>
<td>pinacol 4.00 equiv., Et₃N 25.00 equiv., 1.5 h, r.t.</td>
<td>25%</td>
</tr>
<tr>
<td>Cl</td>
<td>B₂cat₂ 1.25 equiv.</td>
<td>blue LEDs</td>
<td>DMAc</td>
<td>0.10 M</td>
<td>pinacol 4.00 equiv., Et₃N 25.00 equiv., 1.5 h, r.t.</td>
<td>25%</td>
</tr>
<tr>
<td>H</td>
<td>B₂cat₂ 1.25 equiv.</td>
<td>blue LEDs</td>
<td>DMAc</td>
<td>0.10 M</td>
<td>pinacol 4.00 equiv., Et₃N 25.00 equiv., 3.0 h, r.t.</td>
<td>57%</td>
</tr>
<tr>
<td>H</td>
<td>B₂cat₂ 1.25 equiv.</td>
<td>blue LEDs</td>
<td>DMAc</td>
<td>0.10 M</td>
<td>pinacol 4.00 equiv., AcOH 4.00 equiv., 4.0 h, r.t.</td>
<td>47%</td>
</tr>
</tbody>
</table>

Table 6. Second optimisation study using activated ester 308 as a model substrate.
Unfortunately, none of the attempted modifications afforded the desired boronic ester in better yield (i.e., greater than 60%). Nevertheless, this second optimisation table confirmed that the conditions used to build up the substrate scope were the optimal conditions. At that point, the remaining task was to provide experimental evidences to validate the proposed reaction mechanism.

2.2.4. Further mechanistic investigations

In terms of mechanism elucidation, an additional experiment was carried out to prove the postulated radical pathway. Carboxylic acid 338, bearing a terminal C=C double bond, was activated and subjected to the optimised borylation conditions. The presence of cyclized product 341b in the resulting mixture confirmed the hypothesis of a radical pathway, with the \(5\text{-exo-trig}\) cyclisation (rate constant = \(1.0 \times 10^5 \text{ s}^{-1}\)) occurring rapidly after the formation of intermediate radical 340 before trapping with boron (Scheme 60).

![Scheme 60. Radical cyclisation experiment. (a) N-hydroxyphthalimide 1.00 equiv., DIC 1.00 equiv., DMAP 0.10 equiv., CH\(_2\)Cl\(_2\), r.t.; (b) B\(_2\)cat\(_2\) 1.25 equiv., DMAc (0.10 M), blue LEDs, then pinacol 4.00 equiv., Et\(_3\)N 25.00 equiv., r.t.](image)

This experiment was repeated at different concentrations (from 0.01 M to 1.00 M). It clearly appeared that the cyclisation reaction was favoured at lower concentrations (Table 7). This result was in line with an outer-sphere trapping of the alkyl radical with the boron source. Presumably, the diboron molecule responsible for the reduction of the activated ester (with subsequent fragmentation and decarboxylation) was not the same as the diboron species which trapped radical intermediate 340. This could be indicative of a radical chain reaction.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>341a</th>
<th>341b</th>
<th>Ratio 341a:341b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 M</td>
<td>36.5%</td>
<td>6.3%</td>
<td>5:1</td>
</tr>
<tr>
<td>0.50 M</td>
<td>41.1%</td>
<td>9.1%</td>
<td>5:1</td>
</tr>
<tr>
<td>0.20 M</td>
<td>48.6%</td>
<td>20.3%</td>
<td>5:1</td>
</tr>
<tr>
<td>0.01 M</td>
<td>34.3%</td>
<td>48.8%</td>
<td>4:1</td>
</tr>
</tbody>
</table>

![Table 7. Effect of the concentration on a radical cyclisation reaction.†](image)
2.2.5. Decarboxylative borylation of proline

As mentioned above, the optimised reaction conditions developed in the Aggarwal lab failed to afford \(\alpha \)-amino boronic esters. Considering the value of these building blocks (for example, in medicinal chemistry\(^{223-225} \)), this limitation had to be addressed. To solve this issue, 22 sets of reaction conditions were screened, using proline derivative (S)-342 as a model substrate. Yields were determined by calibrated GC–FID with trimethoxybenzene as the internal standard.

![Scheme 61](image)

Scheme 61. a. Optimised conditions\(^1\) for the decarboxylative borylation of proline-derived activated ester (S)-342. b. Proposed reaction mechanism using 4-methoxypyridine. B(OH)\(_2\) = B(OMe)\(_2\) or Bcat. Brackets have been omitted for clarity.

The best conditions (Scheme 61a) involved a mixture of two different boron sources (B\(_2\)cat\(_2\), 0.50 equiv. and B\(_2\)(OH)\(_4\), 1.00 equiv.) and a Lewis base, 4-methoxypyridine (4-MeOPy, 2.00 equiv.), which presumably formed a complex with either diboron species and enhanced the
reaction (Scheme 61b). These conditions did not require any light irradiation to deliver the desired boronic ester.

Despite a GC-yield of 82%,† boronic ester 343 could not be separated from other reaction by-products, such as B₂pin₂ or phthalimide. A screening of purification conditions was conducted to find the best method to isolate the compound. Two column chromatography steps on deactivated silica gel with two different eluent systems were necessary to obtain it pure. However, due to the instability of compound 343 on silica gel, the isolated yield dropped to 41%.

Scheme 62. Decarboxylative borylation of glycine and leucine derivatives 353 and (S)-356 under new optimised conditions. (a) N-Hydroxyphthalimide 1.00 equiv., DCC 1.00 equiv., THF, r.t.; (b) B₂cat₂ 0.50 equiv., B₂(OH)₂ 1.00 equiv., 4-MeOPy 2.00 equiv., DMAc, dark, then pinacol 4.00 equiv., AcOH 4.00 equiv., r.t.

Other amino acids were then activated and tested under these new reaction and purification conditions (Scheme 62). Glycine derivative 353 gave a promising spot by TLC, but the product could not be separated from impurities. Unfortunately, when the same conditions were applied to other amino acids, no desired product was observed. For example, leucine derivative (S)-356 did not afford corresponding boronic ester 357 and was mostly recovered after work-up.

2.2.6. Effect of N–H bonds

The main difference between compound (S)-342 and other Boc-protected amino acids is the absence of free N–H bond in the proline derivative. One could test whether a free N–H bond was inhibiting the reaction pathway by spiking the reaction mixture with an additive bearing a free N–H bond. A selection of protected benzylamine derivatives were synthesised (Chart 11) and engaged into decarboxylative borylation reactions. By screening different protecting groups, this study also aimed to identify the best option to protect the amino acid substrates.
Chart 11. Additives 358–363. Conditions: (a) BnNH$_2$ 1.00 equiv., TrCl 1.10 equiv., DMAP 0.10 equiv., CH$_2$Cl$_2$, r.t., (49%); (b) BnNH$_2$ 1.00 equiv., CbzCl 1.20 equiv., I$_2$ 0.02 equiv., MeOH, r.t., (48%); (c) BnNH$_2$ 1.00 equiv., Boc$_2$O 1.10 equiv., EtOH, 30 °C, (88%); (d) BnNH$_2$ 1.00 equiv., ClCO$_2$C(CH$_3$)$_2$CCl$_3$ 1.00 equiv., Et$_3$N 2.00 equiv., CH$_2$Cl$_2$, r.t., (30%); (e) BnNH$_2$ 1.00 equiv., Ac$_2$O 1.00 equiv., Et$_3$N 2.00 equiv., DMAP 0.10 equiv., CH$_2$Cl$_2$, r.t., (74%); (f) Commercially available.

These spiking experiments (Table 8) indicated that the reaction was not affected by the presence of additives bearing a free N–H bond. More precisely, no intermolecular inhibition of the reaction was observed when mono-substituted carbamates, amides or di-substituted amines were added to the reaction medium.

<table>
<thead>
<tr>
<th>Additive</th>
<th>GC Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>73%</td>
</tr>
<tr>
<td>358</td>
<td>68%</td>
</tr>
<tr>
<td>359</td>
<td>75%</td>
</tr>
<tr>
<td>360</td>
<td>71%</td>
</tr>
<tr>
<td>361</td>
<td>76%</td>
</tr>
<tr>
<td>362</td>
<td>75%</td>
</tr>
<tr>
<td>363</td>
<td>59%</td>
</tr>
</tbody>
</table>

Table 8. Spiking experiments. The crude mixtures were analysed by GC directly after work-up. Activated ester 249 and boronic ester 250 were previously synthesised, isolated and characterised by Dr. Alexander Fawcett.

An additional experiment was carried out to determine whether there was an intramolecular inhibition of the reaction by subjecting fully substituted carbamate (S)-366 to the second-generation conditions (Scheme 63). Unfortunately, no desired product was observed and most of the starting activated ester was recovered. These results showed that the free N–H bond in Boc-protected amino acids was not the inhibiting factor and suggested that another property of amino acids prevented the reaction from occurring.
Scheme 63. Disubstituted carbamate (S)-366 did not undergo decarboxylative borylation under second-generation reaction conditions. NHPI = N-hydroxyphthalimide.

2.2.7. Effect of redox potentials

Based on the proposed radical mechanism (Scheme 51), one would suggest that amino acids failed to provide the desired boronic esters because a reaction component (either starting material or by-product) could oxidise the intermediate radical species before it was trapped by the boron source. One way to face this issue would be to modify the redox potential of the starting material or postulated by-product 270. Hence, Boc-protected alanine (S)-370 was activated by a coupling reaction with methyl-substituted phthalimide 369, easily synthesised in one step273 from methyl-substituted phthalic anhydride 368, and subjected to the optimised conditions (Scheme 64). A control experiment was performed in parallel, using compound 373.

Unfortunately, in both cases, about 90% of the intermediate activated ester ((S)-371 or 373) was recovered by column chromatography. The control experiment showed that the α-nitrogen of alanine was not the cause of failure. Presumably, the presence of a methyl group on the phthalimide moiety could lead to an inefficient formation of the light-absorbing complex formation due to steric hindrance or could change the redox potential of the activated ester itself, thus preventing the decarboxylation step from taking place.

An alternative strategy was envisaged to change the redox potential of the radical intermediate. Indeed, having a second electron-withdrawing group (i.e., Boc group) attached to the nitrogen atom would make the reactive radical less prone to oxidation. Therefore, compounds 377 and (S)-382 were synthesised (Scheme 65) and tested under the reaction conditions.
Scheme 64. Attempt to change the redox potential of the phthalimide derivatives by using methyl-substituted N-hydroxyphthalimide 369 as an activating group. (a) 369 1.00 equiv., DIC 1.00 equiv., DMAP 0.10 equiv., CH₂Cl₂, r.t.; (b) B:\cat\ 1.25 equiv., DMAc, blue LEDs, then pinacol 4.00 equiv., Et₃N 25.00 equiv., r.t.; (c) B:\cat\ 0.50 equiv., B₂(OH)₄ 1.00 equiv., 4-MeOPy 2.00 equiv., DMAc, dark, then pinacol 4.00 equiv., AcOH 4.00 equiv., r.t.

After work-up, TLC revealed that starting materials were still present. Unfortunately, no desired product could be isolated in both cases. At that point, it seemed sensible to use a different methodology to synthesise an α-amino boronate, which could then serve as a reference for optimisation studies.

Scheme 65. Preparation of doubly Boc-protected activated esters 377 and (S)-382. (a) B:\cat\ 1.25 equiv., DMAc, blue LEDs, then pinacol 4.00 equiv., Et₃N 25.00 equiv., r.t.; (c) B:\cat\ 0.50 equiv., B₂(OH)₄ 1.00 equiv., 4-MeOPy 2.00 equiv., DMAc, dark, then pinacol 4.00 equiv., AcOH 4.00 equiv., r.t. NHPI = N-hydroxyphthalimide.
2.2.8. Optimisation study on activated glycine

Inspired by Matteson’s seminal investigations (Scheme 45a), Ley described an easy methodology to access \(\alpha\)-amino boronate 354 from boronic ester 385. In this one-pot reaction (Scheme 66), NaHMDS acted as a nucleophile to displace the chloride. Then, addition of methanol cleaved both N–Si bonds to release a free \(\alpha\)-amino boronate. Finally, treatment with Boc\(_2\)O yielded the desired product which could be isolated by column chromatography. Pleasingly, the desired compound could be synthesised according to this methodology and subjected to gas chromatography.

![Scheme 66](image.png)

Scheme 66. Synthesis of \(\alpha\)-amino boronic ester 354 according to Ley’s methodology to serve as a GC reference in subsequent optimisation study.

With the reference compound in hand, the decarboxylative borylation of activated ester 353 was investigated. Three parameters were screened, including boron source, additive and transesterification conditions (Table 9).

<table>
<thead>
<tr>
<th>Boron source</th>
<th>Additive (2.00 equiv.)</th>
<th>Transesterification conditions</th>
<th>GC-yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(_2)cat(_2) 0.50 equiv., B(_2)(OH)(_4) 1.00 equiv.</td>
<td>4-MeOPy</td>
<td>pinacol 4.00 equiv., AcOH 4.00 equiv., 4 h, r.t.</td>
<td>67%</td>
</tr>
<tr>
<td>B(_2)cat(_2) 0.50 equiv., B(_2)(OH)(_4) 1.00 equiv.</td>
<td>4-MeOPy</td>
<td>pinacol 4.00 equiv., AcOH 4.00 equiv., 4 h, r.t.</td>
<td>46%</td>
</tr>
<tr>
<td>B(_2)cat(_2) 1.25 equiv.</td>
<td>4-MeOPy</td>
<td>pinacol 4.00 equiv., AcOH 4.00 equiv., 4 h, r.t.</td>
<td>20%</td>
</tr>
<tr>
<td>B(_2)pin(_2) 1.25 equiv.</td>
<td>4-MeOPy</td>
<td>pinacol 4.00 equiv., AcOH 4.00 equiv., 4 h, r.t.</td>
<td>7%</td>
</tr>
<tr>
<td>B(_2)(OH)(_4) 1.25 equiv.</td>
<td>4-MeOPy</td>
<td>pinacol 4.00 equiv., AcOH 4.00 equiv., 4 h, r.t.</td>
<td>25%</td>
</tr>
<tr>
<td>B(_2)(OH)(_4) 1.50 equiv.</td>
<td>4-MeOPy</td>
<td>pinacol 4.00 equiv., AcOH 4.00 equiv., 4 h, r.t.</td>
<td>29%</td>
</tr>
<tr>
<td>B(_2)(OH)(_4) 2.00 equiv.</td>
<td>4-MeOPy</td>
<td>pinacol 4.00 equiv., AcOH 4.00 equiv., 4 h, r.t.</td>
<td>24%</td>
</tr>
<tr>
<td>B(_2)cat(_2) 0.50 equiv., B(_2)(OH)(_4) 1.00 equiv.</td>
<td>4-AcPy</td>
<td>pinacol 4.00 equiv., AcOH 4.00 equiv., 4 h, r.t.</td>
<td>9%</td>
</tr>
</tbody>
</table>
Table 9. Optimisation study using Boc-protected glycine derivative 353 as a model substrate. 4-MeOPy = 4-methoxypyridine; 4-AcPy = 4-acetylpyridine; 4-tert-BuPy = 4-tert-butylpyridine; 4-NCPy = 4-cyanopyridine; 4-MePy = 4-methylpyridine.

The best conditions matched those discovered by Dr. Alexander Fawcett after his first optimisation study on proline derivative (S)-342 and gave the desired boronic ester 354 in 67% GC-yield (Scheme 67). Unfortunately, as explained in Section 2.2.5., in the case of glycine, the desired product could not be separated from the reaction by-products, even when the optimised purification procedure was used. Sadly, no new spot was observed by TLC when leucine derivative (S)-356 was subjected to the optimised reaction conditions.

Scheme 67. Optimised conditions for the decarboxylative borylation of Boc-protected glycine 353 failed to convert Boc-protected valine (S)-356.

2.2.9. Hypervalent iodine derivatives

In 2015, Chen and co-workers published an interesting study about the ability of hypervalent iodine reagents to enable chemoselective decarboxylative alkenylation in the presence of a photocatalyst. They proposed a mechanism (Scheme 68) in which a ruthenium(II) photocatalyst was sequentially excited with light and oxidised to ruthenium(III) by an O-centred radical, derived from the radical decomposition of hypervalent iodine species 387 or 388. The catalyst could then
be reduced with trifluoroborate salt 389 or boronic acid 390 to complete the catalytic cycle and generate alkyl radical 392. This highly reactive species added to in situ-activated ester 388 to give benzylic radical 394 (R’ = aryl). At this stage, a radical fragmentation occurred to deliver alkene 395 with concomitant release of carbon dioxide and O-centred radical 396.

Inspired by this methodology, a reaction mechanism for the hypervalent iodine-mediated decarboxylative borylation was proposed (Scheme 69). Carboxylic acid 399 would be activated in situ by ligand exchange at the hypervalent iodine centre. The corresponding activated ester would form a light-absorbing complex 400 in the presence of B2cat2 and DMAc. Under light irradiation, an electron could be transferred from the boron source to the activated ester to give putative radical intermediate 401. This unstable species would then undergo a radical fragmentation resulting in the reduction of the iodine centre with concomitant release of boron carboxylate by-product 403, carbon dioxide and alkyl radical 236. After that, a chain reaction mechanism would take place, in which radical 236 would be trapped by B2cat2 in the presence of DMAc to deliver the desired borylated compound 267 and a stabilised boryl radical 268. This radical could then add to another molecule of activated ester 402 to form unstable intermediate 401, which would fragment to generate alkyl radical 236 and propagate the chain mechanism.
Scheme 69. Proposed mechanism of decarboxylative borylation using hypervalent iodine reagent 387 as activating agent. Brackets have been omitted for clarity.

To test this hypothesis, a stoichiometric amount of hypervalent iodine derivative 387276 was added to a solution of B$_2$cat$_2$ and carboxylic acid (S)-370 or 307 in DMAC to trigger the decarboxylation event (Scheme 70). Interestingly, the order of introduction of the reagents was important. In fact, when compound 387 was mixed with B$_2$cat$_2$ in DMAC in the absence of carboxylic acid, the colourless solution rapidly turned black and released heat. However, in the present of a carboxylic acid, a yellow solution was formed and the resulting mixture could be irradiated with blue LEDs for 14 hours. Unfortunately, in both cases, TLC showed no desired product after work-up.
Scheme 70. a. Preparation of compound 387. b. Unsuccessful decarboxylative borylation reactions using 398 as activating agent.

Interestingly, Chen and co-workers managed to synthesise activated ester intermediate 388 by refluxing a mixture of carboxylic acid 386 and hypervalent iodine derivative 387 in xylenes at 70 °C under reduced pressure. Under these conditions, the equilibrium was shifted towards the formation of the product by constant removal of acetic acid from the reaction mixture. Similar conditions were applied to carboxylic acids 307 and 406 (Scheme 71). In the first case, pure compound 405 was obtained as a white solid after recrystallisation. However, the other substrates led to an inseparable mixture of starting materials and decomposition products. Intermediate 405 was then mixed with B_{2}CAT_{2} in DMAC and stirred overnight under blue light irradiation. TLC showed traces of product which, after chromatography, was obtained in only 2% yield.

Scheme 71. Activation of carboxylic acids 307 and 406 using hypervalent iodine reagent 397.
Boc-protected alanine and valine were subjected to the same activation conditions (Scheme 72) but the corresponding activated intermediates could not be isolated. An alternative route was attempted, which involved mixing the amino acid with hypervalent iodine derivative 412—easily made in one step from 2-iodobenzoic acid 404—in the presence of a base (Scheme 73). Unfortunately, the desired activated esters could not be formed under these conditions and this strategy was abandoned.

Scheme 72. Unsuccessful activation of Boc-protected alanine (S)-370 and valine (S)-409 using hypervalent iodine reagent 387.

2.2.10. Limited substrate scope

Despite repeated efforts, only α-amino boronate (S)-343 could be synthesised and isolated. An unidentified key feature of the pyrrolidine ring was crucial for the reaction to succeed. Based on this observation, some proline derivatives were synthesised and subjected to the second set of conditions developed by Dr. Alexander Fawcett to build a new substrate scope. Three substituted pyrrolidine rings (413, (S)-416 and 420), one bicyclic system (423) and one piperidine ring (426) were successfully activated (Scheme 74).
Scheme 74. Activation and decarboxylative borylation of proline derivatives. (a) N-hydroxyphthalimide 1.00 equiv., DIC 1.00 equiv., DMAP 0.10 equiv., CH₂Cl₂, r.t.; (b) B₂cat 0.50 equiv., B₂(OH)₄ 1.00 equiv., 4-MeOPy 2.00 equiv., DMAc, dark, r.t.

Surprisingly, none of the five substrates gave the corresponding boronic ester. Instead, complex mixtures were obtained when fluorinated analogues 414 and (S)-417 were used and starting activated esters were recovered in the case of compounds 421, 424 and 427. These results showed that the reaction was very sensitive to steric hindrance or the conformation of the 5-membered ring and, maybe, to electronic effects of the substituents.

2.3. Conclusion

The decarboxylative borylation of carboxylic acids has been investigated. The substrate scope of this new methodology was improved by including some medicinal chemistry-type examples, such as a fluorine-containing cyclohexane, a pyridine derivative and a substituted cyclopropane. Three additional natural products were successfully converted to the corresponding boronic esters. Key mechanistic experiments were conducted to prove the radical pathway and provide support for an outer sphere radical trapping process.

To improve the applicability of this methodology, a study on the decarboxylative borylation of amino acids was conducted. First, the reaction conditions were optimised on a proline derivative by Dr. Alexander Fawcett. Unfortunately, he could not separate the material from other by-products. A purification screening was performed to address this issue. With these new conditions in
hand, other activated amino acids were tested. However, most of them did not afford the desired product.

To face this problem, the effect of free N–H bonds on the reaction outcome was studied. Spiking experiments showed that the reaction was not affected by the presence of additives bearing free N–H bonds. Moreover, a fully protected alanine derivative could not be converted to the corresponding boronic ester. Therefore, the presence of a N–H bond was removed from the list of potential inhibiting factors. An investigation on redox potentials was carried out to determine whether changing the substitution pattern of the activated ester (either at the nitrogen atom or at the phthalimide moiety) could lead to an improvement. Unfortunately, doubly protected amino acids or methyl-substituted activated esters failed to deliver the desired boronic esters.

At this stage, another optimisation study on glycine revealed that this amino acid could also be converted to the desired product under the conditions developed earlier for proline. Yet, the corresponding boronic ester could not be separated from the reaction by-product. To overcome this problem, a different mode of activation was envisaged.

Inspired by the work of Chen and co-workers on hypervalent iodine-mediated decarboxylative alkenylation, different sets of conditions involving the use of hypervalent iodine derivatives were tested. Attempts to activate carboxylic acids in and ex situ showed that these species were very unstable and difficult to make. This strategy was abandoned after several unsuccessful results.

Finally, as proline seemed to be the only amino acid to be transformed into a boronic ester which could be successfully purified, a limited substrate scope composed of proline derivatives was subjected to the reaction conditions. Sadly, none of these examples gave the desired product. After these discouraging results, the project was abandoned.
EXPERIMENTAL SECTION

3.1. General experimental

3.1.1. Computation

Molecular mechanics calculations were performed using the MacroModel software package278 (version 9.9) accessed through the Maestro279 (version 9.2) program. All geometry optimisations, frequency calculations and NMR calculations were performed using the Gaussian 09 Software package.280 All molecular mechanics calculations were performed using the Unix computational resource of the School of Chemistry, University of Bristol. All DFT calculations were performed using either the Unix computational resource or the computational facilities of the advanced computing research centre at the University of Bristol (http://www.bris.ac.uk/acrc).

3.1.2. Solvents and reagents

All air- and water-sensitive reactions were carried out in flame-dried glassware under a nitrogen or argon atmosphere using standard Schlenk manifold technique. Anhydrous solvents were commercially supplied or provided and dried using a purification column composed of activated alumina and stored over thoroughly dried 3 Å molecular sieves by the communal stills of the School of Chemistry, University of Bristol.281 n-Butyl lithium [CAS: 109-72-8] was purchased from Acros (181271000) as a 1.60 M solution in n-hexane. s-Butyl lithium [CAS: 598-30-1] was purchased from Acros (187541000) as a 1.30 M solution in cyclohexane:n-hexane 98:2. tert-Butyl lithium [CAS: 594-19-4] was purchased from Sigma-Aldrich (186198) as a 1.70 M solution in n-pentane. (+)-Sparteine and (−)-sparteine were obtained from the commercially available sulphate pentahydrate salt (99%, Acros) and isolated according to literature procedure.282 The sparteine free base readily absorbs atmospheric carbon dioxide (CO$_2$) and so should be stored under argon/nitrogen at −20 °C in a sealed Schlenk-tube. The molarity of organolithium solutions was regularly determined by titration using N-benzyl benzamide as an indicator.283 B$_3$cat$_2$ [CAS: 13826-27-2] was purchased either from Sigma-Aldrich (473286) or Fluorochem (211650), and both yielded the same results (despite their appearances differing). We have noticed that different batches contain differing amounts of catechol, however this does not appear to affect the yield. Anhydrous N,N-dimethylacetamide [CAS: 127-19-5] was purchased from Sigma-Aldrich (271012).

All other reagents were purchased from various commercial sources and used as received or synthesised according to the procedures given.
3.1.3. Chromatography and data analysis

Analytical TLC was performed on aluminium backed silica plates (Merck, Silica Gel 60 F254, 0.25 mm). Compounds were visualised by fluorescence quenching or by staining the plates with either 5% solution of phosphomolybdic acid (H₃PMo₁₂O₄₀) in EtOH, KMnO₄, ninhydrin, or anisaldehyde followed by heating.

Flash column chromatography was performed on either silica gel (Merk, Silica Gel 60, 40–63 μm). All mixed solvent eluents are reported as v/v solutions.

¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra were recorded using JEOL ECS 300 MHz, JEOL ECS 400 MHz, Varian 400 MR or Varian VNMRS 500 MHz NMR spectrometers equipped with direct observe two-channel probes, or Bruker AVANCE III HD 500 MHz NMR spectrometer with 5 mm DCH ¹³C/H/D Cryo Probe. Chemical shifts (δ) are given in parts per million (ppm) and referenced to the residual protio-solvent resonances (Chloroform = [¹H] 7.26 ppm, [¹³C] 77.0 ppm; Dimethyl sulfoxide = [¹H] 2.50 ppm, [¹³C] 39.5 ppm; Toluene = [¹H] 2.09 ppm, [¹³C] 20.4 ppm). Coupling constants (J) are given in Hertz (Hz), rounded to the nearest 0.1 Hz. ¹H NMR spectra are reported as follows: δ (number of protons, multiplicity, coupling constants, assignment) ppm. Multiplicity is reported as follows: s = singlet, br. s = broad singlet, d = doublet, t = triplet, q = quartet, pent = pentet, sext = sextet, hept = heptet, m = multiplet, dd = doublet of doublet, etc. The abbreviation app. is added when apparent multiplicities and corresponding apparent coupling constants are reported. NMR assignments are made according to spin systems, using two-dimensional NMR spectroscopy (COSY, HSQC, HMBC), where appropriate, to assist the assignment. ¹¹B NMR spectra were measured using Norell S-200-QTZ quartz NMR tubes at 96 or 128 MHz with complete proton decoupling. ¹³C signals adjacent to boron are generally not observed due to quadrupolar relaxation.

High resolution mass spectra (HRMS) were recorded by the University of Bristol, School of Chemistry departmental mass spectrometry service using a Bruker Daltonics MicrOTOF II by Electrospray Ionisation (ESI) or on a VG Micromass Autospec (Triple-sector) by Electronic Impact (EI) or on a Bruker Daltonics UltrafleXtreme (MALDI).

IR spectra were recorded on a Perkin Elmer Spectrum One FT–IR as a thin film, if a liquid, or in the solid state, if solid. Only selected absorption maxima (νmax) are reported.

Melting points were recorded in degrees Celsius (°C) using a Kofler hot-stage microscope apparatus or a Stuart SMP30 melting point apparatus and are uncorrected.

Optical rotation ([α]D) was measured on a Bellingham and Stanley Ltd. ADP220 polarimeter at 589 nm (Na D-line) in a cell with a path length of 1 dm. Specific rotation values are given in ° cm⁻¹ g⁻¹ dm⁻¹.
Gas Chromatography (GC) was performed on an Agilent 7890A using an Agilent HP-5 column (15 m × 0.25 mm × 0.25 μm).

GC–MS was performed using an Agilent HP-5MS column (15 m × 0.250 mm), an Agilent 6890 GC, and Agilent 5973 MS system. Compounds were identified through extract ion chromatogram and molecular ion analysis. Method 70-1X: Inlet temperature 250 °C; Flow rate: 1.00 mL min⁻¹; hold at 70 °C for 0 min; ramp 20 °C min⁻¹ to 200 °C; ramp 45.0 °C min⁻¹ to 300 °C; hold at 300 °C for 2 min.

Chiral high-performance liquid chromatography (HPLC) separations were performed on an Agilent 1100 Series HPLC unit equipped with UV-vis diode-array detector monitored at 210.8 nm, using Daicel Chiralpak IA, IB or IC columns (4.6 × 250 mm², 5 μm) fitted with respective guards (4 × 10 mm²).

Supercritical fluid chromatography (SFC) was performed on a Thar SFC investigator using a Daicel Chiralpak IA, IB, IC columns or a Whelk-O1 column (4.6 × 250 mm², 5 μm).

UV-visible spectroscopy was performed using a Lambda 35 spectrometer with standard glass cells with a 1 cm path length at wavelengths 200–800 nm.

Single crystal X-ray diffraction experiments on C10, 154, 169, 175 and 186 were carried out at 100(2) K on a Bruker APEX II CCD diffractometer using Mo-Kα radiation (λ = 0.71073 Å). Single crystal X-ray diffraction experiments on 138 were carried out at 100(2) K on a Bruker Microstar rotating anode CCD diffractometer using Cu-Kα radiation (λ = 1.54184 Å). Intensities were integrated in SAINT and absorption corrections were based on equivalent reflections using SADABS. The structure was solved using either Superflip or SHELXT and refined by full matrix least squares against F² in SHELXL using Olex2. All of the non-hydrogen atoms were refined anisotropically, while all of the hydrogen atoms were located geometrically and refined using a riding model.

3.1.4. Naming of compounds

Compound names are those generated by ChemDraw Professional 16.0 software (PerkinElmer Informatics, Inc.), following the IUPAC nomenclature.

3.1.5. Photoreactor

Photoreactors comprised of a 5.0 m strip of Fluxia blue SMD3528 LEDs coiled around a glass crystallising dish. The average power output per LED was recorded at 3.05 mW on a Coherent
LabMax-TOP laser power meter equipped with a Coherent Power/Max PS10 sensor with a 10 mm diameter aperture, 10 mm from aperture. The emission spectra of the blue LEDs were recorded on an Ocean Optics HR4000CG-UV-NIR spectrometer. The spectrum was normalised to 1.0 at the maximum (450 nm).

Figure 37. Photoreactor setup and emission spectrum of LEDs.

3.2. Supplementary materials – Chapter 1

3.2.1. General procedures

General procedure 1 (GP1): A premixed aqueous solution of NaOH (2 M) and H₂O₂ (30%) (2:1, 6.00 mL) was added dropwise to a solution of the boronic ester (1.00 equiv.) in THF (4.00 mL) at 0 °C. The reaction mixture was vigorously stirred at room temperature for 4–16 h. The reaction mixture was diluted with water (10.00 mL) and Et₂O (10.00 mL). The layers were separated and the aqueous phase extracted with Et₂O (3 × 10.00 mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. Residual pinacol was sublimed under high vacuum for 18 h to give the desired product.

General procedure 2 (GP2): In a flame-dried Schlenk tube, stannane 93 (1.30 or 2.30 equiv.) was dissolved in anhydrous Et₂O (0.20 M) under an atmosphere of nitrogen. The reaction mixture was cooled to −78 °C (a white precipitate of stannane appeared) and a solution of n-BuLi (1.50–1.60 M in n-hexane, 1.30 or 2.30 equiv.) was added dropwise via syringe. After the addition, the reaction mixture was stirred at −78 °C for 1.5 h. A solution of the boronic ester (1.00 equiv.) in anhydrous Et₂O (0.20 M) was then added dropwise via syringe. The reaction mixture was stirred at −78 °C for 30 min. The acetone/dry ice bath was removed, and the reaction mixture was allowed to stir at room temperature for 1 h. The white suspension was filtered through silica (2 cm depth of wetted (Et₂O) silica, using a filter frit connected directly to a flame-dried receiving vessel). The filter was washed with Et₂O and the filtrate was concentrated under reduced pressure.
The crude boronic ester was analysed by GC chromatography and could be re-dissolved in anhydrous Et₂O (to make a 0.20 M solution) and used in further homologations or isolated and purified by flash column chromatography.

General procedure 3 (GP3): Part A: In a flame-dried Schlenk tube, the boronic ester (1.00 equiv.) and vinyl carbamate 15 (1.10 equiv.) were dissolved in anhydrous THF (0.15 M) at −78 °C under an atmosphere of nitrogen. A freshly prepared solution of LDA (0.86 M in THF, 1.10 equiv.) was added and the reaction mixture was stirred at the same temperature for 1 h. The acetone/dry ice bath was replaced with an acetonitrile/dry ice bath and the reaction mixture was stirred at −40 °C for 1 h. After cooling the reaction mixture back to −78 °C, a freshly prepared solution of iodine (1.10 equiv.) in MeOH (0.20 M) was added dropwise at via syringe. After the addition, the reaction mixture was allowed to stir at room temperature for 1 h. A saturated aqueous solution of NH₄Cl was added and the biphasic mixture was extracted 3 times with Et₂O. The organic layers were combined, washed with brine, dried over MgSO₄, filtered through silica (2 cm depth of dry silica, using a filter frit connected directly to a flame-dried receiving vessel), concentrated under reduced pressure and dried under high vacuum for (at least) 1 h. Part B: The dried crude residue was dissolved in anhydrous Et₂O (0.10 M) at −78 °C under an atmosphere of nitrogen. A freshly prepared solution of LDA (0.86 M in THF, 2.50 equiv.) was added and the mixture was allowed to stir at room temperature for 1 h. A saturated aqueous solution of NH₄Cl was added via syringe and the biphasic mixture was extracted 3 times with Et₂O. The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography to give the desired product(s).

General procedure 4 (GP4): In a flame-dried Schlenk tube, the alkyne (1.00 equiv.) and TIPSCl (1.10 equiv.) were dissolved in anhydrous THF (0.20 M) at −78 °C under an atmosphere of nitrogen. A freshly prepared solution of LDA (0.86 M in THF, 1.10 equiv.) was added and the mixture was stirred at the same temperature for 1 h. The white suspension was allowed to warm to room temperature and gently heated with a heat-gun (50 °C) until the white solid dissolved. The clear solution was stirred at room temperature for 16 h, quenched with a saturated aqueous solution of NH₄Cl and extracted 3 times with Et₂O. The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography to give the desired product.

General procedure 5 (GP5): In a Schlenk tube, the protected alkyne (1.00 equiv.) was dissolved in THF (0.20 M) at 0 °C under an atmosphere of nitrogen. A solution of TBAF (1.00 M in THF,
2.00 equiv.) was added via syringe and the mixture was stirred at room temperature for 2 h. A saturated aqueous solution of NH₄Cl was added and the biphasic mixture was extracted 3 times with Et₂O. The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography to give the desired product.

3.2.2. Experimental procedures and characterisation data

Vinyl diisopropylcarbamate (15)

In a flame-dried Schlenk tube, THF (12.00 mL) was cooled to −78 °C under an atmosphere of nitrogen. A solution of n-BuLi (1.60 M in n-hexane, 11.46 mL, 18.33 mmol, 1.50 equiv.) was added via syringe. After the addition, the acetone/dry ice bath was removed, and the reaction mixture was stirred at room temperature for 16 h. A solution of N,N-diisopropylcarbamoyl chloride (2.00 g, 12.22 mmol, 1.00 equiv.) in anhydrous DMPU (7.00 mL) was added via syringe and the reaction mixture was stirred at room temperature for 4 h. A saturated aqueous solution of NH₄Cl (20.00 mL) was added, followed by water (5.00 mL) and Et₂O (20.00 mL). The phases were separated, and the aqueous layer was extracted with Et₂O (3 × 20.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The orange residue was purified by flash column chromatography (n-pentane:Et₂O 95:5) to give carbamate 15 (1.34 g, 64%) as a colourless liquid.

TLC: \(R_f = 0.47 \) (n-pentane:Et₂O 90:10)

¹H NMR: (400 MHz, Chloroform-\(d\)) \(\delta \) 7.24 (1H, dd, \(J = 14.1, 6.3 \) Hz, H3), 4.75 (1H, dd, \(J = 14.1, 1.4 \) Hz, H1b), 4.41 (1H, dd, \(J = 6.3, 1.4 \) Hz, H1a), 4.04 (1H, br. s, H5), 3.84 (1H, br. s, H5'), 1.24 (12H, d, \(J = 6.9 \) Hz, H6 & H6') ppm

¹³C NMR: (101 MHz, Chloroform-\(d\)) \(\delta \) 152.9 (C4), 142.5 (C3), 94.7 (C2), 46.8 (C5), 45.9 (C5'), 21.7 (C6), 20.5 (C6') ppm

Spectral data were in accordance with that reported in the literature.²⁰⁷
Ethyl 2,4,6-triisopropylbenzoate (91)

In a 2-L round-bottomed flask, 2,4,6-triisopropylbenzoic acid (40.00 g, 161.10 mmol, 1.00 equiv.) and 1-bromoethane (60.10 mL, 805.30 mmol, 5.00 equiv.) were dissolved in CHCl₃ (800.00 mL) at room temperature. A solution of NaOH (20.00 g, 499.30 mmol, 3.10 equiv.) and n-Bu₄N(HSO₄) (4.40 g, 12.90 mmol, 0.08 equiv.) in water (640.00 mL) was added and the biphasic mixture was vigorously stirred at room temperature for 18 h. The phases were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 × 200.00 mL). The organic phases were combined, washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The crude product was suspended in n-pentane (120.00 mL) and the insoluble salts were filtered off. The filtrate was concentrated under reduced pressure to give benzoate 91 (44.50 g, 99%) as a colourless liquid.

TLC:

\[R_f = 0.32 \text{ (n-pentane:EtOAc 97:3)} \]

\(^1\)H NMR (400 MHz, Chloroform-d): δ 7.00 (2H, s, H4), 4.37 (2H, q, \(J = 7.1 \text{ Hz}, \text{H8} \)), 3.01 – 2.71 (3H, m, H2 & H10), 1.37 (3H, t, \(J = 7.1 \text{ Hz}, \text{H9} \)), 1.31 – 1.15 (18H, m, H1 & H11) ppm

\(^{13}\)C NMR (101 MHz, Chloroform-d): δ 14.4 (C9), 24.1 (C1), 24.2 (C11), 31.6 (C10), 34.6 (C2), 60.9 (C8), 121.0 (C4), 130.8 (C6), 144.95 (C5), 150.2 (C3), 170.9 (C7) ppm

Spectral data were in accordance with that reported in the literature.\(^{47}\)

(S)-1-(Trimethylstannyl)ethyl 2,4,6-triisopropylbenzoate ((S)-93)

In a flame-dried 1-L round-bottomed flask, ethyl 2,4,6-triisopropylbenzoate 91 (10.00 g, 36.20 mmol, 1.00 equiv.) and (−)-sparteine (10.80 mL, 47.00 mmol, 1.30 equiv.) were dissolved in anhydrous Et₂O (200.00 mL). The solution was cooled to −78 °C and allowed to equilibrate for 10 min. A solution of s-BuLi (1.30 M in hexanes, 36.20 mL, 47.00 mmol, 1.30 equiv.) was
added dropwise via syringe to the reaction mixture at −78 °C over 20 min (colour change: colourless → dark brown). The reaction mixture was stirred at −78 °C for 4 h. A solution of trimethyltin chloride (1.00 M in n-hexane, 47.00 mL, 47.00 mmol, 1.30 equiv.) was added dropwise to the reaction mixture via syringe over 10 min (colour change: dark brown → pale yellow). The reaction mixture was stirred at −78 °C for 20 min before being warmed to room temperature and stirred for 1 h. The reaction mixture was quenched with an aqueous solution of HCl (2.00 M, 100.00 mL) and stirred for a further 20 min. The phases were separated, and the organic layer was washed with an aqueous solution of HCl (2.00 M, 3 × 100.00 mL). The combined aqueous layers were extracted with Et2O (3 × 100.00 mL). The combined organic layers were dried over MgSO4 and concentrated under reduced pressure to give crude stannane (S)-93 (16.25 g). The opposite enantiomer ((R)-93) was synthesised in identical yields by substituting (−)-sparteine for (+)-sparteine.

Sparteine recovery

The combined aqueous layers were basified (~ pH 12) by addition of an aqueous solution of NaOH (20% w/w). The aqueous phase was extracted with Et2O (3 × 100.00 mL). The combined organic layers were washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure to give crude sparteine. Distillation* of the residual oil over CaH2 gave (−)-sparteine (9.90 g, 92%) as a colourless liquid.

*Distillation conditions: bulb-to-bulb; 10 cm Vigreux column; pressure: 2 mbar; oil bath: 150 °C; CaH2 (100 mg mL−1); b.p.: 137 – 138 °C (1.33 mbar).

Recrystallisation of enantioenriched stannane

MeOH (3.00 mL g−1) was added to the crude stannane in a one neck round-bottomed flask. A condenser was fitted to the round-bottom flask and the solution was brought to reflux (heat gun) until all the solids had dissolved. The solution was then allowed to cool to room temperature. Crystals appeared after 10 min to 5 h depending on the purity of crude stannane. The crystals were then filtered and dried under reduced pressure to give a white solid (10.31 g, 99.2:0.8 e.r.). The product was then recrystallised once more from MeOH (3.00 mL g−1) to give, after two crops, (S)-93 (8.41 g, 53%, 99.9:0.1 e.r.) as a white solid.

TLC: \(R_f = 0.42 \) (n-pentane:Et2O 97:3)

1H NMR (400 MHz, Chloroform-d): \(\delta \) 7.00 (2H, s, H4), 5.04 (1H, q, \(J = 7.6 \) Hz, H8), 2.94 – 2.76 (3H, m, H2 & H10), 1.59 (3H, d, \(J = 7.6 \) Hz, H9), 1.25 – 1.23 (18H, m, H1 & H11), 0.18 (9H, d, \(J_{Sn-H} = 54.2 \) Hz, d, \(J_{Sn-H} = 51.7 \) Hz and s, H12) ppm

13C NMR (101 MHz, Chloroform-d): \(\delta \) 171.4 (C7), 150.1 (C3), 145.0 (C5), 130.9 (C6), 120.9 (C4), 67.2 (C8), 34.6 (C2), 31.5 (C10), 24.5 (C1 or C11 or C11'), 24.2 (C1 or C11 or C11'), 24.1
(C1 or C11 or C11’), 19.4 (C9), −9.8 (d, $J_{\text{Sn-C}} = 333.5$ Hz, d, $J_{\text{Sn-C}} = 319.3$ Hz and s, C12) ppm

Spectral data were in accordance with that reported in the literature.¹

Chiral HPLC: Daicel Chiralpak IB column (25 cm) with guard, 100% n-hexane, 0.90 mL min⁻¹, room temperature, 210 nm: $t_R = 4.9$ min (major), 7.1 min (minor), 99.9:0.1 e.r.

(+/-)-1-(Trimethylstannyl)ethyl 2,4,6-triisopropylbenzoate (rac-93)

(S)-1-(Trimethylstannyl)ethyl 2,4,6-triisopropylbenzoate ((S)-93)
(2S,3R,4S,5S,6R)-2,3,4,5-Tetramethyl-6-(naphthalen-1-yl)heptyl 2,4,6-trisopropylbenzoate (114)

In a flame-dried Schlenk tube, 1-bromonaphthalene (0.01 mL, 0.08 mmol, 1.20 equiv.) was dissolved in anhydrous Et₂O (0.50 mL) at 0 °C under an atmosphere of nitrogen. A solution of n-BuLi (1.55 M in n-hexane, 0.05 mL, 0.08 mmol, 1.20 equiv.) was added dropwise and the resulting white suspension was stirred at 0 °C for 1 h. A solution of boronic ester 126 (36 mg, 0.07 mmol, 1.00 equiv.) in anhydrous Et₂O (0.25 mL) was added dropwise and the resulting pale yellow solution was stirred at 0 °C for 2 h. Solvents were removed under vacuum and the white residue was re-dissolved in anhydrous MeOH (1.00 mL) at −78 °C. A solution of NBS (29 mg, 0.16 mmol, 2.40 equiv.) in anhydrous MeOH (1.50 mL) was added dropwise over 20 min. After the addition, the acetone/dry ice bath was removed and the reaction mixture was allowed to stir at room temperature for 1 h. A saturated aqueous solution of Na₂S₂O₃ (1.00 mL) was added. The cloudy mixture was vigorously stirred for 5 min, diluted with water (10.00 mL) and extracted with Et₂O (3 × 5.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated to afford a yellow residue. The crude material was purified by flash column chromatography (n-pentane:Et₂O 98:2) to give benzoate 114 (17 mg, 47%) as a colourless liquid.

TLC: Rf = 0.51 (n-pentane:Et₂O 90:10)

¹H NMR (400 MHz, Chloroform-d): δ 8.17 (1H, d, J = 9.4 Hz, H23), 7.86 (1H, m, H26), 7.69 (1H, d, J = 8.0 Hz, H28), 7.40 – 7.52 (3H, m, H24, H25 & H29), 7.36 (1H, d, J = 7.2 Hz, H30), 7.03 (2H, s, H4), 4.10 – 4.14 (2H, m, H10), 3.53 (1H, m, H19), 2.84 – 2.94 (3H, m, H2 & H6), 2.09 – 2.13 (2H, m, H11 & H17), 1.56 (1H, m, H13), 1.31 (3H, d, J = 6.9 Hz, H20), 1.27 (18H, m, H1 & H7), 1.10 (1H, m, H15), 0.93 (3H, d, J = 6.7 Hz, H18), 0.70 (3H, d, J = 6.8 Hz, H16), 0.62 (3H, d, J = 6.9 Hz, H14), 0.53 (3H, d, J = 6.8 Hz, H12) ppm

¹³C NMR (101 MHz, Chloroform-d): δ 171.4 (C9), 150.1 (C3), 144.9 (C5), 144.1 (C21), 134.1 (C27), 131.9 (C22), 130.9 (C8), 129.2 (C26), 126.3 (C28), 125.7 (C25 or C29), 125.6 (C25 or C29), 125.3 (C24), 124.0 (C30), 123.3 (C23), 121.0 (C4), 69.7 (C10), 39.8 (C17), 36.9*(C19), 36.9*(C19), 36.9*(C19), 36.9*(C19), 36.9*(C19)
36.2 (C13 or C15), 36.1 (C15 or C13), 34.6 (C2), 32.9 (C11), 31.7 (C6), 24.4 (C7'), 24.3 (C7), 24.1 (C1), 20.7 (C20), 12.1 (C16), 11.9 (C18), 11.6 (C14), 11.1 (C12) ppm

*shift value determined by HSQC correlation.

HRMS (m/z): (ESI') calc'd. for C_{37}H_{52}NaO_{2}[M+Na]^+: 551.3860; found 551.3867

IR (ν_{max}): 2962, 2873, 1722, 1606, 1460, 1383, 1250, 1136, 1069, 778, 732 cm\(^{-1}\)

[α]\(^D\)\(^{20}\) : +21 (CHCl\(_3\), c = 1.0)

(R)-2-(1-(3-Bromo-4-methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((R)-120)

In a flame-dried Schlenk vessel, freshly purified CuCl (29 mg, 0.30 mmol, 0.03 equiv.), tert-BuOK (44 mg, 0.39 mmol, 0.04 equiv.) and (S)-DTBM-SEGPHOS (348 mg, 0.30 mmol, 0.03 equiv.) were mixed in degassed (i.e., sparged with nitrogen for 1 h) anhydrous toluene (5.00 mL) at room temperature under an atmosphere of nitrogen. Freshly distilled pinacolborane (1.71 mL, 11.80 mmol, 1.20 equiv.) was added and the yellow solution turned brown. After 10 min, a solution of 2-bromo-1-methoxy-4-vinylbenzene (2.10 g, 9.84 mmol, 1.00 equiv.) in degassed anhydrous toluene (4.00 mL) was added and the reaction mixture was stirred under an atmosphere of nitrogen for 16 h. The dark suspension was filtered through Celite\(^\circ\), washed with n-pentane (50.00 mL) and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (n-pentane:Et\(_2\)O 90:10) to give boronic ester (R)-120 (2.94 g, 88%, 98.9:1.1 e.r.) as a pale yellow liquid.

TLC: R\(_f\) = 0.20 (n-pentane:Et\(_2\)O 90:10)

\(^1\)H NMR (400 MHz, Chloroform-\(d\)): δ 7.39 (1H, d, J = 2.2 Hz, H4), 7.11 (1H, dd, J = 8.4, 2.2 Hz, H6), 6.81 (1H, d, J = 8.4 Hz, H7), 3.85 (3H, s, H1), 2.34 (1H, q, J = 7.5 Hz, H8), 1.28 (3H, d, J = 7.5 Hz, H9), 1.21 (6H, s, H11), 1.20 (6H, s, H11') ppm

\(^13\)C NMR (101 MHz, Chloroform-\(d\)): δ 153.6 (C2), 138.8 (C5), 132.6 (C4), 127.8 (C6), 112.1 (C7), 111.5 (C3), 83.5 (C10), 56.4 (C1), 24.8 (C11), 24.7 (C11'), 17.3 (C9) ppm

The signal corresponding to C8 was not observed due to quadrupolar relaxation.

HRMS (m/z): (ESI') calc'd. for C_{15}H_{22}B\(^{79}\)BrNaO\(_3\) [M+Na]^+: 363.0740; found 363.0746

IR (ν_{max}): 2975, 2873, 1495, 1321, 1251, 1140, 1054, 849 cm\(^{-1}\)
Boronic ester \((R)-120\) (about 20 mg) was oxidised to the corresponding alcohol according to \textbf{GP1} for chiral SFC analysis.

Chiral SFC: Daicel Chiralpak IA column (25 cm), 20.0% co-solvent \((n\text{-hexane:IPA 90:10}), 4.00 \text{ mL min}^{-1}, 39.6 \degree \text{C}, 124 \text{ bar, 210.0 nm})): \(t_R = 9.03 \text{ min} \) (major), \(9.74 \text{ min} \) (minor), 98.9:1.1 e.r.

\[
[\alpha]_{D}^{23}: -8 \text{ (CHCl}_3, c = 1.0)\]

\(2,2'-(2R,3R)\text{-Butane-2,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)} \ (122a)\) and \((S)-2,2'-(\text{Butane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)} \ (122b)\)

In a flame-dried Schlenk tube, \(\text{Rh(nbd)(acac)} \) (124 mg, 0.42 mmol, 0.05 equiv.) and \((S)\)-\text{QUINAP} (185 mg, 0.42 mmol, 0.05 equiv.) were dissolved in anhydrous THF (10.00 mL) at room temperature under an atmosphere of nitrogen. A solution of \(\text{B}_{2}\text{cat}_{2} \) (2.00 g, 8.41 mmol, 1.00 equiv.) in anhydrous THF (30.00 mL) was added and the yellow solution turned brown. The reaction mixture was then cooled to \(-10 \degree \text{C}\). In a separated flame-dried Schlenk tube, a solution of \text{trans-but-2-ene} in THF was made by slow addition of anhydrous THF (3.00 mL) to condensed \text{trans-but-2-ene} (3.00 mL, 32.08 mmol, 3.80 equiv.) at \(-78 \degree \text{C}\) under an atmosphere of nitrogen. This colourless solution was then quickly transferred to the reaction mixture via syringe and the dark solution was stirred at \(-10 \degree \text{C}\) for 10 min. The NaCl/ice bath was removed, and the reaction mixture was stirred at room temperature for 18 h under an atmosphere of nitrogen. Pinacol (1.99 g, 16.82 mmol, 2.00 equiv.) was then added and the reaction was stirred at room temperature for 16 h. The dark suspension was concentrated under reduced pressure to afford a brown
oil. The crude residue was purified by flash column chromatography (n-hexane:EtOAc 95:5) to give 1.80 g of a 74:26 mixture* of boronic ester $122a$ (1.33 g, 51%, >99.5:0.5 e.r., >95:5 d.r.) and boronic ester $122b$ (0.47 g, 18%, 77.8:22.2 e.r.) as a colourless liquid.

*The corresponding regioisomeric ratio (74:26 r.r.) was determined by 1H NMR analysis.

Note 1: Both products are unstable under air and on silica.

Note 2: For full characterisation and e.r. determination of both products, a few fractions containing pure materials could be obtained by multiple slow chromatography steps (n-pentane:Et$_2$O 98:2). However, this iterative purification process led to a massive loss of products. For this reason, the 74:26 mixture of products was directly engaged in the next homologation step after the first quick column chromatography (n-hexane:EtOAc 95:5) as described above.

2,2'-(2R,3R)-Butane-2,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) ($122a$)

![Structure of 2,2'-(2R,3R)-Butane-2,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) ($122a$)](image)

TLC: $R_f = 0.62$ (n-pentane:EtO 80:20)

1H NMR (400 MHz, Chloroform-d): δ 1.22 (12H, s, H1), 1.21 (12H, s, H1'), 1.12 (2H, m, H3), 0.95 (6H, d, $J = 7.1$ Hz, H4) ppm

13C NMR (101 MHz, Chloroform-d): δ 82.9 (C2), 24.8 (C1), 25.0 (C1'), 14.0 (C4) ppm

The signal corresponding to C3 was not observed due to quadrupolar relaxation.

HRMS (m/z): (ESI+) calc’d. for C$_{16}$H$_{32}$B$_2$NaO$_4$ [M+Na]$^+$: 333.2385; found: 333.2385

IR (ν_{max}): 2977, 2927, 2873, 1457, 1370, 1307, 1307, 1214, 1140, 969 cm$^{-1}$

$[\alpha]_D^{24}$: +9 (CHCl$_3$, $c = 1.0$; 99.7:0.3 e.r.)

Enantiomeric ratio (e.r.) determination:

Part A: A solution of pure boronic ester $122a$ (35 mg, 0.11 mmol, 1.00 equiv.) in THF (2.00 mL) was slowly added into a mixture NaOH (2.00 M in water, 2.00 mL) and H$_2$O$_2$ (30% in water, 1.00 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 4 h. Na$_2$SO$_4$ (614 mg) was added and the biphasic mixture was stirred at room temperature for 16 h. The layers were separated, and the aqueous phase was extracted with EtOAc 5 times. The organic phases were combined, dried over MgSO$_4$, filtered and the volume of solvent was reduced to 0.20 mL by rotary evaporation. n-Pentane (0.20 mL) was added and the colourless solution was loaded on column chromatography. The desired diol was separated from pinacol using n-hexane:EtOAc 50:50 as eluent.
Pure fractions were combined and concentrated at 45 °C under atmospheric pressure (volatile material) to a volume of solvent of about 0.20 mL. **Part B:** Tosyl chloride (42 mg, 0.22 mmol, 2.00 equiv.) and triethylamine (0.03 mL, 0.22 mmol, 2.00 equiv.) were added and the reaction mixture was stirred at room temperature for 16 h. The brown solution was diluted with CH$_2$Cl$_2$ (1.00 mL) and water (1.00 mL). The layers were separated, and the aqueous phase was extracted with CH$_2$Cl$_2$ (3 × 1.00 mL). The organic phases were combined, dried over MgSO$_4$, filtered and concentrated. The crude residue was purified by flash column chromatography (n-hexane:EtOAc 85:15) to give the desired bis(tosylate), which was analysed by chiral HPLC.

Note: A commercially available mixture of (2R,3S)-, (2R,3R)- and (2S,3S)-butane-2,3-diol was tosylated according to the same procedure (Part B) to give the analytical reference for e.r. determination by chiral HPLC.

Chiral HPLC: Daicel Chiralpak IA column (25 cm) with guard, n-hexane:IPA 90:10, 0.70 mL min$^{-1}$, room temperature, 210 nm: $t_R = 27.0$ min (meso), 33.5 min (major), 35.3 min (minor), $>99.5:0.5$ e.r.
(2R,3S)-Butane-2,3-diy1 bis(4-methylbenzenesulfonate), (2R,3R)-Butane-2,3-diy1 bis(4-methylbenzenesulfonate) and (2S,3S)-Butane-2,3-diy1 bis(4-methylbenzenesulfonate)

(2R,3R)-Butane-2,3-diy1 bis(4-methylbenzenesulfonate)
(S)-2,2'-(Butane-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (122b)

TLC: \[R_f = 0.58 \ (n\text{-pentane}:\text{Et}_2\text{O} \ 80:20) \]

\[^1\text{H} \text{NMR} \ (500 \text{ MHz, Chloroform-}d_2): \delta \ 1.47 \ (1\text{H, ddq, } J = 13.5, 8.4, 7.4 \text{ Hz, H4}), 1.37 \ (1\text{H, dqd, } J = 13.5, 7.4, 5.7 \text{ Hz, H4'}), 1.23 \ (24\text{H, m, H1, H1', H8 & H8'}), 1.06 \ (1\text{H, m, H3}), 0.92 – 0.83 \ (4\text{H, m, H5 & H6}), 0.78 \ (1\text{H, dd, } J = 15.7, 5.8 \text{ Hz, H6'}) \text{ ppm} \]

\[^{13}\text{C} \text{NMR} \ (126 \text{ MHz, Chloroform-}d_2): \delta \ 82.9 \ (C2), 82.9 \ (C7), 26.9 \ (C4), 25.1 \ (C1), 25.0 \ (C8), 24.9 \ (C1'), 24.9 \ (C8'), 20.5 \ (C3), 13.5 \ (C5), 12.5 \ (C6) \text{ ppm} \]

HRMS (m/z): (ESI+)[M+H]⁺ calculated for C₁₆H₃₃B₂O₄: 311.2565; found: 311.2577

IR (\(\nu_{\text{max}}\)): 2977, 2929, 2874, 1370, 1311, 1141, 968 cm⁻¹

\([\alpha]_D^{24}: +1 \text{ (CHCl}_3, c = 1.0; 77.8:22.2 \text{ e.r.)} \]

Enantiomeric ratio (e.r.) determination:

Part A: A solution of pure boronic ester 122b (53 mg, 0.17 mmol, 1.00 equiv.) in THF (2.00 mL) was slowly added into a mixture of NaOH (2.00 M in water, 2.00 mL) and H₂O₂ (30% in water, 1.00 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 4 h. Na₂SO₄ (614 mg) was added and the biphasic mixture was stirred at room temperature for 16 h. The layers were separated, and the aqueous phase was extracted with EtOAc 5 times. The organic phases were combined, dried over MgSO₄, filtered and the volume of solvent was reduced to 0.20 mL by rotary evaporation. n-Pentane (0.20 mL) was added and the colourless solution was loaded on column chromatography. The desired diol was separated from pinacol using n-hexane:EtOAc 50:50 as eluent. Pure fractions were combined and concentrated at 45 °C under atmospheric pressure (volatile material) to a volume of solvent of about 0.20 mL. **Part B:** Tosyl chloride (65 mg, 0.34 mmol, 2.00 equiv.) and triethylamine (0.05 mL, 0.34 mmol, 2.00 equiv.) were added and the reaction mixture was stirred at room temperature for 16 h. The brown solution was diluted with CH₂Cl₂ (1.00 mL) and water (1.00 mL). The layers were separated, and the aqueous phase was extracted with CH₂Cl₂ (3 × 1.00 mL). The organic phases were combined, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column chromatography (n-hexane:EtOAc 85:15) to give the desired bis(tosylate), which was analysed by chiral HPLC.

Note: Commercially available (+/−)-Butane-1,2-diol was tosylated according to the same procedure (Part B) to give the analytical reference for e.r. determination by chiral HPLC.
Chiral HPLC: Daicel Chiralpak IA column (25 cm) with guard, n-hexane:IPA 90:10, 0.70 mL min\(^{-1}\), room temperature, 210 nm: \(t_R = 34.6 \text{ min} \) (major), 36.6 min (minor), 77.8:22.2 e.r.

(+/-)-Butane-1,2-diyl bis(4-methylbenzenesulfonate)

(R)-Butane-1,2-diyl bis(4-methylbenzenesulfonate)
2,2’-(2R,3S,4S,5R)-2,3,4,5-Tetramethylhexane-1,6-diylbis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (123)

In a flame-dried Schlenk vessel, boronic ester 138 (75 mg, 0.20 mmol, 1.00 equiv.) and bromochloromethane (0.08 mL, 1.23 mmol, 6.00 equiv.) were dissolved in anhydrous Et₂O (0.80 mL) at −78 °C under an atmosphere of nitrogen. A solution of n-BuLi (1.50 M in n-hexane, 0.68 mL, 1.02 mmol, 5.00 equiv.) was added dropwise and the reaction mixture was stirred at −78 °C for 30 min. The acetone/dry ice bath was removed and the reaction mixture was stirred at room temperature for 1 h. The white suspension was filtered through silica (~10 mm depth of wetted (Et₂O) silica, using a filter frit connected directly to a receiving vessel) to give a yellow translucent solution. The silica was washed with Et₂O (reagent grade) and the filtrate was concentrated under reduced pressure to give boronic ester 123 (80 mg, quantitative yield, >95:5 d.r.) as a colourless liquid.

TLC: $R_t = 0.29$ (n-pentane:Et₂O 90:10)

1H NMR (400 MHz, Chloroform-d): δ 1.88 (2H, dqdd, $J=8.6, 6.8, 4.1$ Hz, H4), 1.31 – 1.17 (26H, m, H1 & H6), 0.81 (2H, dd, $J = 15.4, 6.4$ Hz, H3), 0.80 (6H, d, $J = 6.8$ Hz, H5), 0.70 (6H, d, $J = 6.6$ Hz, H7), 0.67 (2H, dd, $J=15.4, 8.6$ Hz, H3’) ppm

13C NMR (101 MHz, Chloroform-d): δ 82.9 (C2), 41.1 (C6), 30.8 (C4), 25.1 (C1), 24.9 (C1’), 18.5 (C3), 17.6 (C5), 11.5 (C7) ppm

HRMS (m/z): (ESI⁺) calc’d. for C$_{22}$H$_{44}$B$_2$NaO$_4$ [M+Na]$^+$: 417.3326; found 417.3316

IR (νmax): 2975, 2877, 1369, 1310, 1145, 969, 846 cm$^{-1}$

$[\alpha]_D^{24}$: +9 (CHCl$_3$, c = 1.0)

(2S,3R,4R,5S)-3,4-Dimethylhexane-2,5-diyl bis(2,4,6-triisopropylbenzoate) (124)

In a flame-dried Schlenk vessel, 2,4,6-triisopropylbenzoic acid (383 mg, 1.54 mmol, 2.10 equiv.), triphenylphosphine (405 mg, 1.54 mmol, 2.10 equiv.) and diol 139 (128 mg,
0.73 mmol, 1.00 equiv.) were dissolved in anhydrous THF (4.00 mL) at 0 °C under an atmosphere of nitrogen. DIAD (0.30 mL, 1.54 mmol, 2.10 equiv.) was added dropwise and the colourless solution turned yellow. After the addition, the reaction mixture was stirred at room temperature for 18 h. The reaction mixture was diluted with water (10.00 mL) and extracted with Et₂O (3 × 10.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated to afford a yellow oil. The crude residue was purified by flash column chromatography (n-pentane:Et₂O 99:1) to give benzoate 124 (397 mg, 85%, >95:5 d.r.) as a white solid.

TLC: Rᵣ = 0.31 (n-pentane:Et₂O 90:10)

m.p.: 76 – 81 °C (methanol)

¹H NMR (400 MHz, Chloroform-d): δ 7.01 (4H, s, H₄), 4.24 (2H, dd, J = 10.9, 6.8 Hz, H₁₀'), 4.13 (2H, dd, J = 10.9, 7.3 Hz, H₁₀), 2.79 – 2.85 (6H, m, H₂ & H₆), 2.09 (2H, m, H₁₁), 1.62 (2H, m, H₁₃), 1.24 – 1.26 (36H, m, H₁ & H₇), 0.87 (6H, d, J = 6.8 Hz, H₁₂), 0.85 (6H, d, J = 5.9 Hz, H₁₄) ppm

¹³C NMR (101 MHz, Chloroform-d): δ 171.3 (C₉), 150.1 (C₃), 144.8 (C₅), 130.8 (C₈), 121.0 (C₄), 69.2 (C₁₀), 35.8 (C₁₁), 34.5 (C₁₃), 33.3 (C₂), 31.7 (C₆), 24.4 (C₇), 24.3 (C₇'), 24.1 (C₁), 11.6 (C₁₂), 11.4 (C₁₄) ppm

HRMS (m/z): (ESI⁺) calc’d. for C₄₂H₆₆NaO₄ [M+Na]⁺: 657.4853; found 657.4833

IR (νmax): 2960, 2870, 1723, 1460, 1282, 1248, 1136, 1068, 876 cm⁻¹

[α]**D**: +11 (CHCl₃, c = 1.0)

2,4,4,5,5-Pentamethyl-1,3,2-dioxaborolane (125)

MgSO₄ (3.02 g, 25.10 mmol, 1.00 equiv.) was dried in a flame-dried Schlenk vessel at 500 °C (heat gun) under high vacuum until gas evolution ceased. After cooling at room temperature, the flask was refilled with nitrogen and charged with a solution of methylboronic acid (1.50 g, 25.10 mmol, 1.00 equiv.) and pinacol (3.11 g, 26.30 mmol, 1.05 equiv.) in anhydrous Et₂O (70.00 mL). The flask was sealed and the white suspension was vigorously stirred at room temperature for 20 h. The reaction was filtered and the solid was washed several times with Et₂O. The filtrate was concentrated at 35 °C under atmospheric pressure to afford a colourless liquid. The ¹H NMR spectrum revealed that pinacol was still present. The product was filtered through
~10 mm depth of wetted silica (n-pentane:Et₂O 90:10), using a filter frit connected directly to a flame-dried receiving vessel. The silica was washed with a mixture n-pentane:Et₂O 90:10 and the filtrate was concentrated at 35 °C under atmospheric pressure to give boronic ester 125 (1.97 g, 55%) as a colourless liquid.

TLC: \(R_f = 0.39 \) (n-pentane:Et₂O 90:10)

\(^1\text{H NMR}\) (400 MHz, Chloroform-d): \(\delta \) 1.22 (12H, s, H3), 0.21 (3H, s, H1) ppm

\(^{13}\text{C NMR}\) (101 MHz, Chloroform-d): \(\delta \) 83.1 (C2), 25.0 (C3) ppm

The signal corresponding to C3 was not observed due to quadrupolar relaxation. Spectral data were in accordance with that reported in the literature.\(^{202}\)

(2S,3R,4S,5R,6R)-2,3,4,5-Tetramethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptyl 2,4,6-triisopropylbenzoate (126)

In a flame-dried Schlenk vessel, compound 124 (505 mg, 0.80 mmol, 1.00 equiv.) and (+)-spar tea (0.20 mL, 0.87 mmol, 1.10 equiv.) were dissolved in anhydrous Et₂O (5.00 mL) at −78 °C under an atmosphere of nitrogen. A solution of s-BuLi (1.30 M in hexanes, 0.67 mL, 0.87 mmol, 1.10 equiv.) was added dropwise and the reaction was stirred at −78 °C for 4.5 h. A solution of methyl pinacol boronic ester 125 (158 mg, 1.11 mmol, 1.40 equiv.) in anhydrous THF (1.60 mL) was added dropwise over 25 min and the reaction mixture was stirred at −78 °C for 3.5 h. The acetoneldry ice bath was removed and the reaction mixture was stirred at room temperature. Solvents were removed in situ under reduced pressure and the residue was re-dissolved in CHCl₃ (10.00 mL). The yellow solution was stirred at 40 °C for 18 h under an atmosphere of nitrogen. The white suspension was diluted an aqueous solution of HCl (1.00 M, 3 × 10.00 mL). The aqueous layers were combined and extracted with CH₂Cl₂ (3 × 30.00 mL). The organic layers were combined and washed with brine, dried over MgSO₄, filtered and concentrated to afford a colourless oil. The residue was purified by flash column chromatography (n-pentane:CH₂Cl₂ 80:20→60:40) to give boronic ester 126 (287 mg, 68%) as a colourless liquid.

TLC: \(R_f = 0.40 \) (n-pentane:CH₂Cl₂ 50:50)

\(^1\text{H NMR}\) (400 MHz, Chloroform-d): \(\delta \) 7.00 (2H, s, H4), 4.24 (1H, dd, \(J = 10.8, 6.7 \) Hz, H10’), 4.11 (1H, dd, \(J = 10.8, 7.4 \) Hz, H10), 2.82 – 2.92 (3H, m, H2 & H6), 1.67 (1H, m, H13), 2.10
(1H, m, H11), 1.53 (1H, m, H15), 1.38 (1H, m, H17), 1.19 – 1.27 (30H, m, H1, H7, H22 & H22’), 1.02 (1H, m, H19), 0.88 – 0.92 (6H, m, 2 × CH₃), 0.68 – 0.82 (9H, m, 3 × CH₃) ppm

13C NMR (101 MHz, Chloroform-d): δ 171.4 (C9), 150.0 (C3), 144.9 (C5), 130.9 (C8), 120.9 (C4), 82.9 (C21), 69.5 (C10), 39.1 (CH), 36.2 (CH), 36.0 (CH), 34.5 (CH), 33.3 (C2), 31.7 (C6), 25.0 (C22), 24.8 (C22’), 24.4 (C7), 24.3 (C7’), 24.1 (C1), 12.8 (CH₃), 12.6 (CH₃), 11.9 (CH₃), 11.7 (CH₃), 11.6 (CH₃) ppm

The signal corresponding to C19 was not observed due to quadrupolar relaxation.

HRMS (m/z): (ESI+) calc’d. for C$_{33}$H$_{57}$BNaO$_4$ [M+Na]$^+$: 551.4248; found 551.4267

IR (ν_{max}): 2961, 2874, 1725, 1460, 1382, 1313, 1250, 1143, 1069, 876 cm$^{-1}$

$[\alpha]_{D}^{26}$: +11 (CHCl$_3$, c = 1.0)

2-Bromo-1-methoxy-4-vinylbenzene (133)

In a flame-dried Schlenk vessel, methyltriphenylphosphonium bromide (1.83 g, 5.10 mmol, 1.10 equiv.) was suspended in anhydrous THF (10.00 mL) at 0 °C under an atmosphere of nitrogen. A solution of n-BuLi (1.53 M in n-hexane, 3.41 mL, 5.10 mmol, 1.10 equiv.) was added dropwise and the reaction was stirred at 0 °C for 30 min (white suspension → orange solution). A solution of 3-bromo-4-methoxybenzaldehyde (1.00 g, 4.70 mmol, 1.00 equiv.) in anhydrous THF (10.00 mL) was added dropwise at 0 °C (orange solution → yellow suspension). After the addition, the suspension was stirred at room temperature for 2 h. The reaction was slowly quenched with water (100.00 mL), extracted with CH$_2$Cl$_2$ (3 × 100.00 mL), dried over MgSO$_4$, filtered and concentrated under reduced pressure. The resulting yellow oil was triturated in cold Et$_2$O. The resulting white solid was removed by filtration, washed with cold Et$_2$O and the filtrate was concentrated under reduced pressure. The yellow residue was purified by flash column chromatography (n-hexane:EtOAc 95:5) to give 2-bromo-1-methoxy-4-vinylbenzene 133 (0.94 g, 95%) as a pale yellow liquid.

TLC: $R_f = 0.43$ (n-pentane:Et$_2$O 90:10)

1H NMR (400 MHz, Chloroform-d): δ 7.62 (1H, d, $J = 2.2$ Hz, H4), 7.29 (1H, dd, $J = 8.5, 2.2$ Hz, H6), 6.85 (1H, d, $J = 8.5$ Hz, H7), 6.60 (1H, dd, $J = 17.6, 10.9$ Hz, H8), 5.62 (1H, dd, $J = 17.6, 0.7$ Hz, H10), 5.18 (1H, dd, $J = 10.9, 0.7$ Hz, H11), 3.90 (3H, s, H1) ppm
13C NMR (101 MHz, Chloroform-d): δ 155.6 (C2), 135.1 (C8), 131.9 (C5), 131.0 (C4), 126.6 (C6), 113.1 (C9), 112.0 (C3), 111.8 (C7), 56.4 (C1) ppm

Spectral data were in accordance with that reported in the literature.291

(R)-2-(1-(4-Methoxyphenyl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((R)-135)

In a flame-dried Schlenk vessel, freshly purified CuCl (33 mg, 0.34 mmol, 0.03 equiv.), tert-BuOK (51 mg, 0.45 mmol, 0.04 equiv.) and (S)-DTBM-SEGPHOS (398 mg, 0.34 mmol, 0.03 equiv.) were mixed in degassed (i.e., sparged with nitrogen for 1 h) anhydrous toluene (5.00 mL) at room temperature under an atmosphere of nitrogen. Freshly distilled pinacolborane (1.96 mL, 13.50 mmol, 1.20 equiv.) was added and the yellow solution turned brown. After 10 min, a solution of 1-methoxy-4-vinylbenzene (1.51 g, 11.25 mmol, 1.00 equiv.) in degassed anhydrous toluene (4.00 mL) was added and the reaction was stirred under an atmosphere of nitrogen for 16 h. The dark suspension was filtered through Celite0, washed with n-pentane (50.00 mL) and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (n-pentane:Et$_2$O 90:10) to give boronic ester (R)-135 (2.07 g, 77%, 99.4:0.6 e.r.) as a pale yellow liquid.

TLC: $R_t = 0.20$ (n-pentane:Et$_2$O 90:10)

1H NMR (400 MHz, Chloroform-d): δ 7.13 (2H, dd, $J = 8.4, 2.2$ Hz, H4), 6.81 (2H, d, $J = 8.4$ Hz, H3), 3.78 (3H, s, H1), 2.37 (1H, q, $J = 7.5$ Hz, H6), 1.30 (3H, d, $J = 7.5$ Hz, H7), 1.21 (6H, s, H9), 1.20 (6H, s, H9') ppm

13C NMR (101 MHz, Chloroform-d): δ 157.4 (C2), 137.2 (C5), 128.8 (C4), 113.9 (C3), 83.4 (C8), 55.3 (C1), 25.0 (C9), 24.8 (C9'), 17.5 (C7) ppm

The signal corresponding to C6 was not observed due to quadrupolar relaxation.

Spectral data were in accordance with that reported in the literature.292

Boronic ester (R)-135 (about 20 mg) was oxidised to the corresponding alcohol according to GP1 for chiral SFC analysis.

Chiral SFC: Whelk-01 column (25 cm), 20.0% co-solvent (n-hexane:IPA 90:10), 4.00 mL min$^{-1}$, 41.6 °C, 130 mbar, 210.0 nm): $t_R = 4.80$ min (minor), 5.13 min (major), 99.4:0.6 e.r.
2-((2S,3S,4R,5S)-5-(4-Methoxyphenyl)-3,4-dimethylhexan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (136)

Boronic ester (R)-135 (156 mg, 0.49 mmol, 1.00 equiv.) was homologated with stannane (R)-93, (S)-93 and (R)-93 (281 mg, 0.64 mmol, 1.30 equiv.) and n-BuLi (1.55 M in n-hexane, 0.42 mL, 0.64 mmol, 1.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (n-pentane:Et2O 100:0→95:5) to give boronic ester 136 (104 mg, 61% over 3 steps, >95:5 d.r.) as a colourless liquid.

TLC: \(R_t = 0.47 \) (n-pentane:Et2O 90:10)

\(^1\)H NMR (400 MHz, Chloroform-d): \(\delta \) 7.09 (2H, d, \(J = 8.6 \) Hz, H4), 6.82 (2H, d, \(J = 8.7 \) Hz, H3), 3.79 (3H, s, H1), 2.65 (1H, app. pent, \(J_{app} = 7.1 \) Hz, H6), 1.64 (1H, m, H8), 1.46 (1H, m, H10), 1.27 (6H, s, H15), 1.25 (6H, s, H15'), 1.15 (3H, d, \(J = 7.1 \) Hz, H7), 1.07 (1H, app. pent, \(J_{app} = 7.0 \) Hz, H12), 0.85 (3H, d, \(J = 7.3 \) Hz, CH3), 0.81 (3H, d, \(J = 6.8 \) Hz, CH3), 0.73 (3H, d, \(J = 7.0 \) Hz, CH3) ppm

\(^{13}\)C NMR (101 MHz, Chloroform-d): \(\delta \) 157.6 (C2), 139.8 (C5), 128.5 (C4), 113.6 (C3), 82.8 (C14), 55.3 (C1), 43.0 (C8), 42.1 (C6), 36.3 (C10), 25.0 (C15), 24.9 (C15'), 19.0 (C11), 12.8 (C7), 12.4 (C9), 11.6 (C13) ppm

The signal corresponding to C12 was not observed due to quadrupolar relaxation.

HRMS (m/z): (ESI^+^) calc’d. for C\(_{21}\)H\(_{35}\)BNaO\(_{3}\) [M+Na]^+^: 369.2575; found 369.2575

IR (\(\nu_{max} \)): 2967, 2933, 2834, 1612, 1512, 1456, 1369, 1312, 1245, 1144, 1035, 830 cm\(^{-1}\)

\([\alpha]_{D}^{25}\) : \(-10\) (CHCl\(_{3}\), \(c = 1.0\))
2-((2R,3R,4S,5R,6S)-6-(4-Methoxyphenyl)-3,4,5-trimethylheptan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (137)

Boronic ester 136 (46 mg, 0.13 mmol, 1.00 equiv.) was homologated with stannane (S)-93 (79 mg, 0.18 mmol, 1.35 equiv.) and n-BuLi (1.55 M in n-hexane, 0.13 mL, 0.17 mmol, 1.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (n-pentane:CH₂Cl₂ 100:0→70:30) to give boronic ester 137 (41 mg, 84%, >95:5 d.r.) as a white solid.

TLC: R² = 0.23 (n-pentane:CH₂Cl₂ 70:30)

m.p.: 59 – 63 °C (amorphous)

¹H NMR (400 MHz, Chloroform-d): δ 7.08 (2H, d, J = 8.6 Hz, H4), 6.82 (2H, d, J = 8.6 Hz, H3), 3.79 (3H, s, H1), 2.69 (1H, app. pent., Japp. = 7.2 Hz, H6), 1.69 (2H, app. sext., Japp. = 6.9 Hz, H8 & H10), 1.24 (6H, s, H17), 1.23 (6H, s, H17'), 1.12 – 1.18 (5H, m, H7, H12 & H14), 0.74 – 0.79 (6H, m, 2 × CH₃), 0.62 – 0.72 (6H, m, 2 × CH₃) ppm

¹³C NMR (101 MHz, Chloroform-d): δ 157.6 (C2), 139.9 (C5), 128.4 (C4), 113.6 (C3), 82.9 (C16), 55.3 (C1), 41.3 (C6), 40.8 (C8 or C10), 37.1 (C12), 36.0 (C8 or C10), 25.1 (C17'), 24.7 (C17), 18.2 (C7), 14.46 (CH₃), 11.7 (CH₃), 11.4 (CH₃), 10.0 (CH₃) ppm

The signal corresponding to C14 was not observed due to quadrupolar relaxation.

HRMS (m/z): (ESI⁺) calc’d. for C₂₃H₃₉BNaO₃ [M+Na]⁺: 397.2889; found 397.2884

IR (νmax): 2962, 2904, 1512, 1459, 1371, 1310, 1238, 1150, 1036, 828, 703, 554 cm⁻¹

[α]D²³: +8 (CHCl₃, c = 1.0)

2,2'-(2S,3S,4S,5S)-3,4-Dimethylhexane-2,5-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (138)

A mixture of boronic ester 122a (1.30 g, 4.20 mmol, 0.74 equiv.) and boronic ester 122b (0.46 g, 1.48 mmol, 0.26 equiv.) was homologated with stannane (R)-93 (5.74 g, 13.06 mmol,
2.30 equiv.) and n-BuLi (1.52 M in n-hexane, 8.59 mL, 13.06 mmol, 2.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (n-pentane:Et₂O 97:3) and recrystallisation from n-hexane to give boronic ester 138 (0.94 g, 61%, >95:5 d.r.) as a white crystalline solid.

TLC: $R_f = 0.39$ (n-pentane:Et₂O 90:10)

m.p.: 131 – 137 °C (n-hexane)

1H NMR (400 MHz, Chloroform-d): δ 1.60 (2H, m, H5), 1.22 (12H, s, H1), 1.22 (12H, s, H1’), 1.12 (2H, m, H3), 0.86 (6H, d, $J = 7.4$ Hz, H4), 0.80 (6H, d, $J = 6.5$ Hz, H6) ppm

13C NMR (101 MHz, Chloroform-d): δ 82.8 (C2), 37.8 (C5), 25.0 (C1), 24.9 (C1’), 14.2 (C6), 10.9 (C4) ppm

The signal corresponding to C3 was not observed due to quadrupolar relaxation.

HRMS: (ESI$^+$) calc’d for C$_{20}$H$_{30}$B$_2$NaO$_4$ [M+Na]$^+$: 389.3012; found: 389.3012

IR (ν_{max}): 2958, 2877, 1456, 1360, 1310, 1151, 1081, 850, 693 cm$^{-1}$

$[\alpha]_{D}^{24}$: −5 (CHCl$_3$, $c = 1.0$)

X-ray: Absolute configuration not determined.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>138</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C${10}$H${20}$BO$_2$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>183.07</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>100(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2$_1$2$_1$2</td>
</tr>
<tr>
<td>a/Å</td>
<td>9.5751(16)</td>
</tr>
<tr>
<td>b/Å</td>
<td>16.626(3)</td>
</tr>
<tr>
<td>c/Å</td>
<td>7.2273(12)</td>
</tr>
<tr>
<td>$\alpha/^{\circ}$</td>
<td>90</td>
</tr>
<tr>
<td>$\beta/^{\circ}$</td>
<td>90</td>
</tr>
<tr>
<td>$\gamma/^{\circ}$</td>
<td>90</td>
</tr>
<tr>
<td>Volume/Å3</td>
<td>1150.5(3)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>ρ_{calc}/g cm$^{-3}$</td>
<td>1.057</td>
</tr>
<tr>
<td>μ/mm$^{-1}$</td>
<td>0.543</td>
</tr>
</tbody>
</table>
F(000) 404.0
Crystal size/mm3 0.457 × 0.451 × 0.3
Radiation CuKα (λ = 1.54178)
2Θ range for data collection/° 10.642 to 134.042
Index ranges -11 ≤ h ≤ 11, -19 ≤ k ≤ 18, -8 ≤ l ≤ 8
Reflections collected 14852
Independent reflections 2063 [R$_{int}$ = 0.0455, R$_{sigma}$ = 0.0264]
Data/restraints/parameters 2063/0/124
Goodness-of-fit on F2 1.088
Final R indexes [I>=2σ(I)] R$_{1}$ = 0.0446, wR$_{2}$ = 0.1185
Final R indexes [all data] R$_{1}$ = 0.0448, wR$_{2}$ = 0.1188
Largest diff. peak/hole / e Å$^{-3}$ 0.31/-0.20
Flack parameter 0.08(12)

(2S,3R,4R,5S)-2,3,4,5-Tetramethylhexane-1,6-diol (139)

Boronic ester 123 (156 mg, 0.39 mmol, 1.00 equiv.) was oxidised according to GP1 to give diol 139 (66 mg, 96%, >95:5 d.r.) as a colourless wax.

TLC: R_f = 0.37 (CH$_2$Cl$_2$:MeOH 90:10)

1H NMR (400 MHz, Chloroform-d): δ 3.61 (2H, dd, J = 10.8, 5.2 Hz, H2), 3.45 (2H, dd, J = 10.8, 4.6 Hz, H2$^\prime$), 2.59 (2H, br. s, H1), 1.46 – 1.72 (4H, m, H3 & H5), 0.86 (6H, d, J = 6.6 Hz, H6), 0.74 (6H, d, J = 6.5 Hz, H4) ppm

13C NMR (101 MHz, Chloroform-d): δ 66.7 (C2), 36.9 (C3), 34.5 (C5), 13.2 (C6), 11.5 (C4) ppm

HRMS (m/z): (ESI$^+$) calc’d. for C$_{10}$H$_{22}$NaO$_2$ [M+Na]$^+$: 197.1512; found 197.1513

IR (ν_{max}): 3284, 2953, 2933, 2878, 1459, 1381, 1035, 1005, 713 cm$^{-1}$

$[\alpha]_D^{23}$: −7 (CHCl$_3$, c = 1.0)
Boronic ester (R)-135 (142 mg, 0.54 mmol, 1.00 equiv.) was homologated nine times with stannane (R)- or (S)-93 (309 mg, 0.70 mmol, 1.30 equiv.) and n-BuLi (1.55 M in n-hexane, 0.45 mL, 0.70 mmol, 1.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (n-pentane:Et2O 100:0→99.5:0.5) to give boronic ester 148 (132 mg, 48% over 9 steps) as a colourless liquid.

TLC: Rf = 0.54 (n-pentane:Et2O 90:10)

1H NMR (400 MHz, Chloroform-d): δ 7.06 (2H, d, J = 8.6 Hz, H4), 6.81 (2H, d, J = 8.6 Hz, H3), 3.79 (3H, s, H1), 2.55 (1H, dq, J = 9.7, 6.9 Hz, H6), 1.74 (1H, dqd, J = 9.7, 7.0, 3.2 Hz, H8), 1.69 (1H, dqd, J = 9.5, 6.8, 3.9 Hz, CH), 1.51 – 1.38 (4H, m, 4 × CH), 1.31 (1H, dqd, J = 10.9, 6.8, 3.4 Hz, CH), 1.23 (6H, s, H27), 1.23 (6H, s, H27′), 1.18 (3H, d, J = 6.9 Hz, CH3), 1.10 (1H, m, CH), 1.01 (1H, m, CH), 0.92 (3H, d, J = 7.1 Hz, CH3), 0.82 (3H, d, J = 6.7 Hz, CH3), 0.77 – 0.64 (15H, m, 5 × CH3), 0.59 (3H, d, J = 6.5 Hz, CH3), 0.43 (3H, d, J = 6.1 Hz, CH3) ppm

13C NMR (101 MHz, Chloroform-d): δ 157.7 (C2), 140.0 (C5), 128.3 (C4), 113.7 (C3), 82.8 (C26), 55.3 (C1), 42.6 (C6), 40.0 (CH), 39.9 (CH), 36.0 (CH), 35.7 (CH), 35.7 (CH), 35.6 (CH), 35.5 (CH), 35.2 (CH), 25.1 (C27), 24.7 (C27′), 20.3 (C7), 13.2 (CH3), 12.6 (CH3), 12.1 (CH3), 12.0 (CH3), 12.0 (CH3), 11.8(9) (CH3), 11.9(1) (CH3), 11.7 (CH3), 11.5 (CH3) ppm

The signal corresponding to C24 was not observed due to quadrupolar relaxation.

HRMS (m/z): (ESI+) calc’d. for C35H59BNaO3 [M+Na]+: 537.4455; found 537.4464

IR (vmax): 2967, 2877, 1612, 1512, 1454, 1381, 1312, 1245, 1115, 829 cm⁻¹

[α]D²⁰: -3 (CHCl₃, c = 1.0)
In a flame-dried Schlenk tube, 1-bromonaphthalene (0.02 mL, 0.15 mmol, 1.20 equiv.) was dissolved in anhydrous Et₂O at 0 °C under an atmosphere of nitrogen. A solution of n-BuLi (1.60 M in n-hexane, 0.09 mL, 0.15 mmol, 1.20 equiv.) was added and the resulting suspension was stirred at the same temperature for 1 h. A solution of boronic ester 148 (64 mg, 0.12 mmol, 1.00 equiv.) in anhydrous Et₂O (0.60 mL) was added dropwise at 0 °C over 10 min. After the addition, the mixture was stirred at the same temperature for 2 h. Solvents were removed in situ and the residue was dissolved in dry MeOH (1.00 mL) at –78 °C under an atmosphere of nitrogen. A solution of NBS (53 mg, 0.30 mmol, 2.40 equiv.) in dry MeOH (1.50 mL) was added dropwise at the same temperature. After the addition, the acetone/dry ice bath was removed and the reaction mixture was stirred at room temperature for 1 h. A saturated aqueous solution of Na₂S₂O₃ (4.00 mL) was added. After 5 min, the suspension was extracted with Et₂O (3 × 10.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The yellow residue was purified by flash column chromatography (n-pentane:Et₂O 100:0→99.5:0.5) to give compound 149 (42 mg, 66%) as a white solid.

TLC: $R_t = 0.66$ (n-pentane:Et₂O 90:10)

m.p.: 105 – 109 °C (acetonitrile)

¹H NMR (500 MHz, Chloroform-d): δ 8.19 (1H, d, $J = 8.3$ Hz, H34), 7.87 (1H, dd, $J = 7.6$, 2.0 Hz, H31), 7.70 (1H, d, $J = 8.0$ Hz, H29), 7.54 – 7.42 (3H, m, H28, H32 & H33), 7.38 (1H, d, $J = 7.1$ Hz, H27), 7.06 (2H, d, $J = 8.7$ Hz, H4), 6.83 (2H, d, $J = 8.6$ Hz, H3), 3.81 (3H, s, H1), 3.51 (1H, m, H24), 2.53 (1H, dq, $J = 9.9$, 6.9 Hz, H6), 2.14 (1H, m, H22), 1.74 (1H, d, $J = 9.9$, 6.8, 2.8 Hz, H8), 1.52 – 1.38 (3H, m, 3 × CH), 1.37 – 1.29 (4H, m, H25 & CH), 1.19 (3H, d, $J = 6.9$ Hz, H7), 1.12 – 1.04 (2H, m, H10 & H20), 0.96 (3H, d, $J = 6.7$ Hz, H23), 0.82 (3H, d, $J = 6.8$ Hz, H9), 0.72 – 0.67 (6H, m, H11 & H21), 0.63 (3H, d, $J = 6.8$ Hz, CH₃), 0.54 (3H, d, $J = 6.8$ Hz, CH₃), 0.41 (3H, d, $J = 6.6$ Hz, CH₃), 0.35 (3H, d, $J = 6.4$ Hz, CH₃) ppm

¹³C NMR (126 MHz, Chloroform-d): δ 157.7 (C2), 144.3 (C26), 140.0 (C5), 134.1 (C30), 132.0 (C35), 129.1 (C31), 128.3 (C4), 126.1 (C29), 125.7 (C28 or C32), 125.6 (C32 or C28), 125.2 (C33), 124.1 (C27), 123.4 (C34), 113.7 (C3), 55.3 (C1), 42.8 (C6), 39.6 (C8), 39.4 (C22), 37.1 (C24), 36.3 (C20), 36.0 (C10), 35.5 (CH), 35.5 (CH), 35.5 (CH), 35.3 (CH), 20.9 (C25), 20.7 (C7), 12.3 (CH₃), 12.2 (CH₃), 11.9 (CH₃), 11.9 (CH₃), 11.8 (CH₃), 11.7 (CH₃), 11.6 (CH₃) ppm

shift value determined by HSQC correlation.

HRMS (m/z): (MALDI⁺) calc’d. for C₃₇H₃₄NaO [M+Na⁺]: 537.4067; found 537.4077

IR ($ν_{max}$): 2967, 2926, 1512, 1452, 1382, 1244, 1040, 778 cm⁻¹

$[α]_{D}^{25} = -24$ (CHCl₃, $c = 1.0$)
2-((2R,3R,4S,5R,6S,7R,8S,9R,10S,11R,12S)-12-(4-Methoxyphenyl)-3,4,5,6,7,8,9,10,11-nonamethyltridecan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (150)

Boronic ester 148 (66 mg, 0.13 mmol, 1.00 equiv.) was homologated with stannane (S)-93 (73 mg, 0.17 mmol, 1.30 equiv.) and n-BuLi (1.60 M in n-hexane, 0.10 mL, 0.17 mmol, 1.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (n-pentane:Et2O 100:0→99.5:0.5) to give boronic ester 150 (61 mg, 88%) as a colourless liquid.

TLC: Rf = 0.55 (n-pentane:Et2O 90:10)

1H NMR (500 MHz, Chloroform-d): δ 7.07 (2H, d, J = 8.6 Hz, H4), 6.82 (2H, d, J = 8.6 Hz, H3), 3.79 (3H, s, H1), 2.63 (1H, dq, J = 8.5, 7.0 Hz, H6), 1.77 – 1.63 (2H, m, 2 × CH), 1.56 – 1.35 (6H, m, 6 × CH), 1.24 (6H, s, H29), 1.23 – 1.20 (7H, m, H29' & CH), 1.20 – 1.13 (4H, m, CH & CH3), 0.87 (3H, d, J = 7.3 Hz, CH3), 0.84 – 0.77 (6H, m, 2 × CH3), 0.74 – 0.66 (15H, m, 5 × CH3), 0.65 (3H, d, J = 6.4 Hz, CH3), 0.48 (3H, d, J = 6.0 Hz, CH3) ppm

13C NMR (126 MHz, Chloroform-d): δ 157.7 (C2), 140.0 (C5), 128.4 (C4), 113.7 (C3), 82.9 (C28), 55.3 (C1), 41.9 (C6), 40.7 (CH), 37.2 (CH), 36.1 (CH), 36.1 (CH), 35.8 (CH), 35.8 (CH), 35.4 (CH), 35.4 (CH), 25.1 (C29), 24.8 (C29'), 19.0 (C7), 14.5 (CH3), 12.3 (CH3), 12.2 (CH3), 12.1 (CH3), 11.9 (2 × CH3), 11.8 (CH3), 11.6 (CH3), 11.4 (CH3), 10.6 (CH3) ppm

The signal corresponding to C26 was not observed due to quadrupolar relaxation.

HRMS (m/z): (ESI') calc'd. for C35H56BNaO3 [M+Na]+: 565.4769; found 565.4748

IR (νmax): 2965, 2870, 1599, 1511, 1454, 1306, 1249, 1113, 828 cm⁻¹

$[α]_{D}^{20}$: +5 (CHCl3, c = 1.0)

2-((2R,3R,4S,5R,6S,7R,8S,9R,10S,11R,12S)-12-(4-Methoxyphenyl)-3,4,5,6,7,8,9,10,11-nonamethyltridecan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (151)

In a flame-dried Schlenk tube, 1-bromonaphthalene (0.02 mL, 0.13 mmol, 1.20 equiv.) was dissolved in anhydrous Et2O at 0 °C under an atmosphere of nitrogen. A solution of n-BuLi (1.60 M in n-hexane, 0.08 mL, 0.13 mmol, 1.20 equiv.) was added and the resulting suspension was
stirred at the same temperature for 1 h. A solution of boronic ester 150 (61 mg, 0.11 mmol, 1.00 equiv.) in anhydrous Et₂O (0.60 mL) was added dropwise at 0 °C over 10 min. After the addition, the mixture was stirred at the same temperature for 2 h. Solvents were removed in situ and the residue was dissolved in dry MeOH (1.00 mL) at –78 °C under an atmosphere of nitrogen. A solution of NBS (48 mg, 0.27 mmol, 2.40 equiv.) in dry MeOH (1.50 mL) was added dropwise at the same temperature. After the addition, the acetone/dry ice bath was removed and the reaction mixture was stirred at room temperature for 1 h. A saturated aqueous solution of Na₂S₂O₃ (4.00 mL) was added. After 5 min, the suspension was extracted with Et₂O (3 × 10.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The yellow residue was purified by flash column chromatography (n-pentane:Et₂O 100:0→99.5:0.5) to give compound 151 (35 mg, 57%) as a white solid.

TLC: R₅ = 0.67 (n-pentane:Et₂O 90:10)

m.p.: 75 – 79 °C (acetonitrile)

¹H NMR (500 MHz, Chloroform-d): δ 8.17 (1H, d, J = 8.4 Hz, H30), 7.86 (1H, d, J = 7.7 Hz, H33), 7.69 (1H, d, J = 8.0 Hz, H35), 7.52 – 7.42 (3H, m, H31, H32 & H36), 7.39 (1H, d, J = 7.1 Hz, H37), 7.08 (2H, d, J = 8.6 Hz, H4), 6.83 (2H, d, J = 8.6 Hz, H3), 3.80 (3H, s, H1), 3.66 (1H, app. pent, Japp. = 6.9 Hz, H26), 2.68 (1H, dq, J = 7.0, 6.9 Hz, H6), 2.01 (1H, dqd, J = 6.9, 6.7, 4.6 Hz, H24), 1.68 (1H, dqd, J = 7.0, 6.3, 4.4 Hz, H8), 1.59 (1H, app. sext, Japp. = 6.3 Hz, H20), 1.55 – 1.39 (3H, m, 3 × CH), 1.37 (1H, m, H22), 1.32 (3H, d, J = 6.9 Hz, H27), 1.28 (1H, m, CH), 1.22 (1H, m, H10), 1.17 (3H, d, J = 6.9 Hz, H7), 0.89 (3H, d, J = 6.7 Hz, H25), 0.80 (3H, d, J = 6.7 Hz, H9), 0.72 – 0.64 (12H, m, 4 × CH₃), 0.62 (3H, d, J = 6.2 Hz, CH₃), 0.54 – 0.48 (6H, m, 2 × CH₃) ppm

¹³C NMR (126 MHz, Chloroform-d): δ 157.6 (C2), 143.9 (C28), 139.9 (C5), 134.1 (C34), 132.0 (C29), 129.1 (C33), 128.4 (C4), 126.2 (C35), 125.6 (C32 or C36), 125.5 (C36 or C32), 125.2 (C31), 124.3 (C37), 123.4 (C30), 113.6 (C3), 55.4 (C1), 41.5 (C6), 41.0 (C8), 40.2 (C24), 36.7 (C20), 36.6* (C26), 36.3 (CH), 36.2 (CH), 36.0 (C22), 35.7 (C10), 35.5 (CH), 35.3 (CH), 18.3 (C7 & C27), 12.5 (C25), 12.5 (CH₃), 12.4 (CH₃), 12.1 (CH₃), 11.9 (C9), 11.8 (CH₃), 11.8 (CH₃), 11.7 (CH₃), 11.6 (CH₃), 11.4 (CH₃) ppm

*shift value determined by HSQC correlation.

HRMS (m/z): (MALDI⁺) calc’d. for C₃₀H₅₀NaO [M+Na]⁺: 565.4380; f665.ould 565.4387

IR (νmax): 2967, 2926, 2877, 1511, 1452, 1382, 1246, 1178, 1038, 830, 778 cm⁻¹

[α]D²⁵: +19 (CHCl₃, c = 1.0)
2,2’-((2R,3R,4S,5S,6R,7R)-3,4,5,6-Tetramethyloctane-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (152)

Boronic ester 138 (158 mg, 0.43 mmol, 1.00 equiv.) was homologated with stannane (S)-93 (436 mg, 0.99 mmol, 2.30 equiv.) and n-BuLi (1.58 M in n-hexane, 0.63 mL, 0.99 mmol, 2.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (n-pentane:EtO 99:1) to give 152 (165 mg, 91%) as a white crystalline solid.

TLC: \(R_f = 0.50 \) (n-pentane:EtO 90:10)

m.p.: 115 – 118 °C (n-hexane)

\(^1\)H NMR: (400 MHz, Chloroform-\(d_2\)) \(\delta \) 1.70 (2H, dqd, \(J = 8.6, 6.7, 4.1 \) Hz, H5), 1.33 (2H, m, H7), 1.22 (12H, s, H1), 1.22 (12H, s, H1’), 1.03 (2H, dq, \(J = 8.6, 7.1 \) Hz, H3), 0.91 (6H, d, \(J = 7.1 \) Hz, H4), 0.78 (6H, d, \(J = 6.7 \) Hz, H6), 0.72 (6H, d, \(J = 6.5 \) Hz, H8) ppm

\(^{13}\)C NMR: (101 MHz, Chloroform-\(d_2\)) \(\delta \) 82.8 (C2), 39.5 (C7), 35.8 (C5), 25.0 (C1), 24.7 (C1’), 21.6 (C3), 12.8 (C4), 12.6 (C6), 11.9 (C8) ppm

HRMS (m/z): (MALDI+) calc’d for C\(_{24}\)H\(_{48}\)B\(_2\)NaO\(_4\) [M+Na\(^{+}\)]: 445.3639; found: 445.3630

IR (\(\nu_{\text{max}} \)): 2974, 2932, 2865, 2877, 1456, 1370, 1311, 1146, 1078, 861 cm\(^{-1}\)

[\(\alpha \)]\(_D\)\(^{23} \): +14 (CHCl\(_3\), \(c = 1.0 \))

2,2’-((25,3S,4R,5S,6S,7R,8S,9S)-3,4,5,6,7,8-Hexamethyldecane-2,9-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (153)

Boronic ester 138 (75 mg, 0.20 mmol, 1.00 equiv.) was homologated with stannane (S)-93 and (R)-93 (207 mg, 0.47 mmol, 2.30 equiv.), and n-BuLi (1.54 M in n-hexane, 0.31 mL, 0.47 mmol, 2.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (n-pentane:EtO 99:1) to give 153 (80 mg, 84% over 2 steps) as a white solid.

TLC: \(R_f = 0.50 \) (n-pentane:EtO 90:10)
m.p.: 82 – 85 °C (acetonitrile)

1H NMR: (400 MHz, Chloroform-d) δ 1.69 (2H, dqd, $J = 8.7, 6.8, 4.3$ Hz, H5), 1.51 (2H, m, H9), 1.31 (2H, dqd, $J = 7.4, 6.8, 4.3$ Hz, H7), 1.23 (12H, s, H1), 1.22 (12H, s, H1’), 1.05 (2H, dq, $J = 8.7, 7.2$ Hz, H3), 0.91 (6H, d, $J = 7.2$ Hz, H4), 0.76 (6H, d, $J = 6.8$ Hz, H6), 0.75 (6H, d, $J = 6.8$ Hz, H8), 0.74 (6H, d, $J = 6.5$ Hz, H10) ppm

13C NMR: (101 MHz, Chloroform-d) δ 82.8 (C2), 39.5 (C7), 35.8 (C5), 35.8 (C9), 25.1 (C1), 24.7 (C1’), 21.8 (C3), 12.9 (C6), 12.8 (C4), 12.0 (C8), 11.9 (C10) ppm

HRMS (m/z): (MALDI$^+$) calcd for C$_{28}$H$_{56}$B$_2$O$_4$ [M+Na]$^+$: 501.4267; found: 501.4276

IR (ν_{max}): 2973, 2930, 2877, 1456, 1380, 1312, 1145, 967, 687 cm$^{-1}$

$[\alpha]_D^{20}$: -11 (CHCl$_3$, $c = 1.0$)

$\text{2,2'-(}(2R,3R,4S,5R,6S,7S,8R,9S,10R,11R)-3,4,5,6,7,8,9,10$-Octamethyldodecane-2,11-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (154)\n
![Boronic ester 138](image)

Boronic ester 138 (75 mg, 0.20 mmol, 1.00 equiv.) was homologated with stannane (S)-93, (R)-93 and (S)-93 (207 mg, 0.47 mmol, 2.30 equiv.) and n-BuLi (1.54 M in n-hexane, 0.31 mL, 0.47 mmol, 2.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (n-pentane:Et$_2$O 99:1) to give 154 (82 mg, 75% over 3 steps) as a crystalline white solid.

TLC: $R_f = 0.32$ (n-pentane:Et$_2$O 95:5)

m.p.: 179 – 181 °C (n-hexane)

1H NMR: (500 MHz, Chloroform-d) δ 1.70 (2H, dqd, $J = 8.6, 6.8, 4.5$ Hz, H5), 1.54 (2H, m, H11), 1.47 (2H, dqd, $J = 7.7, 6.7, 3.7$ Hz, H9), 1.32 (2H, dqd, $J = 7.7, 6.8, 4.5$ Hz, H7), 1.23 (12H, s, H1), 1.23 (12H, s, H1’), 1.05 (2H, dq, $J = 8.6, 7.3$ Hz, H3), 0.91 (6H, d, $J = 7.3$ Hz, H4), 0.75 (6H, d, $J = 6.8$ Hz, H6), 0.73 (12H, d, $J = 6.8$ Hz, H8 & H12), 0.69 (6H, d, $J = 6.7$ Hz, H10) ppm

13C NMR: (126 MHz, Chloroform-d) δ 82.8 (C2), 39.5 (C7), 35.8 (C5 or C9), 35.8 (C9 or C5), 35.3 (C11), 25.1 (C1), 24.7 (C1’), 21.7 (C3), 13.0 (C6), 12.7 (C4), 12.1 (CH$_3$), 12.0 (CH$_3$), 11.9 (CH$_3$) ppm
HRMS (m/z): (ESI+) calc’d for C_{32}H_{64}B_{2}NaO_{4} [M+Na]^+: 557.4894; found: 557.4886

IR (ν_{max}): 2970, 1452, 1362, 1307, 1204, 1146, 1076, 967, 855, 702 cm^{-1}

[α]_{D}^{22}: +12 (CHCl_{3}, c = 1.0)

X-ray: Absolute configuration not determined.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>154</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{32}H_{64}B_{2}O_{4}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>534.45</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>100(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C2</td>
</tr>
<tr>
<td>a/Å</td>
<td>17.4769(9)</td>
</tr>
<tr>
<td>b/Å</td>
<td>6.6261(3)</td>
</tr>
<tr>
<td>c/Å</td>
<td>14.4394(8)</td>
</tr>
<tr>
<td>α/^°</td>
<td>90</td>
</tr>
<tr>
<td>β/^°</td>
<td>91.494(3)</td>
</tr>
<tr>
<td>γ/^°</td>
<td>90</td>
</tr>
<tr>
<td>Volume/Å^3</td>
<td>1671.57(15)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>ρ_{calc}/g cm^{-3}</td>
<td>1.062</td>
</tr>
<tr>
<td>μ/mm^{-1}</td>
<td>0.066</td>
</tr>
<tr>
<td>F(000)</td>
<td>596.0</td>
</tr>
<tr>
<td>Crystal size/mm^3</td>
<td>0.527 × 0.337 × 0.248</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα (λ = 0.71073)</td>
</tr>
<tr>
<td>2Θ range for data collection/^°</td>
<td>4.662 to 56.014</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-22 ≤ h ≤ 14, -8 ≤ k ≤ 7, -18 ≤ l ≤ 19</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>7533</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3755 [R_{int} = 0.0236, R_{sigma} = 0.0344]</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>3755/1/181</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.025</td>
</tr>
<tr>
<td>Final R indexes [I>=2σ (I)]</td>
<td>R_1 = 0.0499, wR_2 = 0.1271</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R_1 = 0.0548, wR_2 = 0.1314</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å^{-3}</td>
<td>0.41/-0.23</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>-0.3(5)</td>
</tr>
</tbody>
</table>
(3R,4S,5R,6R,7S,8R)-3,4,5,6,7,8-Hexamethyldeca-1,9-diyne (C6) and 4,4,5,5-Tetramethyl-2-((2R,3R,4S,5R,6S,7R)-3,4,5,6,7-pentamethylnon-8-yn-2-yl)-1,3,2-dioxaborolane (155)

Boronic ester 152 (166 mg, 0.39 mmol, 1.00 equiv.) was alkynylated with vinyl carbamate 15 (74 mg, 0.43 mmol, 1.10 equiv.), LDA (0.86 M in THF, 0.50 mL, 0.43 mmol, 1.10 equiv.), iodine (110 mg, 0.43 mmol, 1.10 equiv.) and LDA (0.86 M in THF, 1.14 mL, 0.98 mmol, 2.50 equiv.) according to GP3. The crude residue was purified by flash column chromatography (pure n-pentane) to give C6 (7 mg, 8%) as a colourless volatile liquid, followed by (n-pentane:CH2Cl2 80:20) to give 155 as a colourless liquid (59 mg, 47%).

Note: Due to the volatility of compound C6, all solvents and volatiles were removed on rotary evaporator at 40 °C under atmospheric pressure.

(3R,4S,5R,6R,7S,8R)-3,4,5,6,7,8-Hexamethyldeca-1,9-diyne (C6)

TLC: Rf = 0.31 (n-pentane)

1H NMR: (500 MHz, Toluene-d8) δ 2.21 (2H, dqd, J = 9.3, 6.9, 2.4 Hz, H3), 1.94 (2H, m, H7), 1.83 (2H, d, J = 2.4 Hz, H1), 1.63 (2H, dqd, J = 9.3, 6.9, 2.5 Hz, H5), 1.09 (6H, d, J = 6.9 Hz, H4), 0.76 (6H, d, J = 6.9 Hz, H6), 0.76 (6H, d, J = 6.5 Hz, H8) ppm

13C NMR: (126 MHz, Toluene-d8) δ 88.7 (C2), 69.5 (C1), 38.9 (C5), 37.1 (C7), 30.0 (C3), 18.9 (C4), 11.7 (C8), 11.2 (C6) ppm

HRMS (m/z): (MALDI+) calc’d for C16H26 [M+H]+: 219.2107; found: 219.2100

IR (νmax): 3309, 2972, 2924, 2879, 1455, 1383, 1087, 627 cm−1

[α]D25: +5 (CHCl3, c = 0.8)
4,4,5,5-Tetramethyl-2-((2R,3R,4S,5R,6S,7R)-3,4,5,6,7-pentamethylnon-8-yn-2-yl)-1,3,2-dioxaborolane (155)

\[
\begin{align*}
\text{TLC: } R_f &= 0.44 \ (n\text{-pentane:Et}_2\text{O 95:5})
\end{align*}
\]

\[\text{^1H NMR: } (400 MHz, \text{Chloroform-}d) \delta 2.35 \ (1H, dqd, J = 9.2, 6.9, 2.4 \ Hz, H3), 2.03 \ (1H, d, J = 2.4 \ Hz, H1), 1.83 \ (1H, dqd, J = 8.4, 6.9, 4.1 \ Hz, H7), 1.68 \ (1H, dqd, J = 9.3, 6.8, 4.3 \ Hz, H11), 1.65 \ (1H, dqd, J = 9.2, 6.8, 4.1 \ Hz, H5), 1.29 \ (1H, dqd, J = 8.4, 6.9, 4.3 \ Hz, H9), 1.23 \ (6H, s, H16'), 1.22 \ (6H, s, H16), 1.17 \ (3H, d, J = 6.9 \ Hz, H4), 1.03 \ (1H, m, H13) 0.92 \ (3H, d, J = 7.1 \ Hz, H14), 0.81 \ (3H, d, J = 6.8 \ Hz, H6), 0.77 \ (3H, d, J = 6.8 \ Hz, H12), 0.76 \ (3H, d, J = 6.9 \ Hz, H10), 0.73 \ (3H, d, J = 6.9 \ Hz, H8) \ ppm
\]

\[\text{^13C NMR: } (101 MHz, \text{Chloroform-}d) \delta 89.4 \ (C2), 82.9 \ (C15), 68.8 \ (C1), 39.7 \ (C9), 38.7 \ (C5), 36.9 \ (C7), 35.8 \ (C11), 29.6 \ (C3), 25.0 \ (C16), 24.7 \ (C16'), 21.8 \ (C13), 18.5 \ (C4), 13.1 \ (C14), 12.3 \ (C12), 11.8 \ (C8), 11.7 \ (C10), 11.5 \ (C6) \ ppm
\]

\[\text{HRMS (m/z): } \text{MALDI}^+ \ \text{calc'd for C}_{20}H_{37}BNaO_2 [M+Na]^+ : 343.2782; \text{found: 343.2788}
\]

\[\text{IR (\nu_{max}) : 3311, 2972, 2931, 2878, 1455, 1381, 1311, 1144, 1095, 854, 625 \ cm}^{-1}
\]

\[\alpha = +10 \ (\text{CHCl}_3, c = 1.0)
\]

Triisopropyl((3R,4S,5R,6S,7R,8R)-3,4,5,6,7-pentamethylnon-8-yn-2-yl)-1,3,2-dioxaborolane-2-yl)non-1-yn-1-yl)silane (156)

\[
\begin{align*}
\text{TLC: } R_f &= 0.34 \ (n\text{-pentane:CH}_2\text{Cl}_2 80:20)
\end{align*}
\]

\[\text{^1H NMR: } (400 MHz, \text{Chloroform-}d) \delta 2.36 \ (1H, dq, J = 8.9, 6.8 \ Hz, H5), 1.92 \ (1H, dqd, J = 8.7, 6.8, 3.8 \ Hz, H9), 1.66 \ (1H, dqd, J = 9.4, 6.8, 3.9 \ Hz, H13), 1.60 \ (1H, dqd, J = 8.9, 6.8, 3.8 \ Hz,
\]

Alkyne 155 (70 mg, 0.22 mmol, 1.00 equiv.) was protected with LDA (0.86 M in THF, 0.28 mL, 0.24 mmol, 1.10 equiv.) and TiPCl (0.05 mL, 0.24 mmol, 1.10 equiv.) according to GP4. The crude residue was purified by flash column chromatography (n-pentane:CH₂Cl₂ 90:10) to give 156 (79 mg, 75%) as a colourless liquid.

\[\text{TLC: } R_f = 0.34 \ (n\text{-pentane:CH}_2\text{Cl}_2 80:20)
\]

\[\text{^1H NMR: } (400 MHz, \text{Chloroform-}d) \delta 2.36 \ (1H, dq, J = 8.9, 6.8 \ Hz, H5), 1.92 \ (1H, dqd, J = 8.7, 6.8, 3.8 \ Hz, H9), 1.66 \ (1H, dqd, J = 9.4, 6.8, 3.9 \ Hz, H13), 1.60 \ (1H, dqd, J = 8.9, 6.8, 3.8 \ Hz,
H7), 1.27 (1H, dqd, \(J = 8.7, 6.9, 3.9 \) Hz, H11), 1.22 (12H, s, H18 & H18’), 1.17 (3H, d, \(J = 6.8 \) Hz, H6), 1.10 – 0.95 (22H, m, H1, H2 & H15), 0.92 (3H, d, \(J = 6.9 \) Hz, H16), 0.80 (3H, d, \(J = 6.8 \) Hz, H8), 0.76 (3H, d, \(J = 6.8 \) Hz, H14), 0.75 (3H, d, \(J = 6.9 \) Hz, H12), 0.74 (3H, d, \(J = 6.8 \) Hz, H10) ppm

\(^{13}\)C NMR: (101 MHz, Chloroform-\(d\)) \(\delta \) 113.7 (C4), 82.8 (C17), 80.5 (C3), 40.0 (C11), 38.7 (C7), 37.4 (C9), 35.7 (C13), 31.2 (C5), 25.0 (C18), 24.7 (C18’), 22.0 (C15), 19.2 (C6), 18.8 (C1), 13.4 (C16), 12.1 (C14), 11.8 (C10 or C12), 11.8 (C12 or C10), 11.5 (C2), 11.3 (C8) ppm

HRMS (\(m/z \)): (MALDI\(^+\)) calc’d for \(C_{29}H_{57}BNaO_{2}\Si \) \([M+Na]^+\): 499.4119; found: 499.4111

IR (\(\nu_{\text{max}} \)): 2963, 2942, 2865, 2162, 1459, 1381, 1312, 1145, 1096, 882, 859, 663 \(\text{cm}^{-1} \)

\([\alpha]_{D}^{22} \): +13 (CHCl\(_3\), \(c = 1.0 \))

\((3R,4S,5R,6S,7R,8S,9S)-3,4,5,6,7,8-Hexamethyl-9-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dec-1-yn-1-yl\)triisopropylsilane (157)

Boronic ester 156 (79 mg, 0.17 mmol, 1.00 equiv.) was homologated with stannane (R)-93 (95 mg, 0.22 mmol, 1.30 equiv.) and \(n\)-BuLi (1.52 M in \(n\)-hexane, 0.14 mL, 0.22 mmol, 1.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (\(n\)-pentane:CH\(_2\)Cl\(_2\) 95:5) to give 157 (70 mg, 82%) as a colourless liquid.

TLC: \(R_{f} = 0.34 \) (\(n\)-pentane:CH\(_2\)Cl\(_2\) 80:20)

\(^{1}\)H NMR: (400 MHz, Chloroform-\(d\)) \(\delta \) 2.46 (1H, dq, \(J = 7.3, 6.9 \) Hz, H5), 1.85 (1H, dqd, \(J = 7.1, 6.8, 4.9 \) Hz, H9), 1.67 (1H, app. pentd, \(J_{\text{ppp}} = 6.8, 5.7 \) Hz, H15), 1.59 (1H, dqd, \(J = 7.3, 6.8, 4.9 \) Hz, H7), 1.43 (1H, dqd, \(J = 7.1, 6.6, 5.1 \) Hz, H11), 1.40 (1H, dqd, \(J = 6.8, 5.1, 6.6 \) Hz, H13), 1.23 (6H, s, H20), 1.22 (6H, s, H20’), 1.18 (1H, m, H17), 1.14 (3H, d, \(J = 6.9 \) Hz, H6), 1.09 – 0.96 (21H, m, H1 & H2), 0.86 (3H, d, \(J = 7.4 \) Hz, H18), 0.83 (3H, d, \(J = 6.8 \) Hz, H8), 0.80 (3H, d, \(J = 6.8 \) Hz, H16), 0.77 (3H, d, \(J = 6.7 \) Hz, H10), 0.75 – 0.72 (6H, m, H12 & H14) ppm

\(^{13}\)C NMR: (101 MHz, Chloroform-\(d\)) \(\delta \) 114.0 (C4), 82.9 (C19), 80.3 (C3), 39.0 (C7), 36.9 (C13), 36.6 (C9), 36.2 (C11), 35.9 (C15), 30.6 (C5), 25.1 (C20), 24.8 (C20’), 20.0 (C17), 18.8 (C1), 18.1 (C6), 14.7 (C16), 12.2 (C8), 11.9 (C12 or C14), 11.7 (C10), 11.6 (C14 or C12), 11.5 (C2), 10.4 (C18) ppm

HRMS (\(m/z \)): (ESI\(^+\)) calc’d for \(C_{31}H_{61}BNaO_{2}\Si \) \([M+Na]^+\): 527.4432; found: 527.4426
(3R,4S,5R,6S,7S,8R,9S)-3,4,5,6,7,8,9-Heptamethylundeca-1,10-diyn-1-yl)triisopropylsilane (158)

Boronic ester 157 (69 mg, 0.14 mmol, 1.00 equiv.) was alkynylated with vinyl carbamate 15 (26 mg, 0.15 mmol, 1.10 equiv.), LDA (0.86 M in THF, 0.17 mL, 0.15 mmol, 1.10 equiv.), iodine (38 mg, 0.15 mmol, 1.10 equiv.) and LDA (0.86 M in THF, 0.40 mL, 0.34 mmol, 2.50 equiv.) according to GP3. The crude residue was purified by flash column chromatography (pure n-pentane) to give 158 (46 mg, 84%) as a colourless liquid.

TLC: $R_f = 0.35$ (n-pentane)

1H NMR: (400 MHz, Chloroform-d) δ 2.52 (1H, qdd, $J = 6.9$, 6.8, 2.4 Hz, H17), 2.48 (1H, qd, $J = 7.2$, 6.9 Hz, H5), 2.03 (1H, d, $J = 2.4$ Hz, H20), 1.83 (1H, dqq, $J = 7.0$, 6.8, 5.1 Hz, H9), 1.70 (1H, dqq, $J = 6.7$, 6.5, 6.3 Hz, H13), 1.61 (1H, app. pentd, $J_{app} = 6.8$, 6.3 Hz, H15), 1.58 (1H, dqq, $J = 7.2$, 6.8, 5.1 Hz, H7), 1.35 (1H, ddq, $J = 7.0$, 6.7, 6.5 Hz, H11), 1.13 (3H, d, $J = 6.9$ Hz, H6), 1.10 (3H, d, $J = 6.9$ Hz, H18), 1.10 – 0.95 (21H, m, H1 & H2), 0.88 (3H, d, $J = 6.8$ Hz, H16), 0.84 (3H, d, $J = 6.8$ Hz, H8), 0.78 (3H, d, $J = 6.5$ Hz, H12), 0.77 (3H, d, $J = 6.8$ Hz, H10), 0.76 (3H, d, $J = 6.5$ Hz, H14) ppm

13C NMR: (101 MHz, Chloroform-d) δ 113.8 (C4), 89.6 (C19), 80.4 (C3), 68.5 (C20), 39.4 (C15), 39.0 (C7), 36.6 (C11), 36.4 (C9), 35.7 (C13), 30.4 (C5), 28.5 (C17), 18.8 (C1), 17.9 (C6), 16.5 (C18), 12.7 (C16), 12.3 (C8), 11.9 (C12), 11.5 (C10), 11.5 (C2), 11.5 (C14) ppm

HRMS (m/z): (MALDI$^+$) calc’d for C$_{27}$H$_{50}$NaSi [M+Na]$^+$: 425.3579; found: 425.2768

IR (ν_{max}): 3312, 2967, 2941, 2865, 2162, 1462, 1382, 1089, 996, 883, 664, 627 cm$^{-1}$

$[\alpha]_D^{25}$: +5 (CHCl$_3$, $c = 1.0$)

IR (ν_{max}): 2965, 2941, 2865, 2163, 1461, 1381, 1311, 1146, 883, 676 cm$^{-1}$

$[\alpha]_D^{24}$: −4 (CHCl$_3$, $c = 1.0$)
(3R,4S,5R,6S,7S,8R,9S)-3,4,5,6,7,8,9-Heptamethylundeca-1,10-diyne (C7)

Protected alkyne 158 (45 mg, 0.11 mmol, 1.00 equiv.) was deprotected with TBAF (1.00 M in THF, 0.22 mL, 0.22 mmol, 2.00 equiv.) according to GP5. The crude residue was purified by flash column chromatography (pure n-pentane) to give C7 (25 mg, 91%) as a colourless liquid.

TLC: Rf = 0.28 (n-pentane)

1H NMR: (500 MHz, Toluene-d8) δ 2.37 (2H, dqd, J = 7.1, 6.9, 2.4 Hz, H3), 1.83 (2H, d, J = 2.4 Hz, H1), 1.81 (2H, qdd, J = 6.8, 6.7, 5.6 Hz, H7), 1.62 (2H, d, J = 7.1, 6.9, 5.6 Hz, H5), 1.24 (1H, qt, J = 6.8, 6.5 Hz, H9), 1.04 (6H, d, J = 6.9 Hz, H4), 0.79 (6H, d, J = 6.9 Hz, H6), 0.76 (6H, d, J = 6.8 Hz, H8), 0.70 (3H, d, J = 6.8 Hz, H10) ppm

13C NMR: (126 MHz, Toluene-d8) δ 88.9 (C2), 69.3 (C1), 39.4 (C5), 36.8 (C9), 36.1 (C7), 29.1 (C3), 17.0 (C4), 12.4 (C6), 11.7 (C10), 11.4 (C8) ppm

HRMS (m/z): Despite repeated attempts, a HRMS could not be obtained.

IR (νmax): 3309, 2972, 2937, 2880, 1454, 1383, 1088, 627 cm⁻¹

(3S,4R,5S,6R,7S,8R,9S,10S)-3,4,5,6,7,8,9,10-Octamethyldodeca-1,11-diyne (C8) and 2-((2S,3S,4R,5S,6R,7S,8R,9S)-3,4,5,6,7,8,9-Heptamethylundec-10-yn-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (159)

Boronic ester 153 (152 mg, 0.32 mmol, 1.00 equiv.) was alkynylated with vinyl carbamate 15 (60 mg, 0.35 mmol, 1.10 equiv.), LDA (0.86 M in THF, 0.41 mL, 0.35 mmol, 1.10 equiv.), iodine (89 mg, 0.35 mmol, 1.10 equiv.) and LDA (0.86 M in THF, 0.92 mL, 0.79 mmol, 2.50 equiv.) according to GP3. The crude residue was purified by flash column chromatography (pure n-pentane) to give C8 (8 mg, 9%) as a colourless liquid; followed by (n-pentane:CH2Cl2 80:20) to give 159 (58 mg, 48%) as a colourless liquid.
(3S,4R,5S,6R,7R,8S,9R,10S)-3,4,5,6,7,8,9,10-Octamethyldodeca-1,11-diyne (C8)

TLC: \(R_t = 0.34 \) (n-pentane)

\(^1\)H NMR: (500 MHz, Toluene-\(d_8\)) \(\delta \) 2.22 (2H, dqd, \(J = 9.2, 6.9, 2.4 \) Hz, H3), 2.05 (2H, dqd, \(J = 8.5, 6.8, 3.4 \) Hz, H7), 1.84 (2H, d, \(J = 2.4 \) Hz, H1), 1.67 (2H, dqd, \(J = 9.2, 6.8, 3.4 \) Hz, H5), 1.49 (2H, m, H9), 1.10 (6H, d, \(J = 6.9 \) Hz, H4), 0.88 (6H, d, \(J = 6.7 \) Hz, H10), 0.75 (6H, d, \(J = 6.8 \) Hz, H8), 0.70 (6H, d, \(J = 6.9 \) Hz, H6) ppm

\(^13\)C NMR: (126 MHz, Toluene-\(d_8\)) \(\delta \) 88.6 (C2), 69.6 (C1), 38.8 (C5), 37.1 (C7), 35.8 (C9), 30.1 (C3), 18.9 (C4), 11.9 (C8), 11.6 (C10), 11.4 (C6) ppm

HRMS (m/z): Despite repeated attempts, a HRMS could not be obtained.

IR (\(\nu_{\text{max}} \)): 3310, 2970, 2921, 2879, 1453, 1383, 1086, 623 cm\(^{-1}\)

\([\alpha]_D^{24} \): +4 (CHCl\(_3\), \(c = 0.25 \))

2-((2S,3S,4R,5S,6R,7S,8R,9S)-3,4,5,6,7,8,9-Heptamethylundec-10-yn-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (159)

TLC: \(R_t = 0.49 \) (n-pentane:Et\(_2\)O 95:5)

\(^1\)H NMR: (400 MHz, Chloroform-\(d_6\)) \(\delta \) 2.36 (1H, dqd, \(J = 8.8, 6.9, 2.4 \) Hz, H3), 2.04 (1H, d, \(J = 2.4 \) Hz, H1), 1.84 (1H, dqd, \(J = 8.2, 6.8, 3.8 \) Hz, H7), 1.69 (1H, dqd, \(J = 9.0, 6.8, 4.1 \) Hz, H15), 1.62 (1H, dqd, \(J = 8.8, 6.8, 3.8 \) Hz, H5), 1.49 (1H, dqd, \(J = 8.2, 6.8, 4.2 \) Hz, H9), 1.47 (1H, dqd, \(J = 8.0, 6.6, 4.2 \) Hz, H11), 1.32 (1H, dqd, \(J = 8.0, 6.8, 4.1 \) Hz, H13), 1.23 (6H, s, H20), 1.23 (6H, s, H20'), 1.17 (3H, d, \(J = 6.9 \) Hz, H4), 1.04 (1H, m, H17), 0.92 (3H, d, \(J = 7.2 \) Hz, H18), 0.78 (3H, d, \(J = 6.8 \) Hz, H6), 0.77 (3H, d, \(J = 6.8 \) Hz, H10), 0.75 (3H, d, \(J = 6.8 \) Hz, H8), 0.75 (3H, d, \(J = 6.8 \) Hz, H14), 0.74 (3H, d, \(J = 6.8 \) Hz, H16), 0.73 (3H, d, \(J = 6.6 \) Hz, H12) ppm

\(^13\)C NMR: (101 MHz, Chloroform-\(d_6\)) \(\delta \) 89.4 (C2), 82.9 (C19), 68.8 (C1), 39.7 (C13), 38.7 (C5), 36.8 (C7), 35.8 (C11), 35.7 (C15), 35.5 (C9), 29.7 (C3), 25.1 (C20), 24.7 (C20'), 21.9 (C17), 18.5 (C4), 13.1 (C18), 12.6 (CH\(_3\)), 12.0 (CH\(_3\)), 11.9 (CH\(_3\)), 11.7 (CH\(_3\)), 11.7 (CH\(_3\)), 11.7 (CH\(_3\)) ppm
HRMS (m/z): (MALDI-MSI) calc’d for C_{24}H_{45}BNaO_{2}[M+Na]^+: 399.3441; found: 399.3434

IR (\nu_{\text{max}}): 3311, 2970, 2931, 2878, 1455, 1381, 1312, 1145, 1086, 851, 626 cm^{-1}

[\alpha]_D^{23} = -16 (CHCl_3, c = 1.0)

((3S,4R,5S,6R,7S,8R,9S,10S)-3,4,5,6,7,8,9-Heptamethyl-10-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)undec-1-yn-1-yl)triisopropylsilane (160)

Alkyne 159 (50 mg, 0.13 mmol, 1.00 equiv.) was protected with LDA (0.86 M in THF, 0.17 mL, 0.28 mmol, 1.10 equiv.) and TIPSCI (0.03 mL, 0.28 mmol, 1.10 equiv.) according to GP4. The crude residue was purified by flash column chromatography (n-pentane:CH_2Cl_2 95:5) to give 160 (50 mg, 71%) as a colourless liquid.

TLC: R_f = 0.32 (n-pentane:CH_2Cl_2 80:20)

^1\text{H} NMR: (400 MHz, Chloroform-d) \delta 2.37 (1H, dq, J = 9.0, 6.8 Hz, H5), 1.93 (1H, dqd, J = 8.4, 6.8, 3.7 Hz, H9), 1.70 (1H, dqd, J = 9.2, 6.8, 3.7 Hz, H17), 1.57 (1H, dqd, J = 9.0, 6.8, 3.7 Hz, H7), 1.49 (1H, dqd, J = 8.4, 6.6, 3.7 Hz, H11), 1.45 (1H, dqd, J = 8.5, 6.7, 3.7 Hz, H13), 1.30 (1H, dqd, J = 8.5, 6.8, 4.0 Hz, H15), 1.24 (6H, s, H22), 1.23 (6H, s, H22'), 1.18 (3H, d, J = 6.8 Hz, H6), 1.10 – 0.96 (22H, m, H1, H2 & H19), 0.93 (3H, d, J = 7.0 Hz, H20), 0.77 (3H, d, J = 6.8 Hz, H8), 0.77 (3H, d, J = 6.7 Hz, H12), 0.76 (3H, d, J = 6.8 Hz, H10), 0.75 (3H, d, J = 6.8 Hz, H16), 0.74 (3H, d, J = 6.8 Hz, H18), 0.72 (3H, d, J = 6.7 Hz, H14) ppm

^13\text{C} NMR: (101 MHz, Chloroform-d) \delta 113.7 (C4), 82.9 (C21), 80.5 (C3), 40.0 (C15), 38.6 (C7), 37.2 (C9), 35.8 (C13), 35.6 (C11), 35.6 (C17), 31.3 (C5), 25.1 (C22), 24.7 (C22'), 22.2 (C19), 19.3 (C6), 18.8 (C1), 13.4 (C20), 12.4 (CH_3), 12.0 (CH_3), 11.8 (CH_3), 11.8 (CH_3), 11.7 (CH_3), 11.6 (CH_3), 11.5 (C2) ppm

HRMS (m/z): (ESI) calc’d for C_{33}H_{65}BNaO_2Si [M+Na]^+: 555.4745; found: 555.4736

IR (\nu_{\text{max}}): 2966, 2942, 2865, 2163, 1461, 1381, 1311, 1146, 1078, 883, 676 cm^{-1}

[\alpha]_D^{24} = -4 (CHCl_3, c = 1.0)
Triisopropyl((3S,4R,5S,6R,7S,8R,9S,10R,11R)-3,4,5,6,7,8,9,10-octamethyl-11-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dodec-1-yn-1-yl)silane (161)

Boronic ester 160 (45 mg, 0.08 mmol, 1.00 equiv.) was homologated with stannane (S)-93 (56 mg, 0.13 mmol, 1.30 equiv.) and n-BuLi (1.58 M in n-hexane, 0.08 mL, 0.13 mmol, 1.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (n-pentane:CH₂Cl₂ 95:5) to give 161 (41 mg, 87%) as a colourless liquid.

TLC: Rₚ = 0.33 (n-pentane:CH₂Cl₂ 80:20)

¹H NMR: (400 MHz, Chloroform-d) δ 2.46 (1H, dq, J = 7.6, 6.9 Hz, H5), 1.84 (1H, dqd, J = 7.1, 6.8, 4.7 Hz, H9), 1.68 (1H, dqd, J = 6.9, 6.8, 5.8 Hz, H19), 1.60 (1H, dqd, J = 7.6, 6.8, 4.7 Hz, H7), 1.52 (1H, dqd, J = 7.0, 6.5, 4.6 Hz, H15), 1.46 (1H, dqd, J = 7.0, 6.4, 6.8 Hz, H13), 1.42 (1H, dqd, J = 7.1, 6.7, 6.8 Hz, H11), 1.41 (1H, dqd, J = 6.9, 6.7, 4.6 Hz, H17), 1.23 (6H, s, H24), 1.23 (6H, s, H24'), 1.18 (1H, m, H21), 1.14 (3H, d, J = 6.9 Hz, H6), 1.07 – 0.98 (21H, m, H1 & H2), 0.87 (3H, d, J = 7.3 Hz, H22), 0.82 (3H, d, J = 6.8 Hz, H8), 0.80 (3H, d, J = 6.8 Hz, H20), 0.75 (3H, d, J = 6.8 Hz, H10), 0.74 (3H, d, J = 6.7 Hz, H12), 0.74 (3H, d, J = 6.5 Hz, H16), 0.72 (3H, d, J = 6.7 Hz, H18), 0.71 (3H, d, J = 6.4 Hz, H14) ppm

¹³C NMR: (101 MHz, Chloroform-d) δ 114.0 (C4), 82.9 (C23), 80.4 (C3), 39.1 (C7), 37.3 (C17), 36.7 (C9), 36.1 (C11 & C19), 36.0 (C13), 35.3 (C15), 30.7 (C5), 25.1 (C24), 24.8 (C24'), 20.2 (C21), 18.8 (C1), 18.2 (C6), 14.6 (C20), 12.2 (C8), 12.1 (2 × CH₃), 11.8 (CH₃), 11.8 (CH₃), 11.7 (CH₃), 11.5 (C2), 10.6 (C22) ppm

HRMS (m/z): (ESI⁺) calcd for C₃₅H₆₉BNaO₂Si [M+Na]⁺: 583.5059; found: 583.5052

IR (ν_max): 2966, 2941, 2865, 2162, 1461, 1381, 1146, 1078, 883, 676 cm⁻¹

[α]D²² : -1 (CHCl₃, c = 1.0)

Triisopropyl((3S,4R,5S,6R,7S,8S,9R,10S,11R)-3,4,5,6,7,8,9,10,11-nonamethyltrideca-1,12-diyn-1-yl)silane (162)
Boronic ester 161 (34 mg, 0.06 mmol, 1.00 equiv.) was alkynylated with vinyl carbamate 15 (12 mg, 0.07 mmol, 1.10 equiv.), LDA (0.86 M in THF, 0.08 mL, 0.07 mmol, 1.10 equiv.), iodine (17 mg, 0.07 mmol, 1.10 equiv.) and LDA (0.86 M in THF, 0.17 mL, 0.15 mmol, 2.50 equiv.) according to GP3. The crude residue was purified by flash column chromatography (pure n-pentane) to give 162 (21 mg, 75%) as a colourless liquid.

TLC: $R_f = 0.32$ (n-pentane)

1H NMR: (400 MHz, Chloroform-d) δ 2.51 (1H, app. pent, $J_{ppp} = 6.9$, 2.4 Hz, H21), 2.49 (1H, app. pent, $J_{ppp} = 6.9$, 5.0 Hz, H5), 2.03 (1H, d, $J = 2.4$ Hz, H24), 1.82 (1H, app. pentd, $J_{ppp} = 7.0$, 5.0 Hz, H9), 1.73 (1H, app. pentd, $J_{ppp} = 6.6$, 6.0 Hz, H17), 1.61 (1H, app. sext, $J_{ppp} = 6.7$ Hz, H19), 1.59 (1H, dqd, $J = 7.0$, 6.8, 5.0 Hz, H7), 1.50 (1H, dqd, $J = 6.5$, 6.8, 5.5 Hz, H13), 1.47 – 1.34 (2H, m, H11 & H15), 1.14 (3H, d, $J = 6.9$ Hz, H6), 1.11 (3H, d, $J = 6.9$ Hz, H22), 1.08 – 0.98 (21H, m, H1 & H2), 0.87 (3H, d, $J = 6.8$ Hz, H20), 0.84 (3H, d, $J = 6.8$ Hz, H8), 0.77 – 0.72 (15H, m, 5 × CH$_3$) ppm

13C NMR: (101 MHz, Chloroform-d) δ 113.9 (C4), 89.7 (C23), 80.4 (C3), 68.5 (C24), 39.6 (C19), 39.2 (C7), 36.5 (C9), 36.3 (C11 or C15), 36.2 (C15 or C11), 35.9 (C17), 35.4 (C13), 30.5 (C5), 28.6 (C21), 18.8 (C1), 18.0 (C6), 16.7 (C22), 12.6 (C20), 12.3 (C8), 12.2 (CH$_3$), 12.1 (CH$_3$), 11.7 (CH$_3$), 11.6 (CH$_3$), 11.6 (C2) ppm

HRMS (m/z): (MALDI$^+$) calc’d for C$_{31}$H$_{58}$NaSi [M+Na]$^+$: 481.4200; found: 481.4205

IR (ν_{max}): 3312, 2968, 2941, 2965, 2162, 1463, 1383, 1085, 883, 676, 628 cm$^{-1}$

$[\alpha]^{D}_{25}$: -2 (CHCl$_3$, $c = 0.8$)

(3R,4S,5R,6S,7s,8R,9S,10R,11S)-3,4,5,6,7,8,9,10,11-Nonamethyltrideca-1,12-diyno (C9)

Protected alkyne 162 (21 mg, 0.05 mmol, 1.00 equiv.) was deprotected with TBAF (1.00 M in THF, 0.09 mL, 0.09 mmol, 2.00 equiv.) according to GP5. The crude residue was purified by flash column chromatography (pure n-pentane) to give C9 (12 mg, 87%) as a colourless liquid.

TLC: $R_f = 0.26$ (n-pentane)

1H NMR: (500 MHz, Toluene-d$_8$) δ 2.39 (2H, qdd, $J = 7.0$, 6.9, 2.4 Hz, H3), 1.86 (2H, qdd, $J = 6.9$, 6.7, 5.3 Hz, H7), 1.84 (2H, d, $J = 2.8$ Hz, H1), 1.65 (2H, qdd, $J = 7.0$, 6.9, 5.3 Hz, H5), 1.57 (1H, qt, $J = 7.0$, 6.1 Hz, H11), 1.41 (2H, app. pentd, $J_{ppp} = 6.7$, 6.1 Hz, H9), 1.07 (6H, d,
$J = 7.0$ Hz, H4), 0.84 (3H, d, $J = 7.0$ Hz, H12), 0.82 (6H, d, $J = 7.0$ Hz, H6), 0.73 (6H, d, $J = 6.9$ Hz, H8), 0.72 (6H, d, $J = 6.7$ Hz, H10) ppm

13C NMR: (126 MHz, Toluene-d_8) δ 89.0 (C2), 69.3 (C1), 39.6 (C5), 36.4 (C9), 36.2 (C7), 35.6 (C11), 29.2 (C3), 17.2 (C4), 12.4 (C6), 12.1 (C10), 11.6 (C8), 11.5 (C12) ppm

HRMS (m/z): Despite repeated attempts, a HRMS could not be obtained.

IR (ν_{max}): 3310, 2971, 2921, 2880, 1453, 1383, 1084, 627 cm$^{-1}$

$(3R,4S,5R,6S,7R,8R,9S,10R,11S,12R$)-3,4,5,6,7,8,9,10,11,12-Decamethyltetradeca-1,13-diyn 154 (73 mg, 0.43 mmol, 1.10 equiv.), LDA (0.86 M in THF, 0.50 mL, 0.43 mmol, 1.10 equiv.), iodine (109 mg, 0.43 mmol, 1.10 equiv.) and LDA (0.86 M in THF, 1.13 mL, 0.97 mmol, 2.50 equiv.) according to GP3. The crude residue was purified by flash column chromatography (pure n-pentane) to give C10 (31 mg, 24%) as a white solid, followed by (n-pentane:CH$_2$Cl$_2$ 80:20) to give 163 (74 mg, 44%) as a colourless liquid.

(3R,4S,5R,6S,7R,8R,9S,10R,11S,12R$)$-3,4,5,6,7,8,9,10,11,12-Decamethyltetradeca-1,13-diyn 163

Boronic ester 154 (208 mg, 0.39 mmol, 1.00 equiv.) was alkynylated with vinyl carbamate 15 (73 mg, 0.43 mmol, 1.10 equiv.), LDA (0.86 M in THF, 0.50 mL, 0.43 mmol, 1.10 equiv.), iodine (109 mg, 0.43 mmol, 1.10 equiv.) and LDA (0.86 M in THF, 1.13 mL, 0.97 mmol, 2.50 equiv.) according to GP3. The crude residue was purified by flash column chromatography (pure n-pentane) to give C10 (31 mg, 24%) as a white solid, followed by (n-pentane:CH$_2$Cl$_2$ 80:20) to give 163 (74 mg, 44%) as a colourless liquid.

TLC: $R_f = 0.38$ (n-pentane:CH$_2$Cl$_2$ 90:10)

m.p.: 88 – 92 °C (acetonitrile)

1H NMR: (500 MHz, Toluene-d_8) δ 2.24 (2H, dqd, $J = 9.2$, 6.9, 2.4 Hz, H3), 2.05 (2H, dqd, $J = 8.6$, 6.8, 3.3 Hz, H7), 1.85 (2H, d, $J = 2.4$ Hz, H1), 1.71 (2H, dqd, $J = 9.2$, 6.8, 3.3 Hz, H5), 1.62 (2H, m, H11), 1.52 (2H, dqd, $J = 8.6$, 6.8, 3.2 Hz, H9), 1.11 (6H, d, $J = 6.9$ Hz, H4), 0.87 (6H, d, $J = 6.2$ Hz, H12), 0.81 (6H, d, $J = 6.8$ Hz, H10), 0.77 (6H, d, $J = 6.8$ Hz, H8), 0.74 (6H, d, $J = 6.8$ Hz, H6) ppm
\(^{13}\text{C NMR}\): (126 MHz, Toluene-\(d_8\)) \(\delta\) 88.7 (C2), 69.9 (C1), 38.8 (C5), 37.2 (C7), 35.7 (C9), 35.7 (C11), 30.1 (C3), 18.8 (C4), 12.0 (C10), 11.9 (C8), 11.8 (C12), 11.6 (C6) ppm

\(\text{HRMS (}\text{m/z}\): (MALDI\(^{-}\)) calc’d for C\(_{24}\)H\(_{42}\) \([\text{M–H}]^-\): 329.3214; found: 329.3210

\(\text{IR (}\nu\text{max):}\) 3310, 2971, 2922, 2879, 1452, 1383, 1083 cm\(^{-1}\)

\([\alpha]\)\(_{\text{D}}^{23}\): +7 (CHCl\(_3\), c = 1.0)

\(\text{X-ray:}\) Absolute configuration not determined.
4,4,5,5-Tetramethyl-2-((2R,3R,4S,5R,6S,7R,8S,9R,10S,11R)-3,4,5,6,7,8,9,10,11-nonamethyltridec-12-yn-2-yl)-1,3,2-dioxaborolane (163)

TLC: $R_f = 0.41$ (n-pentane:Et₂O 95:5)

1H NMR: (500 MHz, Chloroform-d) δ 2.36 (1H, dqd, $J = 8.8, 6.9, 2.5$ Hz, H3), 2.04 (1H, d, $J = 2.5$ Hz, H1), 1.85 (1H, dqd, $J = 8.2, 6.8, 3.9$ Hz, H7), 1.70 (1H, dqd, $J = 8.7, 6.7, 4.1$ Hz, H19), 1.63 (1H, dqd, $J = 8.8, 6.9, 3.9$ Hz, H5), 1.55 (1H, dqd, $J = 7.5, 6.8, 4.1$ Hz, H11), 1.51 – 1.43 (2H, m, H13 & H15), 1.44 (1H, dqd, $J = 8.2, 6.8, 4.1$ Hz, H9), 1.32 (1H, dqd, $J = 7.5, 6.8, 4.1$ Hz, H17), 1.23 (6H, s, H24), 1.23 (6H, s, H24’), 1.17 (3H, d, $J = 6.9$ Hz, H22), 0.78 (3H, d, $J = 6.9$ Hz, H6), 0.77 – 0.72 (18H, m, 6 × CH₃), 0.69 (3H, d, $J = 6.7$ Hz, H14 or H16) ppm

13C NMR: (126 MHz, Chloroform-d) δ 89.4 (C2), 82.9 (C23), 68.9 (C1), 39.7 (C17), 38.7 (C5), 36.9 (C7), 35.8 (CH), 35.7(3) (C19), 35.6(5) (CH), 35.4(4) (C11), 35.4(2) (CH), 29.6 (C3), 25.1 (C24), 24.7 (C24’), 21.9 (C21), 18.5 (C4), 12.9(4) (C22), 12.8(6) (CH₁), 12.0(4) (CH₃), 12.0(3) (2 × CH₃), 12.0 (CH₃), 11.9 (C14 or C16), 11.7(4) (C6), 11.7(3) (CH₃) ppm

HRMS (m/z): (MALDI⁺) calc’d for C₂₈H₅₃BNaO₂ [M+Na]⁺: 455.4036; found: 455.4032

IR (ν_{max}): 3311, 2970, 2932, 2879, 1454, 1382, 1313, 1146, 1081, 967 cm⁻¹

$[\alpha]_{D}^{24}$: +13 (CHCl₃, c = 1.0)

Triisopropyl((3R,4S,5R,6S,7R,8S,9R,10S,11R,12R)-3,4,5,6,7,8,9,10,11-nonamethyl-12-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)tridec-1-yn-1-yl)silane (164)

Alkyne 163 (74 mg, 0.17 mmol, 1.00 equiv.) was protected with LDA (0.86 M in THF, 0.22 mL, 0.19 mmol, 1.10 equiv.) and TIPSCI (0.04 mL, 0.19 mmol, 1.10 equiv.) according to GP4. The crude residue was purified by flash column chromatography (n-pentane:CH₂Cl₂ 95:5) to give 164 (77 mg, 76%) as a colourless liquid.

TLC: $R_f = 0.31$ (n-pentane:CH₂Cl₂ 80:20)
1H NMR: (400 MHz, Chloroform-\(d\)) \(\delta\) 2.38 (1H, dq, \(J = 8.8, 6.8\) Hz, H5), 1.93 (1H, dqd, \(J = 8.5, 6.9, 3.8\) Hz, H9), 1.70 (1H, dqd, \(J = 8.9, 6.8, 3.8\) Hz, H21), 1.58 (1H, dqd, \(J = 8.8, 6.8, 3.8\) Hz, H7), 1.55 (1H, m, CH), 1.52 – 1.36 (3H, m, 3 × CH), 1.31 (1H, dqd, \(J = 8.1, 6.8, 3.8\) Hz, H19), 1.24 (6H, s, H26), 1.23 (6H, s, H26'), 1.17 (3H, d, \(J = 6.8\) Hz, H6), 1.10 – 0.96 (22H, m, H1, H2 & H23), 0.92 (3H, d, \(J = 7.1\) Hz, H24), 0.79 – 0.71 (21H, m, 7 × CH3), 0.69 (3H, d, \(J = 6.7\) Hz, CH3) ppm

13C NMR: (101 MHz, Chloroform-\(d\)) \(\delta\) 113.7 (C4), 82.8 (C25), 80.6 (C3), 40.0 (C19), 38.7 (C7), 37.3 (C9), 35.8 (CH), 35.7 (C21), 35.7 (CH), 35.4 (CH), 31.2 (C5), 25.1 (C26), 24.7 (C26'), 22.1 (C23), 19.2 (C6), 18.8 (C1), 13.2 (C24), 12.7 (CH3), 12.1 (CH3), 12.0 (CH3), 11.9 (CH3), 11.8 (CH3), 11.8 (CH3), 11.7 (CH3), 11.5 (C2) ppm

HRMS (m/z): (ESI+) calc’d for C37H73BNaO2Si [M+Na]+: 611.5372; found: 611.5373

IR (\(\nu_{\text{max}}\)): 2967, 2942, 2866, 2163, 1459, 1382, 1313, 1146, 1081, 883 cm\(^{-1}\)

[\(\alpha\)]\(_D^{24}\): +16 (CHCl₃, \(c = 1.0\))

\((3R,4S,5R,6S,7R,8S,9R,10S,11R,12S,13S)-3,4,5,6,7,8,9,10,11,12-Decamethyl-13-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)tetradec-1-yn-1-yl)triisopropylsilane (165)

Boronic ester 164 (70 mg, 0.12 mmol, 1.00 equiv.) was homologated with stannane (\(R\))-93 (68 mg, 0.15 mmol, 1.30 equiv.) and \(n\)-BuLi (1.54 M in \(n\)-hexane, 0.10 mL, 0.15 mmol, 1.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (\(n\)-pentane:CH₂Cl₂ 95:5) to give 165 (66 mg, 90%) as a colourless wax.

TLC: \(R_t = 0.31\) (\(n\)-pentane:CH₂Cl₂ 80:20)

1H NMR: (400 MHz, Chloroform-\(d\)) \(\delta\) 2.46 (1H, dq, \(J = 7.5, 6.9\) Hz, H5), 1.85 (1H, dqd, \(J = 7.5, 6.9, 4.7\) Hz, H7), 1.68 (1H, m, H21), 1.59 (1H, dqd, \(J = 7.5, 6.9, 4.7\) Hz, H23), 1.54 – 1.44 (4H, m, H11, H13, H15 & H17), 1.44 – 1.38 (2H, m, H9 & H19), 1.24 (6H, s, H28), 1.23 (6H, s, H28'), 1.19 (1H, m, H25), 1.14 (3H, d, \(J = 6.9\) Hz, H4), 1.09 – 0.96 (21H, m, H1 & H2), 0.87 (3H, d, \(J = 7.4\) Hz, H26), 0.82 (3H, d, \(J = 6.9\) Hz, H6), 0.80 (3H, d, \(J = 6.8\) Hz, H22), 0.75 (3H, d, \(J = 6.7\) Hz, H8), 0.74 – 0.69 (18H, m, 6 × CH₃) ppm

13C NMR: (101 MHz, Chloroform-\(d\)) \(\delta\) 113.9 (C4), 82.9 (C27), 80.4 (C3), 39.0 (C7), 37.3 (C21), 36.7 (C9), 36.1 (C11), 36.1 (C23), 36.1 (CH), 35.7 (CH), 35.5 (CH), 35.4 (CH), 30.7 (C5), 25.1
(C28), 24.8 (C28’), 20.3 (C25), 18.8 (C1), 18.2 (C6), 14.5 (C24), 12.3 (CH3), 12.2 (CH3), 12.1 (1) (CH3), 11.9 (3) (CH3), 11.9 (1) (CH3), 11.8 (C10), 11.8 (CH3), 11.5 (C2), 10.7 (C26) ppm

HRMS (m/z): (MALDI’) calc’d for C39H77BNaO2Si [M+Na]+: 639.5685; found: 639.5689

IR (νmax): 2966, 2941, 2866, 2163, 1461, 1381, 1311, 1145, 1077, 883, 675 cm⁻¹

[α]D²³: +10 (CHCl₃, c = 1.0)

Triisopropyl((3R,4S,5R,6S,7R,8S,9S,10R,11S,12R,13S)-3,4,5,6,7,8,9,10,11,12,13-undecamethylpentadeca-1,14-diynyl)silane (166)

Boronic ester 165 (66 mg, 0.11 mmol, 1.00 equiv.) was alkynylated with vinyl carbamate 15 (20 mg, 0.12 mmol, 1.10 equiv.), LDA (0.86 M in THF, 0.14 mL, 0.12 mmol, 1.10 equiv.), iodine (30 mg, 0.12 mmol, 1.10 equiv.) and LDA (0.86 M in THF, 0.27 mmol, 2.50 equiv.) according to GP3. The crude residue was purified by flash column chromatography (pure n-pentane) to give 166 (38 mg, 69%) as a colourless liquid.

TLC: R₉ = 0.29 (n-pentane)

¹H NMR: (400 MHz, Chloroform-d) δ 2.50 (1H, qdd, J = 6.9, 6.6, 2.4 Hz, H25), 2.48 (1H, dq, J = 7.6, 6.9 Hz, H5), 2.03 (1H, d, J = 2.4 Hz, H28), 1.83 (1H, dqd, J = 7.0, 6.8, 4.9 Hz, H9), 1.74 (1H, qdd, J = 6.7, 6.3, 5.9 Hz, H21), 1.61 (1H, qdd, J = 6.8, 6.6, 6.3 Hz, H23), 1.59 (1H, dqd, J = 7.6, 6.8, 4.9 Hz, H7), 1.55 – 1.44 (3H, m, H13, H15 & H17), 1.48 – 1.37 (2H, m, H11 & H19), 1.14 (3H, d, J = 6.9 Hz, H6), 1.11 (3H, d, J = 6.9 Hz, H26), 0.87 (3H, d, J = 6.8 Hz, H24), 0.83 (3H, d, J = 6.8 Hz, H8), 0.77 – 0.70 (21H, m, 7 × CH₃) ppm

¹³C NMR: (101 MHz, Chloroform-d) δ 113.9 (C4), 89.6 (C27), 80.4 (C3), 68.6 (C28), 39.5 (C23), 39.2 (C7), 36.6 (C9), 36.4 (CH), 36.2 (CH), 36.0 (C21), 35.8 (CH), 35.5 (CH), 35.4 (CH), 30.5 (C5), 28.7 (C25), 18.8 (C1), 18.0 (C6), 16.8 (C26), 12.5 (C24), 12.4 (CH₃), 12.2 (C8), 12.2 (CH₃), 12.1 (CH₃), 11.8 (CH₃), 11.8 (CH₃), 11.7 (CH₃), 11.5 (C2) ppm

HRMS (m/z): (MALDI') calc’d for C35H66NaSi [M+Na]+: 537.4826; found: 537.4818

IR (νmax): 3312, 2967, 2941, 2865, 2162, 1462, 1383, 1082, 883, 664, 628 cm⁻¹

[α]D²²: +3 (CHCl₃, c = 1.0)
(3R,4S,5R,6S,7R,8S,9S,10R,11S,12R,13S)-3,4,5,6,7,8,9,10,11,12,13-Undecamethylpentadeca-1,14-diyne (C11)

Protected alkyne 166 (22 mg, 0.04 mmol, 1.00 equiv.) was deprotected with TBAF (1.00 M in THF, 0.09 mL, 0.09 mmol, 2.00 equiv.) according to GP5. The crude residue was purified by flash column chromatography (pure n-pentane) to give C11 (12 mg, 78%) as a colourless liquid.

TLC: $R_f = 0.24$ (n-pentane)

1H NMR: (400 MHz, Toluene-d$_8$) δ 2.39 (2H, dqd, $J = 7.0$, 6.9, 2.4 Hz, H3), 1.89 (2H, d, $J = 2.4$ Hz, H1), 1.67 (2H, dqd, $J = 7.0$, 6.9, 5.3 Hz, H5), 1.60 (2H, qdd, $J = 6.6$, 6.2, 5.3 Hz, H11), 1.56 (1H, qt, $J = 6.4$, 6.2 Hz, H13), 1.44 (2H, dqd, $J = 6.6$ Hz, H9), 0.83 (6H, d, $J = 6.9$ Hz, H6), 0.81 (6H, d, $J = 6.6$ Hz, H12), 0.76 (6H, d, $J = 6.8$ Hz, H10), 0.75 (6H, d, $J = 6.6$ Hz, H8), 0.74 (3H, d, $J = 6.4$ Hz, H14) ppm

13C NMR: (101 MHz, Toluene-d$_8$) δ 89.0 (C2), 69.3 (C1), 39.6 (C5), 36.5 (C9), 36.4 (C7), 36.1 (C13), 35.8 (C11), 29.3 (C3), 17.3 (C4), 12.4 (C14), 12.3 (C6), 12.2 (C10), 11.7 (C8), 11.7 (C12) ppm

HRMS (m/z): (MALDI$^+$) calc’d for C$_{26}$H$_{46}$Na [M+Na]$^+$: 381.3492; found: 381.3503

IR (ν_{max}): 3310, 2970, 2920, 2879, 1452, 1383, 1081, 627 cm$^{-1}$

4-((2R,3S,4R,5S,6R,7R,8S,9R,10S,11R)-3,4,5,6,7,8,9,10,11-Nonamethyltridec-12-yn-2-yl)-1-phenyl-1H-1,2,3-triazole (168)

In a vial, alkyne C10 (12 mg, 0.04 mmol, 1.00 equiv.) was dissolved in THF (0.20 mL) at room temperature. A solution of copper sulphate pentahydrate (0.18 M in water, 0.01 mL, 2 µmol, 0.05 equiv.) was added, followed by a solution of sodium ascorbate (0.04 M in water, 0.20 mL, 8 µmol, 0.20 equiv.). The colour of the solution evolved from blue to green to orange. A solution of phenyl azide (0.88 M in THF, 0.05 mL, 0.04 mmol, 1.20 equiv.) was added. The vial was capped and the reaction mixture was stirred at 50 °C for 16 h. The suspension was concentrated.
under reduced pressure and the residue was purified by flash column chromatography (n-pentane:Et$_2$O 100:0→85:15) to give triazole 168 (7 mg, 43%) as a colourless liquid.

TLC: $R_f = 0.33$ (n-pentane:Et$_2$O 80:20)

1H NMR (500 MHz, Chloroform-d): δ 7.73 (2H, m, H26), 7.67 (1H, s, H24), 7.51 (2H, m, H27), 7.42 (1H, d, $J = 2.4$ Hz, H1), 1.98 (1H, dqd, $J = 8.6, 6.8, 4.0$ Hz, H19), 1.84 (1H, dqd, $J = 7.9, 6.9, 4.1$ Hz, H7), 1.60 (1H, dqd, $J = 8.5, 6.8, 4.1$ Hz, H5), 1.55–1.43 (4H, m, 4×CH), 1.30 (3H, d, $J = 7.0$ Hz, H22), 1.28 (1H, m, H17), 1.15 (3H, d, $J = 6.9$ Hz, H4), 0.87 (3H, d, $J = 6.8$ Hz, H20), 0.80–0.72 (15H, m, 5×CH$_3$), 0.67 (3H, d, $J = 6.6$ Hz, H16), 0.54 (3H, d, $J = 6.1$ Hz, H12 or H14) ppm

13C NMR (126 MHz, Chloroform-d): δ 154.3 (C23), 137.5 (C25), 129.8 (C27), 128.5 (C28), 120.5 (C26), 118.2 (C24), 89.3 (C2), 68.9 (C1), 39.3 (C19), 38.8 (C5), 36.7 (C7), 36.3 (C17), 35.6 (CH), 35.5 (CH), 35.4 (2×CH), 34.3 (C21), 29.5 (C3), 18.3 (C4), 18.0 (C22), 12.0 (CH$_3$), 12.0(1) (CH$_3$), 12.0(0) (CH$_3$), 11.9(4) (CH$_3$), 11.8(8) (CH$_3$), 11.8(5) (CH$_3$), 11.8(4) (CH$_3$), 11.8(0) (CH$_3$), 11.7 (CH$_3$) ppm

HRMS (m/z): (ESI$^+$) calc’d. for C$_{30}$H$_{47}$N$_3$Na [M+Na]$^+$: 472.3662; found 472.3655

IR (ν_{max}): 3310, 3136, 3065, 2969, 2925, 2878, 1603, 1504, 1453, 1383, 1038, 758 cm$^{-1}$

[α]D_24: +5 (CHCl$_3$, c = 1.0)

1,1’-((2R,3S,4R,5S,6R,7R,8S,9R,10S,11R)-3,4,5,6,7,8,9,10-Octamethyldodecane-2,11-diyl)dinaphthalene (169)

In a flame-dried Schlenk tube, 1-bromonaphthalene (0.03 mL, 0.20 mmol, 2.10 equiv.) was dissolved in anhydrous Et$_2$O (1.00 mL) at 0 °C under an atmosphere of nitrogen. A solution of n-BuLi (1.60 M in n-hexane, 0.12 mL, 0.20 mmol, 2.10 equiv.) was added and the resulting suspension was stirred at the same temperature for 1 h. A solution of boronic ester 154 (50 mg, 0.09 mmol, 1.00 equiv.) in anhydrous Et$_2$O (1.00 mL) was added dropwise at 0 °C over 10 min. After the addition, the mixture was stirred at the same temperature for 2 h. Solvents were removed in situ and the residue was dissolved in a mixture of dry MeOH and anhydrous THF (2:1) at −78 °C under an atmosphere of nitrogen. A solution of NBS (80 mg, 0.45 mmol, 4.80 equiv.) in
dry MeOH (2.50 mL) was added dropwise at the same temperature. After the addition, the acetone/dry ice bath was removed and the reaction mixture was stirred at room temperature for 1 h. A saturated aqueous solution of Na$_2$S$_2$O$_3$ (5.00 mL) was added. After 5 min, the suspension was extracted with Et$_2$O (3 × 5.00 mL). The organic layers were combined, washed with brine, dried over MgSO$_4$, filtered and concentrated under reduced pressure. The yellow residue was purified by flash column chromatography (n-pentane:Et$_2$O 100:0→99.5:0.5) to give compound 169 (12 mg, 24%) as a white solid.

TLC: $R_f = 0.69$ (n-pentane:Et$_2$O 95:5)

m.p.: 157 – 159 °C (acetonitrile)

1H NMR (500 MHz, Chloroform-$_d$): δ 8.17 (2H, dd, $J = 8.2$, 1.6 Hz, H2), 7.85 (2H, dd, $J = 7.6$, 2.0 Hz, H5), 7.68 (2H, dd, $J = 8.0$, 1.2 Hz, H7), 7.48 (2H, ddd, $J = 8.2$, 6.6, 2.0 Hz, H3), 7.45 (2H, ddd, $J = 7.6$, 6.7, 1.6 Hz, H4), 7.43 (2H, dd, $J = 8.0$, 7.3 Hz, H8), 7.36 (2H, dd, $J = 7.2$, 1.2 Hz, H9), 3.50 (2H, m, H11), 2.10 (2H, m, H13), 1.46 (2H, dqd, $J = 8.8$, 6.8, 2.5 Hz, H17), 1.37 (2H, m, H19), 1.30 (6H, d, $J = 6.9$ Hz, H12), 1.07 (2H, dqd, $J = 8.8$, 6.8, 2.9 Hz, H15), 0.92 (6H, d, $J = 6.7$ Hz, H14), 0.67 (6H, d, $J = 6.8$ Hz, H16), 0.55 (6H, d, $J = 6.8$ Hz, H18), 0.33 (6H, m, H20) ppm

1C NMR (126 MHz, Chloroform-$_d$): δ 144.3 (C10), 134.1 (C6), 132.0 (C1), 129.1 (C5), 126.1 (C7), 125.7 (C4 or C8), 125.6 (C8 or C4), 125.2 (C3), 124.1 (C9), 123.4 (C2), 39.4 (C13), 37.2* (C11), 36.3 (C15), 35.6 (C17), 35.5 (C19), 20.8 (C12), 12.3 (C16), 12.1 (C14), 11.9 (C18 or C20), 11.9 (C20 or C18) ppm

*Shift value determined by HSQC correlation.

HRMS (m/z): (MALDI$^+$) calc’d. for C$_{40}$H$_{54}$Na [M+Na]$^+$: 557.4118; found 557.4110

IR (ν$_{max}$): 3049, 2966, 2925, 1453, 1382, 1260, 1083, 778 cm$^{-1}$

$[\alpha]_D^{25}$: $+45$ (CHCl$_3$, $c = 1.0$)

X-ray: Absolute configuration not determined. The compound undergoes a phase transition between 180 and 160 K. The cell above the transition is monoclinic, P2$_1$ with half the volume, Z’=2.
4,4,5,5-Tetramethyl-2-((2R,3R,4S,5R,6S,7R,8S,9R,10S,11R)-3,4,5,6,7,8,9,10-octamethyl-11-(naphthalen-1-yl)dodecan-2-yl)-1,3,2-dioxaborolane (170)
(2.00 mL) at 0 °C under an atmosphere of nitrogen. The previously prepared solution of naphthyllithium was added via syringe and the suspension was stirred at 0 °C for 1 h. Solvents were removed under reduced pressure in situ and the residue was re-dissolved in a mixture of anhydrous MeOH (2.00 mL) and anhydrous THF (2.20 mL) at −78 °C under an atmosphere of nitrogen. A solution of NBS (70 mg, 0.39 mmol, 2.10 equiv.) in anhydrous MeOH (2.50 mL) was added dropwise, the acetone/dry ice bath was removed and the reaction mixture was allowed to warm to room temperature for 1 h. A saturated aqueous solution of Na₂S₂O₅ (1.00 mL) was added and the biphasic mixture was extracted with Et₂O (3 × 10.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column chromatography (n-pentane:Et₂O 100:0→99.5:0.5) to give boronic ester 170 (34 mg, 34%) as a colourless liquid.

TLC: Rᵢ = 0.21 (n-pentane:CH₂Cl₂ 80:20)

¹H NMR: (500 MHz, Chloroform-d) δ 8.18 (1H, dd, J = 8.2, 1.6 Hz, H25), 7.85 (1H, dd, J = 7.6, 1.7 Hz, H28), 7.68 (1H, dd, J = 8.2, 1.3 Hz, H30), 7.48 (1H, ddd, J = 8.2, 6.6, 1.7 Hz, H26), 7.45 (1H, ddd, J = 7.6, 6.6, 1.6 Hz, H27), 7.44 (1H, dd, J = 8.0, 7.3 Hz, H31), 7.38 (1H, dd, J = 7.3, 1.3 Hz, H32), 3.54 (1H, dq, J = 9.4, 6.9 Hz, H21), 2.12 (1H, dqd, J = 9.4, 6.8, 3.3 Hz, H19), 1.67 (1H, dqd, J=9.0, 6.7, 4.0 Hz, H5), 1.54 – 1.41 (4H, m, 4 × CH), 1.32 (3H, d, J = 6.9 Hz, H22), 1.30 (1H, m, H7), 1.24 (6H, s, H1), 1.23 (6H, s, H1'), 1.13 (1H, dqd, J = 9.1, 6.8, 3.3 Hz, H17), 1.03 (1H, dq, J = 9.0, 7.2 Hz, H3), 0.94 (3H, d, J = 6.8 Hz, H20), 0.91 (3H, d, J = 7.2 Hz, H4), 0.75 – 0.70 (12H, m, 4 × CH₃), 0.68 (3H, d, J = 6.8 Hz, H18), 0.55 (3H, d, J = 6.7 Hz, CH₃), 0.38 (3H, d, J = 6.0 Hz, CH₃) ppm

¹³C NMR: (126 MHz, Chloroform-d) δ 144.3 (C23), 134.1 (C29), 132.0 (C24), 129.1 (C28), 126.1 (C30), 125.6(3) (CH₃), 125.5(8) (CH₃), 125.2 (CH₃), 124.1 (C32), 123.4 (25), 82.8 (C2), 39.8 (C7), 39.6 (C19), 37.2 (C21), 36.3 (C17), 35.8 (2 × CH), 35.7 (C5), 35.6 (CH), 35.4 (CH), 25.1 (C1), 24.7 (C1'), 21.9 (C3), 20.4 (C22), 13.1 (C4), 12.7 (CH₃), 12.3 (C20), 12.2 (CH₃), 12.1 (C18), 12.0(2) (CH₃), 11.9(8) (CH₃), 11.9(6) (CH₃), 11.8 (CH₃) ppm

HRMS (m/z): (MALDI⁺) calc’d for C₃₆H₅₉BNaO₂ [M+Na]⁺: 557.4507; found: 557.4500

IR (νₓₒₓ): 2968, 2876, 1451, 1378, 1362, 1358, 1307, 1205, 1146, 1077 cm⁻¹

[α]D²⁴: +16 (CHCl₃, c = 1.0)
4,4,5,5-Tetramethyl-2-((2S,3S,4R,5S,6R,7S,8R,9S,10R,11S,12R)-3,4,5,6,7,8,9,10,11-nonamethyl-12-(naphthalen-1-yl)tridecan-2-yl)-1,3,2-dioxaborolane (171)

Boronic ester 170 (55 mg, 0.10 mmol, 1.00 equiv.) was homologated with stannane (R)-93 (59 mg, 0.13 mmol, 1.30 equiv.) and n-BuLi (1.60 M in n-hexane, 0.08 mL, 0.13 mmol, 1.30 equiv.) according to GP2. The crude residue was purified by flash column chromatography (n-pentane:CH₂Cl₂ 100:0→20:80) to give 171 (49 mg, 85%) as a white solid.

TLC: Rᵢ = 0.22 (n-pentane:CH₂Cl₂, 80:20)

m.p.: 181 – 185 °C (n-hexane)

¹H NMR: 500 MHz, Chloroform-d) δ 8.17 (1H, dd, J = 8.6, 1.7 Hz, H27), 7.85 (1H, dd, J = 7.9, 1.7 Hz, H30), 7.68 (1H, dd, J = 8.0, 1.3 Hz, H32), 7.48 (1H, ddd, J = 8.6, 6.7, 1.7 Hz, H28), 7.45 (1H, ddd, J = 7.9, 6.7, 1.7 Hz, H29), 7.44 (1H, dd, J = 8.0, 7.2 Hz, H33), 7.38 (1H, dd, J = 7.2, 1.3 Hz, H34), 3.61 (1H, dq, J = 8.4, 6.9 Hz, H23), 2.05 (1H, dqd, J = 8.4, 6.8, 4.2 Hz, H21), 1.67 (1H, qdd, J = 6.8, 6.7, 6.2 Hz, H5), 1.57 (1H, qdd, J = 8.9, 6.8, 4.4 Hz, H17), 1.54 – 1.43 (3H, m, 3 × CH), 1.42 – 1.34 (2H, m, 2 × CH), 1.31 (3H, d, J = 6.9 Hz, H19), 1.25 (1H, dqq, J = 8.9, 6.8, 4.2 Hz, H18), 0.90 (3H, d, J = 6.5 Hz, CH₃), 0.71 – 0.66 (12H, m, 4 × CH₃), 0.62 (3H, d, J = 6.8 Hz, H18), 0.45 (3H, d, J = 6.7 Hz, CH₃) ppm

¹³C NMR: (126 MHz, Chloroform-d) δ 144.1 (C25), 134.1 (C31), 132.0 (C26), 129.1 (C30), 126.2 (C32), 125.6 (2 × CH₃o), 125.2 (CH₃a), 124.2 (C34), 123.4 (C27), 82.9 (C2), 39.9 (C21), 37.3 (CH), 36.8 (C23), 36.3 (C17), 36.2 (C19), 36.1 (CH), 36.0 (C5), 35.8 (CH), 35.5 (CH), 35.4 (CH), 25.1 (C1), 24.8 (C1’), 20.3 (C3), 19.1 (C24), 14.4 (C6), 12.3 (3 × CH₃), 12.0 (4) (CH₃), 12.0 (3) (CH₃), 11.9 (CH₃), 11.8 (CH₃), 11.7 (CH₃), 10.8 (C4) ppm

HRMS (m/z): (MALDI⁺) calc’d for C₃₈H₆₃BNaO₂ [M+Na]⁺: 585.4820; found: 585.4828

IR (νmax): 2966, 2876, 1450, 1381, 1362, 1307, 1149, 1077, 1016, 965 cm⁻¹

[α]D²³ : +22 (CHCl₃, c = 1.0)
Part A: In a flame-dried Schlenk tube, boronic ester 171 (47 mg, 0.08 mmol, 1.00 equiv.) and vinyl carbamate 15 (18 mg, 0.11 mmol, 1.33 equiv.) were dissolved in anhydrous THF (0.50 mL) at −78 °C under an atmosphere of nitrogen. A freshly prepared solution of LDA (0.86 M in THF, 0.12 mL, 0.11 mmol, 1.33 equiv.) was added and the reaction mixture was stirred at the same temperature for 1 h. The acetone/dry ice bath was replaced with an acetonitrile/dry ice bath and the reaction mixture was stirred at −40 °C for 1 h. After cooling the reaction mixture back to −78 °C, a freshly prepared solution of iodine (27 mg, 0.11 mmol, 1.33 equiv.) in MeOH (0.40 mL) was added dropwise at via syringe. After the addition, the reaction mixture was allowed to stir at room temperature for 1 h. A saturated aqueous solution of NH₄Cl was added and the biphasic mixture was extracted 3 times with Et₂O. The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (pure n-pentane) to give 172 (24 mg, 65%) as a colourless liquid.

TLC: \(R_f = 0.46 \text{ (n-pentane:CH}_2\text{Cl}_2 80:20) \)

\(^1\text{H NMR: (500 MHz, Chloroform-d) \delta 8.16 (1H, dd, } J = 8.3, 1.5 \text{ Hz, H27), 7.85 (1H, dd, } J = 7.9, 1.8 \text{ Hz, H30), 7.69 (1H, dd, } J = 8.1, 1.3 \text{ Hz, H32), 7.48 (1H, ddd, } J = 8.3, 6.8, 1.8 \text{ Hz, H28), 7.45 (1H, ddd, } J = 7.9, 6.8, 1.5 \text{ Hz, H29), 7.44 (1H, dd, } J = 8.1, 7.3 \text{ Hz, H33), 7.38 (1H, dd, } J = 7.3, 1.3 \text{ Hz, H34), 3.63 (1H, dq, } J = 7.9, 6.9 \text{ Hz, H23), 2.49 (1H, dqd, } J = 6.9, 6.8, 2.4 \text{ Hz, H3), 2.03 (1H, d, } J = 2.4 \text{ Hz, H1), 2.02 (1H, dqd, } J = 7.9, 6.8, 4.6 \text{ Hz, H21), 1.71 (1H, qdd, } J = 6.8, 6.0, 5.8 \text{ Hz, H7), 1.61 (1H, qdd, } J = 6.8, 6.9, 5.8 \text{ Hz, H5), 1.58 (1H, dqd, } J = 7.0, 6.8, 5.1 \text{ Hz, H17), 1.54 – 1.43 (2H, m, H11 & H15), 1.40 (1H, qdd, } J = 6.8, 6.3, 6.0 \text{ Hz, H9), 1.35 (1H, qdd, } J = 6.8, 6.5, 6.0 \text{ Hz, H13), 1.32 (3H, d, } J = 6.9 \text{ Hz, H24), 1.29 (1H, dqd, } J = 7.0, 6.8, 4.6 \text{ Hz, H19), 1.11 (3H, d, } J = 6.9 \text{ Hz, H4), 0.90 (3H, d, } J = 6.8 \text{ Hz, H22), 0.85 (3H, d, } J = 6.9 \text{ Hz, H6), 0.74 – 0.71} \)
(6H, m, 2 × CH₃), 0.71 – 0.67 (9H, m, 3 × CH₃), 0.65 (3H, d, J = 6.8 Hz, H18), 0.47 (3H, d, J = 6.8 Hz, CH₃) ppm

¹³C NMR: (126 MHz, Chloroform-d) δ 144.0 (C25), 134.1 (C31), 132.0 (C26), 129.1 (C30), 126.2 (C32), 125.6 (C28), 125.5 (C29), 125.2 (C33), 124.3 (C34), 123.4 (C27), 89.6 (C2), 68.6 (C1), 40.1 (C21), 39.3 (C5), 36.8 (C23), 36.5 (C17), 36.2 (C19), 36.0 (C7), 35.9 (CH₃), 35.4 (CH₃), 28.7 (C3), 18.8 (C24), 16.9 (C4), 12.5 (CH₃), 12.4 (CH₃), 12.3 (CH₃), 12.3 (CH₃), 12.1 (CH₃), 11.9 (CH₃), 11.7 (CH₃), 11.6 (CH₃), 11.6 (CH₃), 11.6 (CH₃) ppm

HRMS (m/z): (MALDI+) calc’d for C₃₄H₅₂Na [M+Na]⁺: 483.3961; found: 483.3968

IR (νmax): 3309, 3047, 2969, 2923, 2878, 2111, 1451, 1382, 1081, 777 cm⁻¹

[α]D²³: +24 (CHCl₃, c = 1.0)

(3R,4S,5R,6S,7S,8R,9S,10R,11S,12R)-12-(tert-Butoxy)-3,4,5,6,7,8,9,10,11-nonamethyl-tridec-1-yne (174)

Part A: Boronic ester 163 (29 mg, 0.07 mmol, 1.00 equiv.) was oxidised according to GP1 to give crude intermediate 173. Part B: Freshly-dried Mg(ClO₄)₂ (1 mg, 5 μmol, 0.10 equiv.) (WARNING: shock sensitive!) was charged in a separated flask at room temperature, under an atmosphere of nitrogen. A solution of alcohol 173 in anhydrous CH₂Cl₂ (0.10 mL) was added, followed by Boc₂O (23 mg, 0.11 mmol, 2.30 equiv.). The reaction mixture was stirred at 40 °C for 48 h. Water (5.00 mL) was added and the biphasic mixture was extracted with Et₂O (3 × 5.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated. The residue was purified by flash column chromatography (n-pentane:Et₂O 95:5) to give ether 174 (9 mg, 36% over 2 steps) as a colourless liquid.

TLC: Rf = 0.57 (n-pentane:Et₂O 95:5)

¹H NMR (500 MHz, Chloroform-d): δ 3.47 (1H, app. pent, Japp = 6.2 Hz, H21), 2.32 (1H, dqd, J = 7.9, 6.9, 2.4 Hz, H3), 1.97 (1H, dqd, J = 7.6, 6.8, 4.5 Hz, H7), 1.84 (1H, d, J = 2.4 Hz, H1), 1.78 (1H, dqd, J = 7.6, 6.8, 4.8 Hz, H17), 1.73 – 1.66 (2H, m, H5 & H19), 1.65 – 1.58 (3H, m, H11, H13 & H15), 1.50 (1H, dqd, J = 7.6, 6.8, 4.0 Hz, H9), 1.14 (9H, s, H24), 1.11 – 1.08 (6H, m, H4 & H22), 0.87 – 0.83 (12H, m, 4 × CH₃), 0.81 – 0.78 (9H, m, 3 × CH₃), 0.77 (3H, d, J = 6.8 Hz, H8) ppm
\[^{13}\text{C NMR} \] (126 MHz, Chloroform-\(d\)): \(\delta \) 88.8 (C2), 72.8 (C23), 69.5 (C1), 68.9 (C21), 41.4 (C19 or C5), 39.2 (C19 or C5), 36.7 (C7), 36.2 (CH), 36.2 (CH), 35.9 (CH), 35.7 (CH), 35.1 (C17), 29.6 (C3), 29.0 (C24), 20.1 (C4 or C22), 18.0 (C22 or C4), 12.1 (CH\(_3\)), 12.0 (CH\(_3\)), 11.8 (CH\(_3\)), 11.8 (CH\(_3\)), 11.0 (CH\(_3\)) ppm

HRMS (\(m/z \)): (ESI\(^+\)) calc’d. for C\(_{26}\)H\(_{50}\)NaO\(_2\) [M+Na]\(^+\): 401.3754; found 401.3753

IR (\(\nu_{\text{max}} \)): 3312, 2971, 2931, 2879, 1454, 1383, 1197, 1080, 1018 cm\(^{-1}\)

\[[\alpha]_D^{22} := -4 \text{ (CHCl}_3, c = 1.0) \]

Boronic ester 154 (70 mg, 0.13 mmol, 1.00 equiv.) was oxidised according to GP1. The crude residue was purified by flash column chromatography (CH\(_2\)Cl\(_2\):Et\(_2\)O 90:10) to give diol 175 (39 mg, 95\%) as a white solid.

TLC: \(R_f = 0.26 \) (CH\(_2\)Cl\(_2\):Et\(_2\)O 90:10)

m.p.: 136 – 140 °C (n-hexane)

\[^{1}\text{H NMR} \] (400 MHz, Chloroform-\(d\)): \(\delta \) 3.65 (2H, dq, \(J = 8.1, 6.1 \text{ Hz, H2} \)), 1.75 (2H, d, \(J = 8.5, 6.8, 3.4 \text{ Hz, H6} \)), 1.57 (2H, dq, \(J = 8.1, 7.0, 3.4 \text{ Hz, H4} \)), 1.55 – 1.39 (4H, m, H8 & H10), 1.28 (2H, br. s, H1), 1.19 (6H, d, \(J = 6.1 \text{ Hz, H3} \)), 0.77 (6H, d, \(J = 6.8 \text{ Hz, H7} \)), 0.76 – 0.73 (12H, m, H9 & H11), 0.72 (6H, d, \(J = 7.0 \text{ Hz, H5} \)) ppm

\[^{13}\text{C NMR} \] (126 MHz, Chloroform-\(d\)): \(\delta \) 70.0 (C2), 41.1 (C4), 35.5 (CH), 35.2 (CH), 34.7 (C6), 21.6 (C3), 12.0 (CH\(_3\)), 11.9 (CH\(_3\)), 11.8 (CH\(_3\)), 10.5 (CH\(_3\)) ppm

HRMS (\(m/z \)): (ESI\(^+\)) calc’d. for C\(_{20}\)H\(_{42}\)NaO\(_2\) [M+Na]\(^+\): 337.3077; found 337.3088

IR (\(\nu_{\text{max}} \)): 3307, 2968, 2919, 2879, 1454, 1382, 1084, 1053, 918 cm\(^{-1}\)

\[[\alpha]_D^{23} := -5 \text{ (CHCl}_3, c = 1.0) \]

X-ray: Absolute configuration not determined. The molecule is a weak anomalous scatterer and therefore the absolute structure parameter is meaningless and has been removed from the .cif file. Hydrogen atoms on the oxygen atoms were found by difference map, disorder was present and these hydrogen atoms were both modelled in two positions with a constrained occupancy of 0.5. Due to the disorder, rotating group refinement was used. All other hydrogens were geometrically...
placed and refined using a riding model. Density is slightly lower than expected (0.9978 g cm\(^{-3}\)) and solvent accessible voids (41 Å\(^3\)) are present. Only water is small enough to fit in these voids and there is no electron density visible within these voids. The space group was checked and the slightly low density is believed to be due to the voids.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C({20})H({42})O(_2)</td>
</tr>
<tr>
<td>Formula weight</td>
<td>314.53</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>100</td>
</tr>
<tr>
<td>Crystal system</td>
<td>trigonal</td>
</tr>
<tr>
<td>Space group</td>
<td>P3(_1)21</td>
</tr>
<tr>
<td>a/Å</td>
<td>16.3491(3)</td>
</tr>
<tr>
<td>b/Å</td>
<td>16.3491(3)</td>
</tr>
<tr>
<td>c/Å</td>
<td>13.5683(3)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>90</td>
</tr>
<tr>
<td>γ/°</td>
<td>120</td>
</tr>
<tr>
<td>Volume/Å(^3)</td>
<td>3140.82(13)</td>
</tr>
<tr>
<td>Z</td>
<td>6</td>
</tr>
<tr>
<td>ρ(_{calc})/g cm(^{-3})</td>
<td>0.998</td>
</tr>
<tr>
<td>μ/mm(^{-1})</td>
<td>0.061</td>
</tr>
<tr>
<td>F(000)</td>
<td>1068.0</td>
</tr>
<tr>
<td>Crystal size/mm(^3)</td>
<td>0.524 \times 0.17 \times 0.102</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα (λ = 0.71073)</td>
</tr>
<tr>
<td>2Θ range for data collection/°</td>
<td>2.876 to 54.312</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-20 ≤ h ≤ 20, -20 ≤ k ≤ 20, -17 ≤ l ≤ 17</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>53962</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4647 [R({int}) = 0.0890, R({sigma}) = 0.0416]</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>4647/0/213</td>
</tr>
<tr>
<td>Goodness-of-fit on F(^2)</td>
<td>1.046</td>
</tr>
<tr>
<td>Final R indexes [I>2σ (I)]</td>
<td>R(_1) = 0.0407, wR(_2) = 0.0827</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R(_1) = 0.0625, wR(_2) = 0.0928</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å(^{-3})</td>
<td>0.14/-0.16</td>
</tr>
</tbody>
</table>
(2R,3S,4R,5S,6R,7R,8S,9R,10S,11R)-2,11-Di-tert-butoxy-3,4,5,6,7,8,9,10-octamethyldodecane (176)

In a flame-dried vial, Mg(ClO$_4$)$_2$ (2 mg, 0.01 mmol, 0.20 equiv.) (WARNING: shock sensitive!) was dried under high vacuum at 130 °C for 2 h without magnetic stirrer. The solid was allowed to cool down under nitrogen and a solution of alcohol 175 (15 mg, 0.05 mmol, 1.00 equiv.) in anhydrous CH$_2$Cl$_2$ (0.10 mL) was added, followed by Boc$_2$O (48 mg, 0.22 mmol, 4.60 equiv.) and a small magnetic stirred. The vial was capped and the reaction mixture was stirred at 45 °C for 18 h before being diluted with Et$_2$O (5.00 mL) and water (5.00 mL). The layers were separated and the aqueous phase was extracted with Et$_2$O (2 × 5.00 mL). The organic layers were combined, washed with brine, dried over MgSO$_4$, filtered and concentrated. The crude residue was purified by flash column chromatography (n-hexane:Et$_2$O 97:3) to give ether 176 (8 mg, 39%) as a colourless liquid.

TLC: $R_f = 0.47$ (n-hexane:Et$_2$O 95:5)

1H NMR (500 MHz, Toluene-$_d_8$): δ 3.60 (2H, dq, J = 5.8, 6.1 Hz, H3), 1.77 – 1.58 (8H, m, $8 \times$ CH), 1.14 (18H, s, H1), 1.10 (6H, d, J = 6.1 Hz, H4), 0.92 (6H, d, J = 6.7 Hz, CH$_3$), 0.87 (6H, d, J = 5.1 Hz, CH$_3$), 0.86 (6H, d, J = 4.8 Hz, H12), 0.81 (6H, d, J = 6.5 Hz, CH$_3$) ppm

13C NMR (126 MHz, Toluene-$_d_8$): δ 72.8 (C2), 68.3 (C3), 41.9 (CH), 36.3 (CH), 36.0 (CH), 35.3 (CH), 28.9 (C1), 19.0 (C4), 12.4 (CH$_3$), 12.2 (CH$_3$), 12.1 (CH$_3$), 11.3 (CH$_3$) ppm

HRMS (m/z): (ESI$^+$) calc’d. for C$_{28}$H$_{58}$NaO$_2$ [M+Na]$^+$: 449.4329; found 449.4324

IR (ν_{max}): 2970, 2924, 2878, 1457, 1382, 1198, 1077, 1019, 804 cm$^{-1}$

$[\alpha]_{D}^{25}$: +13 (CHCl$_3$, c = 1.0)

(4S,5R,6S,7R,8S,9S,10R,11S,12R,13S)-4,5,6,7,8,9,10,11,12,13-Decamethylhexadecane-2,15-dione (177)

Alkyne 179 (38 mg, 0.11 mmol, 1.00 equiv.) was charged in a flame-dried vial at room temperature under an atmosphere of nitrogen. A solution of 9-BBN-H (0.50 M in THF, 42 µL, 0.02 mmol, 0.20 equiv.) was added, followed by catechol borane (25 µL, 0.23 mmol,
2.20 equiv.). The vial was capped and the reaction mixture was stirred at 75 °C for 18 h. The reaction mixture was diluted with THF (2.00 mL) and the pale-yellow solution was transferred to a round-bottom flask containing a mixture of NaOH (2.00 M in water, 2.00 mL) and H₂O₂ (30% in water, 1.00 mL) at 0 °C. The biphasic mixture was vigorously stirred at 0 °C for 4 h. The layers were separated and the aqueous phase was extracted with Et₂O (3 × 5.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column chromatography (n-pentane:EtOAc 95:5) to give ketone 177 (25 mg, 60%) as a colourless liquid.

TLC: \(R_f = 0.44 \) (n-pentane:EtOAc 90:10)

\(^1\)H NMR (500 MHz, Toluene-d₈): \(\delta \) 2.29 (2H, dqdd, \(J = 7.5, 6.8, 6.1, 4.1 \) Hz, H4), 2.08 (2H, dd, \(J = 16.3, 6.1 \) Hz, H3), 1.91 (2H, dd, \(J = 16.3, 7.5 \) Hz, H3'), 1.71 (6H, s, H1), 1.67 (2H, dqd, \(J = 7.8, 6.7, 4.0 \) Hz, H10), 1.61 (2H, m, H12), 1.53 (2H, dqd, \(J = 7.8, 6.8, 4.0 \) Hz, H8), 1.31 (2H, dqd, \(J = 7.8, 6.9, 4.1 \) Hz, H6), 0.83 (6H, d, \(J = 6.7 \) Hz, H11), 0.81 (6H, d, \(J = 6.3 \) Hz, H13), 0.78 (6H, d, \(J = 6.8 \) Hz, H5), 0.76 (6H, d, \(J = 6.8 \) Hz, H9), 0.70 (6H, d, \(J = 6.9 \) Hz, H7) ppm

\(^{13}\)C NMR (126 MHz, Toluene-d₈): \(\delta \) 205.6 (C2), 49.6 (C3), 39.1 (C6), 36.0 (C8 or C10), 36.0 (C10 or C8), 35.8 (C12), 29.8 (C1), 29.7 (C4), 14.6 (C5), 12.2 (CH₃), 12.1 (CH₃), 11.9 (CH₃), 11.8 (C7) ppm

HRMS (m/z): (ESI⁺) calc’d. for C₂₆H₅₀NaO₂ [M+Na]⁺: 417.3703; found 417.3702

IR (\(\nu_{\text{max}} \)): 2967, 2922, 2879, 1715, 1452, 1382, 1357, 1166, 1077, 803 cm⁻¹

[\(\alpha \)]\(_{D}^{25} \): +8 (CHCl₃, \(c = 1.0 \))

\((4R,5S,6S,7S,8R,9R,10S,11R,12S,13R)-4,5,6,7,8,9,10,11,12,13-Decamethylhexadeca-2,14-diyne (179)\)

In a flame-dried Schlenk tube, alkyne C10 (38 mg, 0.11 mmol, 1.00 equiv.) was dissolved in anhydrous THF (1.10 mL) at −78 °C under an atmosphere of nitrogen. A solution of \(n \)-BuLi (1.58 M in \(n \)-hexane, 0.29 mL, 0.46 mmol, 4.00 equiv.) was added dropwise and the reaction was stirred at −78 °C for 20 min. Methyl iodide (0.07 mL, 1.15 mmol, 10.00 equiv.) was added via syringe and the acetone/dry ice bath was removed. The reaction mixture was allowed to stir at room temperature for 3 h and a saturated aqueous solution of NH₄Cl (2.00 mL) was added. The biphasic mixture was extracted with Et₂O (3 × 2.00 mL). The organic layers were combined,
washed with brine, dried over MgSO₄, filtered and concentrated to give alkyne 179 (40 mg, quant.) as a colourless liquid.

TLC: \(R_f = 0.47 \) (n-pentane:CH₂Cl₂ 95:5)

¹H NMR (400 MHz, Chloroform-d): \(\delta \) 2.27 (2H, dqq, \(J = 8.8, 6.9, 2.4 \) Hz, H₄), 1.86 (2H, dqq, \(J = 8.8, 6.9, 3.6 \) Hz, H₈), 1.79 (6H, d, \(J = 2.4 \) Hz), 1.57 (2H, dqq, \(J = 8.8, 6.8, 3.6 \) Hz, H₆), 1.51 (2H, m, H₁₂), 1.44 (2H, m, H₁₀), 1.11 (6H, d, \(J = 6.9 \) Hz, H₅), 0.80 – 0.67 (24H, m, 8 × CH₃) ppm

¹³C NMR (101 MHz, Chloroform-d): \(\delta \) 84.2 (C₃), 76.1 (C₂), 39.2 (C₆), 36.8 (C₈), 35.5 (C₁₂), 35.4 (C₁₀), 30.0 (C₄), 19.0 (C₅), 12.0 (CH₃), 11.7(4) (CH₃), 11.6(8) (CH₃), 3.7 (C₁) ppm

HRMS (m/z): (MALDI⁺) calc'd. for C₂₆H₄₆Na [M+Na]⁺: 381.3492; found 381.3484

IR (νmax): 2968, 2919, 2878, 1451, 1382, 1309, 1081, 1058, 1022, 936 cm⁻¹

\([\alpha]_D^{20} : +10\) (CHCl₃, c = 1.0)

\(((3R,4S,5R,6S,7R,8R,9S,10R,11S,12R)-3,4,5,6,7,8,9,10,11,12-Decamethyltetradeca-1,13-diyn-1-yl)triisopropylsilane (180a) and \(((3R,4S,5R,6S,7R,8R,9S,10R,11S,12R)-3,4,5,6,7,8,9,10,11,12-Decamethyltetradeca-1,13-diyn-1,14-diyl)bis(triisopropylsilane) (180b)\)

In a flame-dried Schlenk tube, alkyne C10 (94 mg, 0.28 mmol, 1.00 equiv.) was dissolved in anhydrous THF (3.00 mL) at –78 °C under an atmosphere of nitrogen. A solution of n-BuLi (1.50 M in n-hexane, 0.19 mL, 0.28 mmol, 1.00 equiv.) was added dropwise and the reaction mixture was stirred at the same temperature for 30 min. After the dropwise addition of TIPSCI (0.06 mL, 0.28 mmol, 1.00 equiv.), the acetone/dry ice bath was removed and the reaction mixture was stirred at room temperature for 1 h. A saturated aqueous solution of NH₄Cl (2.00 mL) and water (2.00 mL) were successively added and the biphasic mixture was extracted with Et₂O (3 × 5.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated. The residue was purified by flash column chromatography (pure n-pentane) to give mono-protected alkyne 180a (61 mg, 44%) and bis-protected 180b (34 mg, 19%) as colourless liquids.
(3R,4S,5R,6S,7R,8R,9S,10R,11S,12R)-3,4,5,6,7,8,9,10,11,12-Decamethyltetradeca-1,13-diyn-1-yl)triisopropylsilane (180a)

TLC: $R_f = 0.60$ (n-pentane:CH$_2$Cl$_2$ 90:10)

1H NMR (500 MHz, Chloroform-d): δ 2.41 – 2.28 (2H, m, H5 & H23), 2.05 (1H, d, $J = 2.4$ Hz, H26), 1.97 (1H, m, H9), 1.88 (1H, m, H19), 1.69 – 1.56 (2H, m, H7 & H21), 1.53 – 1.39 (4H, m, H11, H13, H15 & H17), 1.20 – 1.17 (6H, m, H6 & H24), 1.08 – 1.00 (21H, m, H1 & H2), 0.79 – 0.71 (24H, m, 8 x CH$_3$) ppm

13C NMR (126 MHz, Chloroform-d): δ 113.5 (C4), 89.2 (C25), 80.7 (C3), 69.0 (C26), 38.6 (C7 or C21), 38.6 (C21 or C7), 37.4 (C9), 37.1 (C19), 35.6 (CH), 35.4 (CH), 35.4 (CH), 31.4 (C5 or C23), 29.9 (C23 or C5), 19.4 (C6 or C24), 18.9 (C24 or C6), 18.8 (C1), 12.0 (CH$_3$), 12.0 (CH$_3$), 11.9 (CH$_3$), 11.9 (CH$_3$), 11.7 (CH$_3$), 11.6 (CH$_3$), 11.6 (CH$_3$), 11.5 (C2) ppm

HRMS (m/z): (MALDI$^+$) calc’d. for C$_{33}$H$_{62}$NaSi [M+Na]$^+$: 509.4513; found 509.4519

IR (ν_{max}): 3312, 2967, 2940, 2865, 2162, 1453, 1383, 1083, 995, 883 cm$^{-1}$

$[\alpha]_D^{23}$: +15 (CHCl$_3$, $c = 1.0$)

(3R,4S,5R,6S,7R,8R,9S,10R,11S,12R)-3,4,5,6,7,8,9,10,11,12-Decamethyltetradeca-1,13-diyn-1,14-diyl)bis(triisopropylsilane) (180b)

TLC: $R_f = 0.74$ (n-pentane:CH$_2$Cl$_2$ 90:10)

1H NMR (500 MHz, Chloroform-d): δ 2.35 (2H, dq, $J = 9.2$, 6.8 Hz, H5), 1.97 (2H, dqd, $J = 8.8$, 6.8, 3.4 Hz, H9), 1.58 (2H, dqd, $J = 9.2$, 7.0, 3.4 Hz, H7), 1.50 – 1.39 (4H, m, H11 & H13), 1.19 (6H, d, $J = 6.8$ Hz, H6), 1.13 – 0.84 (42H, m, H1 & H2), 0.80 – 0.68 (24H, m, H8, H10, H12 & H14) ppm
\[^{1}H \text{ NMR (500 MHz, Chloroform-}d) \]: \(\delta \) 2.37 (1H, dq, \(J = 9.3, 6.8 \text{ Hz, H5} \)), 2.25 (1H, dqq, \(J = 9.3, 6.8, 2.3 \text{ Hz, H23} \)), 1.96 (1H, m, H9)), 1.88 (1H, m, H19)), 1.79 (3H, d, \(J = 2.3 \text{ Hz, H27} \)). 1.63 – 1.55 (2H, m, H7 & H21)), 1.52 – 1.39 (4H, m, H11, H13, H15 & H17)), 1.19 (3H, d, \(J = 6.8 \text{ Hz, H6} \)), 1.12 (3H, d, \(J = 6.8 \text{ Hz, H24} \)), 1.08 – 0.98 (21H, m, H1 & H2)), 0.80 – 0.69 (24H, m, 8 \times \text{CH}_3) \) ppm

\[^{13}C \text{ NMR (126 MHz, Chloroform-}d) \]: \(\delta \) 113.6 (C4), 84.2 (C25), 80.6 (C3), 76.1 (C26), 39.1 (C7 or C21), 38.6 (C21 or C7), 37.4 (C9), 37.0 (C19), 35.5 (CH), 35.5 (CH), 35.4 (CH), 35.3 (CH), 35.3 (CH),

In a flame-dried Schlenk tube, alkyne 180a (26 mg, 0.05 mmol, 1.00 equiv.) was dissolved in anhydrous THF (0.50 mL) at –78 °C under an atmosphere of nitrogen. A solution of n-BuLi (1.50 M in n-hexane, 0.07 mL, 0.11 mmol, 2.00 equiv.) was added and the reaction mixture was stirred at the same temperature for 20 min. After the dropwise addition of MeI (0.02 mL, 0.27 mmol, 5.00 equiv.), the acetone/dry ice bath was removed and the reaction was stirred at room temperature for 2 h. A saturated aqueous solution of NH4Cl (2.00 mL) and water (2.00 mL) were successively added and the biphasic mixture was extracted with Et2O (3 \times 5.00 mL). The organic layers were combined, washed with brine, dried over MgSO4, filtered and concentrated. The residue was purified by flash column chromatography (pure \text{n}-pentane) to give alkyne 181 (25 mg, 93%).

TLC: \(R_f = 0.41 \) (\text{n}-pentane:CH2Cl2, 95:5)

m.p.: 75 – 79 °C (acetonitrile)

\[^{1}H \text{ NMR (500 MHz, Chloroform-}d) \]: \(\delta \) 2.37 (1H, dq, \(J = 9.3, 6.8 \text{ Hz, H5} \)), 2.25 (1H, dqq, \(J = 9.3, 6.8, 2.3 \text{ Hz, H23} \)), 1.96 (1H, m, H9)), 1.88 (1H, m, H19)), 1.79 (3H, d, \(J = 2.3 \text{ Hz, H27} \)). 1.63 – 1.55 (2H, m, H7 & H21)), 1.52 – 1.39 (4H, m, H11, H13, H15 & H17)), 1.19 (3H, d, \(J = 6.8 \text{ Hz, H6} \)), 1.12 (3H, d, \(J = 6.8 \text{ Hz, H24} \)), 1.08 – 0.98 (21H, m, H1 & H2)), 0.80 – 0.69 (24H, m, 8 \times \text{CH}_3) \) ppm

\[^{13}C \text{ NMR (126 MHz, Chloroform-}d) \]: \(\delta \) 113.6 (C4), 84.2 (C25), 80.6 (C3), 76.1 (C26), 39.1 (C7 or C21), 38.6 (C21 or C7), 37.4 (C9), 37.0 (C19), 35.5 (CH), 35.5 (CH), 35.4 (CH), 35.3 (CH), 35.3 (CH),
In a vial were successively charged alkyne 181 (24 mg, 0.05 mmol, 1.00 equiv.), catecholborane (6 μL, 0.05 mmol, 1.10 equiv.) and a solution of 9-BBN (0.50 M in THF, 10 μL, 5 μmol, 0.10 equiv.). The vial was capped and the reaction mixture was stirred at 80 °C for 16 h. The pale-yellow solution was cooled down to 0 °C and diluted with THF (0.3 mL). An aqueous solution of NaOH (2.00 M, 0.20 mL) was added, followed by an aqueous solution of H₂O₂ (30%, 0.10 mL). The biphasic mixture was stirred at 0 °C for 2 h. A saturated aqueous solution of NH₄Cl (1.00 mL) was added and the biphasic mixture was extracted with Et₂O (3 × 2.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated. The residue was purified by flash column chromatography (n-pentane:Et₂O 98:2) to give ketone 182 (13 mg, 52% over 2 steps) as a colourless liquid.

TLC: Rₖ = 0.38 (n-pentane:Et₂O 90:10)

¹H NMR (500 MHz, Chloroform-d): δ 2.49 (1H, dd, J = 15.5, 4.5 Hz, H25), 2.45 (1H, dq, J = 7.3, 6.8 Hz, H5), 2.18 (1H, dd, J = 15.5, 9.1 Hz, H25′), 2.13 (3H, s, H27), 2.07 (1H, ddq, J = 9.1, 6.8, 6.7, 4.5 Hz, H23), 1.85 (1H, dqd, J = 7.1, 6.9, 4.8 Hz, H9), 1.59 (1H, dqd, J = 7.3, 6.8, 4.8 Hz, H7), 1.52 – 1.38 (5H, m, 5 × CH), 1.31 (1H, m), 1.14 (3H, d, J = 6.8 Hz, H6), 1.10 – 0.96 (21H, m, H1 & H2), 0.84 – 0.81 (6H, m, H8 & H24), 0.76 – 0.70 (21H, m, 7 × CH₃) ppm

¹³C NMR (126 MHz, Chloroform-d): δ 209.5 (C26), 113.8 (C4), 80.4 (C3), 50.0 (C25), 39.0 (C7), 38.5 (CH), 36.7 (C9), 36.4 (CH), 36.0 (CH), 35.7 (CH), 35.5 (CH), 35.4 (CH), 31.4 (C23), 30.7 (C5), 30.6 (C27), 18.8 (C1), 18.3 (C6), 16.6 (C24), 12.2 (CH₃), 12.1(3) (2 × CH₃), 12.0(9) (CH₃), 11.8(4) (CH₃), 11.8(2) (CH₃), 11.8(0) (CH₃), 11.7 (CH₃), 11.5 (C2) ppm

HRMS (m/z): (MALDI⁺) calc’d. for C₃₄H₆₆NaOSi [M+Na]⁺: 541.4775; found 541.4779
IR (ν_{max}): 2966, 2941, 2866, 2162, 1719, 1460, 1383, 1082, 883, 676 cm⁻¹

[α]^D₂₃ : +6 (CHCl₃, c = 1.0)

(4S,5R,6S,7R,8S,9R,10S,11R,12S,13R)-4,5,6,7,8,9,10,11,12,13-Decamethylpentadec-14-yn-2-one (183)

Alkyne 182 (10 mg, 0.02 mmol, 1.00 equiv.) was deprotected with TBAF (1.00 M in THF, 0.02 mL, 0.02 mmol, 1.10 equiv.) according to GP5. The residue was purified by flash column chromatography (n-pentane:Et₂O 100:0→95:5) to give ketone 183 (3 mg, 43%) as a colourless liquid.

TLC: R_f = 0.44 (n-pentane:Et₂O 90:10)

1H NMR (500 MHz, Chloroform-<d>): δ 2.48 (1H, dd, J = 15.6, 4.8 Hz, H23), 2.44 (1H, dqd, J = 7.0, 6.9, 2.4 Hz, H3), 2.20 (1H, dd, J = 15.6, 8.9 Hz, H23), 2.13 (3H, s, H25), 2.09 (1H, dqdd, J = 8.9, 6.8, 5.9, 4.8 Hz, H21), 2.04 (1H, d, J = 2.4 Hz, H1), 1.77 (1H, m, H7), 1.61 (1H, dqd, J = 7.0, 6.9, 6.3 Hz, H5), 1.55 – 1.39 (5H, m, 5 × CH), 1.32 (1H, dqd, J = 7.0, 6.6, 5.9 Hz, H19), 1.13 (3H, d, J = 6.9 Hz, H4), 0.83 (3H, d, J = 6.9 Hz, H6), 0.82 (3H, d, J = 6.8 Hz, H22), 0.77 – 0.69 (21H, m, 7 × CH₃) ppm

13C NMR (126 MHz, Chloroform-<d>): δ 209.5 (C24), 89.5 (C2), 68.7 (C1), 50.0 (C23), 39.2 (C5), 38.6 (C19), 36.3 (CH), 36.2 (CH), 36.0 (CH), 35.7 (CH), 35.5 (CH), 35.4 (CH), 31.1 (C21), 30.6 (C25), 29.0 (C3), 17.5 (C4), 16.2 (C22), 12.1(9) (CH₃), 12.1(5) (CH₃), 12.1 (CH₃), 12.0 (CH₃), 11.8 (CH₃), 11.7(5) (CH₃), 11.7(4) (CH₃), 11.6(9) (CH₃) ppm

**HRMS (<i>m</i>/<i>z</i>): (ESI⁺) calc’d. for C₂₅H₄₆NaO [M+Na]⁺: 385.3441; found 385.3446

IR (ν_{max}): 3311, 2969, 2926, 2879, 1717, 1453, 1383, 1083 cm⁻¹

[α]^D₂₆ : +13 (CHCl₃, c = 1.0)

(2R,3S,4R,5S,6R,7R,8S,9R,10S,11R)-3,4,5,6,7,8,9,10-Octamethylundecane-2,11-diyl diacetate (184)
In a vial, alcohol 175 (33 mg, 0.10 mmol, 1.00 equiv.) was suspended in anhydrous CH₂Cl₂ (1.00 mL). Acetic anhydride (30 μL, 0.31 mmol, 3.00 equiv.) was added, followed by triethylamine (43 μL, 0.31 mmol, 3.00 equiv.) and DMAP (3 mg, 0.02 mmol, 0.20 equiv.). The colourless solution was stirred at room temperature for 4 h. The reaction mixture was diluted with Et₂O (10.00 mL), sequentially washed with an aqueous solution of HCl (0.50 M, 10.00 mL), a saturated aqueous solution of NaHCO₃ (10.00 mL) and brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column chromatography (n-pentane:Et₂O 90:10) to give diacetate 184 (40 mg, quantitative yield) as a colourless liquid.

TLC: \(R_f = 0.30 \) (n-pentane:Et₂O 90:10)

¹H NMR(400 MHz, Toluene-d₈): \(\delta \) 5.00 (2H, dq, \(J = 7.8, 6.3 \) Hz, H3), 1.83 (2H, dqd, \(J = 7.8, 6.7, 4.2 \) Hz, H7), 1.59 – 1.48 (4H, m, H9 & H11), 1.09 (6H, d, \(J = 6.3 \) Hz, H4), 0.80 (6H, d, \(J = 6.6 \) Hz, H10), 0.79 (6H, d, \(J = 6.2 \) Hz, H12), 0.76 (6H, d, \(J = 6.7 \) Hz, H8), 0.70 (6H, d, \(J = 7.0 \) Hz, H6) ppm

¹³C NMR(101 MHz, Toluene-d₈): \(\delta \) 169.8 (C2), 72.5 (C3), 39.2 (C5), 36.3 (C9 or C11), 36.0 (C11 or C9), 35.6 (C7), 21.2 (C1), 17.8 (C4), 12.4 (CH₃), 12.2 (C10 or C12), 11.0 (C6) ppm

HRMS (m/z): (MALDI)’ calc’d. for C₂₄H₄₆NaO₄ \([\text{M+Na]}^+\): 421.3288; found 421.3295

IR (\(\nu \text{max} \)): 2972, 2925, 2881, 1732, 1453, 1384, 1241, 1078, 1048, 1021, 946 cm \(^{-1}\)

\[\alpha \] \(_D \)^{22} : +9 (CHCl₃, \(c = 1.0 \))

\(2R,3S,4R,5S,6R,7R,8S,9R,10S,11R \)-3,4,5,6,7,8,9,10-Octamethyldodecane-2,11-diamine (185)

Carbamate 187 (50 mg, 0.09 mmol, 1.00 equiv.) was dissolved in a mixture of MeOH and EtOAc (50:50, 4.00 mL) at room temperature under argon atmosphere. Palladium on activated charcoal (10% w/w, 9 mg, 0.01 mmol, 0.10 equiv.) was added and the black suspension was purged with argon for 20 min. The inert atmosphere was purged with hydrogen and the reaction mixture was stirred at room temperature for 4 h. Hydrogen was replaced with argon and the catalyst was removed by filtration over Celite®. The filtrate was concentrated to give diamine 185 (23 mg, 81%) as a white solid.

TLC: \(R_f = 0.05 \) (CH₂Cl₂:MeOH 80:20 + aq. NH₃ 35% [1 drop/10.00 mL])
m.p.: 238 – 245 °C (dichloromethane/methanol)

1H NMR (500 MHz, Toluene-d_8): δ 2.59 (2H, dq, $J = 7.9, 6.3$ Hz, H2), 1.75 (2H, dqq, $J = 8.3, 6.8, 3.7$ Hz, H6), 1.63 (2H, m, H10), 1.56 (2H, dqq, $J = 8.3, 6.8, 3.3$ Hz, H8), 1.35 (2H, dqq, $J = 7.9, 6.9, 3.7$ Hz, H4), 0.93 (6H, d, $J = 6.3$ Hz, H3), 0.84 – 0.79 (12H, m, H9 & H11), 0.75 (6H, d, $J = 6.8$ Hz, H7), 0.74 (6H, d, $J = 6.9$ Hz, H5) ppm

13C NMR (126 MHz, Toluene-d_8): δ 49.2 (C2), 41.7 (C4), 35.7 (C8 or C10), 35.6 (C10 or C8), 35.4 (C6), 22.2 (C3), 12.2 (CH$_3$), 11.9(3) (CH$_3$), 11.8(8) (CH$_3$), 11.1 (CH$_3$) ppm

HRMS (m/z): (ESI$^+$) calc’d. for C$_{20}$H$_{45}$N$_2$ [M+H]$^+$: 313.3577; found 313.3581

IR (ν_{max}): 3457, 3369, 3279, 3176, 2966, 2921, 2878, 1580, 1452, 1382, 1080, 1014, 817 cm$^{-1}$

$\left[\alpha\right]_{D}^{26}: -2$ (MeOH, $c = 1.0$)

(2R,3S,4R,5S,6R,7R,8S,9R,10S,11R)-N^2,N^3,N^{11},N^{11}-Tetrabenzyl-3,4,5,6,7,8,9,10-octamethylene-2,11-diamine (186)

Potassium carbonate (19 mg, 0.14 mmol, 4.00 equiv.) was charged in a flame-dried vial under an atmosphere of nitrogen. A solution of diamine 185 (11 mg, 0.04 mmol, 1.00 equiv.) in anhydrous acetonitrile (0.20 mL) was added, followed by benzyl bromide (17 µL, 0.14 mmol, 4.00 equiv.). The vial was capped and the white suspension was stirred at 80 °C for 18 h. The reaction mixture was allowed to cool to room temperature, diluted with water (1.00 mL) and extracted with Et$_2$O (3 × 1.00 mL). The organic layers were combined, washed with brine, dried over MgSO$_4$, filtered and concentrated. The residue was purified by flash column chromatography (n-pentane:Et$_2$O 99:1) to give diamine 186 (15 mg, 64%) as a colourless liquid.

TLC: R_t = 0.67 (n-pentane:Et$_2$O 90:10)

1H NMR (500 MHz, Chloroform-d): δ 7.37 (8H, m, H3), 7.29 (8H, m, H2), 7.19 (4H, m, H1), 3.73 (4H, d, $J = 13.6$ Hz, H5), 3.26 (4H, d, $J = 13.6$ Hz, H5”), 2.48 (2H, dq, $J = 10.0, 6.5$ Hz, H6), 2.04 (2H, dqq, $J = 9.9, 6.8, 2.4$ Hz, H10), 1.73 (2H, dqq, $J = 10.0, 6.8, 2.4$ Hz, H8), 1.42 – 1.33 (4H, m, H12 & H14), 1.01 (6H, d, $J = 6.5$ Hz, H7), 0.63 (6H, d, $J = 6.8$ Hz, H13), 0.57 (6H, d, $J = 6.8$ Hz, H9), 0.56 (6H, m, H15), 0.22 (6H, d, $J = 6.8$ Hz, H11) ppm
\(^{13}\)C NMR (126 MHz, Chloroform-\(d\)): \(\delta\) 140.5 (C4), 129.2 (C3), 128.1 (C2), 126.8 (C1), 54.8 (C6), 53.7 (C5), 36.5 (C8), 36.0 (C12 or C14), 35.4 (C14 or C12), 34.4 (C10), 12.5 (C9 or C15), 12.2 (C13), 11.7 (C11), 11.6 (C15 or C9), 9.9 (C7) ppm

HRMS (\(m/z\)): (MALDI\(^{+}\)) calc’d. for C\(_{48}\)H\(_{68}\)N\(_2\)Na [M+Na]\(^{+}\): 695.5275; found 695.5282

IR (\(\nu_{\text{max}}\)): 3085, 3063, 3027, 2968, 2929, 2876, 2801, 1945, 1873, 1801, 1740, 1603, 1494, 1453, 1381, 1028, 744, 730, 697 cm\(^{-1}\)

[\(\alpha\)]\(_{D}\): +11 (CHCl\(_3\), \(c = 1.0\))

X-ray: Absolute configuration not determined. Occupancies of the disordered phenyl groups refined with their sum set to equal 1. Restraints and constraints were applied to maintain sensible thermal and geometric parameters. The disordered diethyl ether occupancies were necessarily fixed at 0.5 as the disorder was across a symmetry element. Restraints and constraints were applied to maintain sensible thermal and geometric parameters.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>186</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C({52})H({78})N(_2)O</td>
</tr>
<tr>
<td>Formula weight</td>
<td>747.16</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>100(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(_1), P2(_1)</td>
</tr>
<tr>
<td>a/Å</td>
<td>13.2858(3)</td>
</tr>
<tr>
<td>b/Å</td>
<td>16.2747(4)</td>
</tr>
<tr>
<td>c/Å</td>
<td>10.7159(3)</td>
</tr>
<tr>
<td>(\alpha/\circ)</td>
<td>90</td>
</tr>
<tr>
<td>(\beta/\circ)</td>
<td>90</td>
</tr>
<tr>
<td>(\gamma/\circ)</td>
<td>90</td>
</tr>
<tr>
<td>Volume/Å(^3)</td>
<td>2317.02(10)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>(\rho_{\text{calc}})/g cm(^{-3})</td>
<td>1.071</td>
</tr>
<tr>
<td>(\mu/\text{mm}^{-1})</td>
<td>0.062</td>
</tr>
<tr>
<td>F(000)</td>
<td>824.0</td>
</tr>
<tr>
<td>Crystal size/mm(^3)</td>
<td>0.557 × 0.295 × 0.251</td>
</tr>
</tbody>
</table>
Radiation: MoKα (λ = 0.71073)

2θ range for data collection/°: 3.8 to 52.7

Index ranges:
-16 ≤ h ≤ 16,
-20 ≤ k ≤ 20,
-13 ≤ l ≤ 13

Reflections collected: 38291

Independent reflections: 4758 [Rint = 0.0668, Rsigma = 0.0409]

Data/restraints/parameters: 4758/242/309

Goodness-of-fit on F²: 1.223

Final R indexes [I>=2σ (I)]:
R1 = 0.0782, wR2 = 0.1619

Final R indexes [all data]:
R1 = 0.0829, wR2 = 0.1640

Largest diff. peak/hole / e Å⁻³: 0.26/-0.26

Dibenzyl ((2R,3S,4R,5S,6R,7R,8S,9R,10S,11R)-3,4,5,6,7,8,9,10-octamethyldodecane-2,11-diyl)dicarbamate (187)

Part A: In a flame-dried vial, potassium tert-butoxide (185 mg, 1.65 mmol, 11.00 equiv.) was dried under high vacuum at 100 °C for 4 h. The solid was allowed to cool to room temperature under argon atmosphere and a mixed solution of boronic ester 154 (80 mg, 0.15 mmol, 1.00 equiv.) and freshly distilled methoxyamine (93 μL, 1.80 mmol, 12.00 equiv.) in anhydrous toluene (1.00 mL) was added. The vial was capped and the white suspension was stirred at 105 °C for 24 h. The reaction mixture was allowed to cool to room temperature before an aqueous solution of NaOH (3.00 M, 2.00 mL) was added. The biphasic mixture was vigorously stirred for 30 min at room temperature and Na₂SO₄ (614 mg) was added. The white suspension was stirred for 30 min, layers were separated and the aqueous phase was extracted with EtOAc (5 × 2.00 mL). The organic layers were combined, sequentially washed with an aqueous solution of NaOH (3.00 M, 5.00 mL) and with brine, dried over MgSO₄, filtered and concentrated. **Part B:** The crude residue was dissolved in anhydrous THF (0.50 mL) at 0 °C under an atmosphere of nitrogen. Diisopropylethylamine (0.105 mL, 0.60 mmol, 4.00 equiv.) was added, followed by benzyl chloroformate (44 μL, 0.32 mmol, 2.10 equiv.). The ice bath was removed and the suspension was stirred at room temperature for 18 h. The reaction mixture was diluted with a saturated aqueous solution of NH₄Cl (2.00 mL) and extracted with Et₂O (3 × 2.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated. The residue was purified by flash column chromatography (n-pentane:Et₂O 90:10—80:20) to give carbamate 187 (54 mg, 62% over 2 steps) as a colourless liquid.
TLC: $R_f = 0.17$ (n-pentane:EtO 70:30)

1H NMR (500 MHz, Toluene-d_8): δ 7.23 (4H, m, H3), 7.12 (4H, m, H2), 7.06 (2H, m, H1), 5.08 (2H, d, $J = 12.4$ Hz, H5), 5.02 (2H, d, $J = 12.4$ Hz, H5’), 4.25 (2H, app. d, $J_{app} = 8.8$ Hz, H7), 3.82 (2H, app. pent, $J_{pp} = 7.1$ Hz, H8), 1.61 – 1.40 (8H, m, 8 × CH), 0.86 – 0.79 (12H, m, 4 × CH), 0.79 – 0.70 (12H, m, 4 × CH), 0.60 (6H, d, $J = 6.3$ Hz, CH₃) ppm

1C NMR (126 MHz, Toluene-d_8): δ 155.6 (C6), 137.7 (C4), 128.5 (C2 or C3), 128.4 (C3 or C2), 128.0 (C1), 66.4 (C5), 48.7 (C8), 39.9 (CH), 35.9 (CH), 35.8 (CH), 35.6 (CH), 17.0 (CH₃), 12.1 (CH₃), 12.0 (CH₃), 11.9 (CH₃), 11.3 (CH₃) ppm

HRMS (m/z): (MALDI+) calc’d. for C₃₆H₅₆N₂NaO₄ [M+Na]$: 603.4138; found 603.4132

IR (ν_{max}): 3332, 3066, 3033, 2970, 2939, 2879, 2479, 1693, 1532, 1452, 1420, 1383, 1327, 1237, 1072, 733, 696 cm$^{-1}$

$[\alpha]_D^{25} = +1$ (MeOH, $c = 1.0$)

(2R,3S,4R,5R,6S,7R)-3,4,5,6-Tetramethyloctane-2,7-diamine (188)

Carbamate 190 (66 mg, 0.14 mmol, 1.00 equiv.) was dissolved in a mixture of MeOH and EtOAc (50:50, 4.00 mL) at room temperature under argon atmosphere. Palladium on activated charcoal (10% w/w, 15 mg, 0.01 mmol, 0.10 equiv.) was added and the black suspension was purged with argon for 20 min. The inert atmosphere was purged with hydrogen and the reaction mixture was stirred at room temperature for 4 h. Hydrogen was replaced with argon and the catalyst was removed by filtration over Celite®. The filtrate was concentrated to give diamine 188 (22 mg, 78%) as a colourless wax.

TLC: $R_t = 0.05$ (CH₂Cl₂:MeOH 80:20 + aq. NH₃ 35% [1 drop/10.00 mL])

1H NMR (500 MHz, Toluene-d_8): δ 2.58 (2H, dq, $J = 8.0, 6.3$ Hz, H2), 1.64 (2H, m, H6), 1.28 (2H, dq, $J = 8.0, 6.9, 3.4$ Hz, H4), 0.91 (6H, d, $J = 6.3$ Hz, H3), 0.73 (6H, m, H7), 0.71 (6H, d, $J = 6.9$ Hz, H5) ppm

13C NMR (126 MHz, Toluene-d_8): δ 49.0 (C2), 41.6 (C4), 35.2 (C6), 22.1 (C3), 11.8 (C7), 10.8 (C5) ppm

HRMS (m/z): (ESI+) calc’d. for C₁₂H₂₉N₂ [M+H]$: 201.2325; found 201.2332

IR (ν_{max}): 3315, 2968, 2923, 2879, 2585, 2157, 1663, 1574, 1447, 1380, 1307, 1081, 817 cm$^{-1}$
Part A: In a flame-dried vial, potassium tert-butoxide (293 mg, 2.61 mmol, 11.00 equiv.) was dried under high vacuum at 100 °C for 4 h. The solid was allowed to cool to room temperature under argon atmosphere and a mixed solution of boronic ester 152 (100 mg, 0.24 mmol, 1.00 equiv.) and freshly distilled methoxyamine (0.15 mL, 2.84 mmol, 12.00 equiv.) in anhydrous toluene (2.00 mL) was added. The vial was capped and the white suspension was stirred at 105 °C for 24 h. The reaction mixture was allowed to cool to room temperature before an aqueous solution of NaOH (3.00 M, 2.00 mL) was added. The biphasic mixture was vigorously stirred for 30 min at room temperature and Na₂SO₄ (614 mg) was added. The white suspension was stirred for 30 min, layers were separated and the aqueous phase was extracted with EtOAc (5 × 2.00 mL). The organic layers were combined, sequentially washed with an aqueous solution of NaOH (3.00 M, 5.00 mL) and brine, dried over MgSO₄, filtered and concentrated. Part B: The crude residue was dissolved in anhydrous THF (2.00 mL) and the solution was transferred to a flame-dried vial under an atmosphere of nitrogen. Diisopropylethylamine (0.17 mL, 0.96 mmol, 4.00 equiv.) was added, followed by benzyl chloroformate (0.07 mL, 0.50 mmol, 2.10 equiv.). After the addition, the suspension was stirred at room temperature for 18 h. The reaction mixture was diluted with a saturated aqueous solution of NH₄Cl (2.00 mL) and extracted with Et₂O (3 × 2.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column chromatography (n-pentane:Et₂O 100:0→60:40) to give carbamate 190 (66 mg, 59% over 2 steps) as a colourless liquid.

TLC: Rf = 0.15 (n-pentane:Et₂O 70:30)

¹H NMR (500 MHz, Chloroform-d): δ 7.42 – 7.29 (10H, m, H1, H2 & H3), 5.11 (2H, d, J = 12.2 Hz, H5), 5.05 (2H, d, J = 12.2 Hz, H5’), 4.49 (2H, m, H7), 3.71 (2H, m, H10), 1.48 (2H, m, H12), 1.05 (6H, d, J = 6.7 Hz, H9), 0.84 (6H, m, H13), 0.76 (6H, d, J = 6.9 Hz, H11) ppm

¹³C NMR (126 MHz, Chloroform-d): δ 155.8 (C6), 136.8 (C4), 128.7 (CH₃), 128.3 (2 × CH₃), 66.7 (C5), 48.6 (C8), 39.3 (C10), 35.6 (C12), 17.0 (C9), 11.7 (C13), 11.4 (C11) ppm

HRMS (m/z): (MALDI⁺) calc’d. for C₂₈H₄₀N₂NaO₄ [M+Na]⁺: 491.2880; found 491.2889
IR (ν\text{max}): 3426, 3325, 3063, 2973, 2880, 1696, 1532, 1454, 1337, 1239, 1070, 697 cm$^{-1}$

$\left[\alpha\right]_D^{24}$: −7 (CHCl$_3$, $c = 1.0$)

(2R,3S,4R,5R,6S,7R)-3,4,5,6-Tetramethyloctane-2,7-diaminium 1,1,2,3,3,4,4,4-nafluorobutane-1-sulfonate (191)

Diamine 188 (2 mg, 0.01 mmol, 1.00 equiv.) was dissolved in methanol-d_4 in an NMR tube. No-fluorobutanesulfonic acid (3 µL, 0.02 mmol, 2.00 equiv.) was added, the tube was capped and vigorously shaken to give 191 as a solution in methanol-d_4.

1H NMR (500 MHz, Methanol-d_4) δ 3.25 (2H, qd, $J = 6.6$, 6.3 Hz, H2), 1.71 (2H, qdd, $J = 6.9$, 6.3, 5.0 Hz, H4), 1.52 (2H, m, H6), 1.19 (6H, d, $J = 6.6$ Hz, H3), 0.88 (6H, d, $J = 6.9$ Hz, H5), 0.86 (6H, m, H7) ppm

13C NMR (126 MHz, Methanol-d_4) δ 50.3 (C2), 39.8 (C4), 36.4 (C6), 16.1 (C3), 11.7 (C7), 10.7 (C5) ppm

3.3. Supplementary materials – Chapter 2

3.3.1. General procedures

General procedure 6 (GP6): In a round-bottomed flask, N-hydroxyphthalimide (1.0 or 2.00 equiv.) or tetrachloro-N-hydroxyphthalimide (1.00 equiv.) or methyl-substituted N-hydroxyphthalimide 369 (1.00 equiv.) was suspended in ethanol-free CH$_2$Cl$_2$ (0.10 M) at room temperature. Carboxylic acid (1.00 equiv.) was added, followed by diisopropylcarbodiimide (DIC) (1.0 or 2.00 equiv.) and dimethylaminopyridine (DMAP) (0.00–0.40 equiv.). The reaction mixture was stirred at room temperature for 16 h. The white suspension was concentrated under reduced pressure and the crude residue was purified by flash column chromatography and/or recrystallisation to give the desired product.

General procedure 7 (GP7): In a round-bottomed flask, N-hydroxyphthalimide (1.00 equiv.) and carboxylic acid (1.00 equiv.) were suspended in THF (0.40 M) at room temperature. A solution of dicyclohexylcarbodiimide (DCC) (1.00 equiv.) in THF (0.40 M) was added and the reaction mixture was stirred at room temperature for 48 h. The white suspension stored at −20 °C for
1 h and the white solid was removed by filtration. The filtrate was concentrated under reduced pressure and the crude residue was purified by flash column chromatography and/or recrystallisation to give the desired product.

General procedure 8 (GP8): Activated ester (1.00 equiv.) and B_{2}cat_{2} (1.25 or 2.50 equiv.) were carefully weighed into a flame-dried 7-mL vial containing a small magnetic stirrer bar. DMAc (0.10 M) was added and the headspace of the vial was purged with a gentle stream of argon for approximately 10 seconds. The vial was tightly sealed and stirred under blue LED irradiation for 14 h. Pinacol (4.0 or 8.00 equiv.) was added, followed by Et_{3}N (0.45 mL) and the reaction mixture was stirred for 1 h. The reaction mixture was transferred into a vial containing EtOAc (15 mL), water (3.00 mL) and a saturated aqueous solution of NH_{4}Cl (3.00 mL). After vigorously shaking and allowing the two layers to separate, the top organic layer was carefully removed with a pipette. This was repeated twice more with EtOAc (5.00 mL). The organic layers were combined and concentrated under reduced pressure. The crude residue was directly purified using a short silica gel column to yield the desired boronic ester.

3.3.2. Experimental procedures and characterisation data

1,3-Dioxoisooindolin-2-yl 4,4-difluorocyclohexane-1-carboxylate (305)

Carboxylic acid 304 (250 mg, 1.52 mmol, 1.00 equiv.) was activated with N-hydroxyphthalimide (248 mg, 1.52 mmol, 1.00 equiv.), DIC (0.24 mL, 1.52 mmol, 1.00 equiv.) and DMAP (18 mg, 0.15 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (n-pentane:Et_{2}O 75:25) to give activated ester 305 (417 mg, 89%) as a white solid.

TLC: R_{f} = 0.19 (n-pentane:EtOAc 90:10)

m.p.: 109 – 112 °C (dichloromethane/methanol)

^{1}H NMR: (400 MHz, Chloroform-\(d\)) δ 7.89 (2H, m, H8 or H9), 7.80 (2H, m, H9 or H8), 2.89 (1H, m, H4), 2.26 – 2.04 (6H, m, 2 × CH\(\text{H}^{\text{a}}\) & 2 × CH\(\text{H}^{\text{b}}\)), 1.97 – 1.84 (2H, m, 2 × CH\(\text{H}^{\text{a}}\)) ppm

^{13}C NMR: (126 MHz, Chloroform-\(d\)) δ 170.6 (C5), 162.0 (C6), 135.0 (C8 or C9), 129.0 (C7), 124.1 (C9 or C8), 122.3 (t, J = 241.3 Hz, C1), 37.9 (C4), 32.2 (t, J = 24.8 Hz, C2), 25.1 (t, J = 5.1 Hz, C3) ppm
19F NMR: (377 MHz, Chloroform-d) δ –95.6 (app. d, J^{ppp} = 239.8 Hz), –98.4 (app. d, J^{ppp} = 239.8 Hz) ppm

HRMS (m/z): (ESI⁺) calc’d for C₁₅H₁₃F₂NNaO₄ [M+Na]⁺: 332.0705; found: 332.0708

IR (ν_{max}): 2973, 2948, 1809, 1782, 1740, 1374, 1360, 1147, 1114, 1115, 1079, 981, 947 cm^{–1}

2-(4,4-Difluorocyclohexyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (306)

Activated ester 305 (40 mg, 0.13 mmol, 1.00 equiv.) was borylated with B₂cat₂ (40 mg, 0.16 mmol, 1.25 equiv.), and pinacol (63 mg, 0.53 mmol, 4.00 equiv.) according to GP8. The crude residue was purified by flash column chromatography (n-pentane:Et₂O 95:5) to give boronic ester 306 (21 mg, 66%) as a colourless liquid.

TLC: R_f = 0.51 (n-pentane:Et₂O 85:15)

1H NMR: (400 MHz, Chloroform-d) δ 1.99 (2H, m, 2 × CH^aH^b), 1.85 – 1.52 (6H, m, 2 × CH^aH^b & 2 × CH₂), 1.23 (12H, s, H6), 0.97 (1H, m, H4) ppm

13C NMR: (101 MHz, Chloroform-d) δ 123.9 (t, J = 240.5 Hz, C1), 83.4 (C5), 34.5 (t, J = 23.2 Hz, C2), 24.9 (C6), 24.4 (m, C3) ppm

The signal corresponding to C4 was not observed due to quadrupolar relaxation.

19F NMR: (377 MHz, Chloroform-d) δ –91.6 (app. d, J^{ppp} = 234.0 Hz), –98.7 (app. d, J^{ppp} = 234.0 Hz) ppm

HRMS (m/z): Despite repeated attempts, a HRMS could not be obtained.

IR (ν_{max}): 2878, 2938, 2870, 1414, 1388, 1369, 1145, 1108, 1093, 958, 852 cm^{–1}

1,3-Dioxoisindolin-2-yl trans-2-phenylcyclopropane-1-carboxylate (308)

Carboxylic acid 307 (1.00 g, 6.17 mmol, 1.00 equiv.) was activated with N-hydroxyphthalimide (1.01 g, 6.17 mmol, 1.00 equiv.), DIC (0.95 mL, 6.17 mmol, 1.00 equiv.) and DMAP (75 mg,
0.62 mmol, 0.10 equiv.) according to \textbf{GP6}. The crude residue was purified by flash column chromatography (\textit{n}-pentane:Et\(_2\)O 80:20–60:40) to give activated ester \textbf{308} (1.55 g, 82\%) as a white solid.

\textbf{TLC}: \(R_t=0.34\) (\textit{n}-pentane:Et\(_2\)O 70:30)

\textbf{m.p.}: 116 – 119 °C (diethyl ether)

\textbf{1H NMR}: (400 MHz, Chloroform-\textit{d}) \(\delta 7.90\) (2H, m, H11 or H12), 7.79 (2H, m, H12 or H11), 7.34 (2H, m, H2 or H3), 7.27 (1H, m, H1), 7.28 (2H, m, H3 or H2), 2.79 (1H, ddd, \(J = 9.1, 6.9, 4.0\) Hz, H5), 2.23 (1H, ddd, \(J = 8.4, 5.2, 4.0\) Hz, H7), 1.83 (1H, ddd, \(J = 9.1, 5.2, 4.9\) Hz, H6), 1.64 (1H, ddd, \(J = 8.4, 6.9, 4.9\) Hz, H6') ppm

\textbf{13C NMR}: (101 MHz, Chloroform-\textit{d}) \(\delta 169.8\) (C8), 162.1 (C9), 138.6 (C4), 134.8 (C11 or C12), 129.1 (C10), 128.8 (C2 or C3), 127.3 (C1), 126.5 (C3 or C2), 124.1 (C12 or C11), 28.4 (C5), 21.1 (C7), 18.6 (C6) ppm

\textbf{HRMS (m/z)}: (ESI\(^+\)) calc'd for C\(_{18}\)H\(_{13}\)NNaO\(_4\) [M+Na\(^+\)]: 330.0737; found: 330.0748

\textbf{IR (\nu\text{max})}: 3518, 3065, 3031, 1806, 1778, 1738, 1401, 1360, 1186, 1100, 1072, 878, 757 cm\(^{-1}\)

\textbf{4,4,5,5-Tetramethyl-2-(trans-2-phenylocyclopropyl)-1,3,2-dioxaborolane (309)}

Activated ester \textbf{308} (40 mg, 0.13 mmol, 1.00 equiv.) was borylated with \textit{B}\(_2\textit{cat}_2\) (40 mg, 0.16 mmol, 1.25 equiv.), and pinacol (63 mg, 0.53 mmol, 4.00 equiv.) according to \textbf{GP8}. The crude residue was purified by flash column chromatography (\textit{n}-pentane:Et\(_2\)O 95:5) to give boronic ester \textbf{309} (19 mg, 60\%, 98:2 \textit{d.r.}) as a colourless liquid.

\textbf{TLC}: \(R_t=0.35\) (\textit{n}-pentane:Et\(_2\)O 95:5)

\textbf{1H NMR}: (400 MHz, Chloroform-\textit{d}) \(\delta 7.24\) (2H, m, H2 or H3), 7.14 (1H, m, H1), 7.08 (2H, m, H3 or H2), 2.11 (1H, ddd, \(J = 8.1, 5.5, 5.2\) Hz, H5), 1.26 (6H, s, H9), 1.24 (6H, s, H9'), 1.16 (1H, ddd, \(J = 8.1, 6.8, 3.7\) Hz, H6'), 1.01 (1H, ddd, \(J = 9.5, 5.2, 3.7\) Hz, H6'), 0.31 (1H, ddd, \(J = 9.5, 6.8, 5.5\) Hz, H7) ppm

\textbf{13C NMR}: (101 MHz, Chloroform-\textit{d}) \(\delta 143.5\) (C4), 128.4 (C2 or C3), 125.8 (C3 or C2), 125.7 (C1), 83.3 (C8), 24.9 (C9), 24.8 (C9'), 22.0 (C5), 15.2 (C6) ppm

\textit{The signal corresponding to C7 was not observed due to quadrupolar relaxation.}

\textbf{HRMS (m/z)}: (EI\(^+\)) calc'd for C\(_{18}\)H\(_{21}\)BO\(_2\) [M\(^+\)]: 244.1635; found: 244.1634
IR (νmax): 3518, 3065, 3031, 1806, 1778, 1738, 1467, 1401, 1360, 1186, 1100, 1072, 878 cm⁻¹

1,3-Dioxoisindolin-2-yl 3-(pyridin-3-yl)propanoate (311)

Carboxylic acid 310 (500 mg, 3.31 mmol, 1.00 equiv.) was activated with N-hydroxyphthalimide (540 mg, 3.31 mmol, 1.00 equiv.) and DCC (682 mg, 3.31 mmol, 1.00 equiv.) according to GP7. The crude residue was purified by recrystallisation from EtOAc to afford activated ester 311 (447 mg, 46%) as a pale yellow solid.

TLC: Rf = 0.21 (n-pentane:acetone 30:70)

m.p.: 111 – 115 °C (ethyl acetate)

¹H NMR: (400 MHz, Chloroform-d) δ 8.54 (1H, d, J = 2.3 Hz, H1), 8.50 (1H, dd, J = 4.9, 1.6 Hz, H2), 7.87 (2H, m, H11 or H12), 7.78 (2H, m, H12 or H11), 7.60 (1H, ddd, J = 7.8, 2.3, 1.6 Hz, H4), 7.26 (1H, dd, J = 7.8, 4.9 Hz, H3), 3.11 (2H, t, J = 7.4 Hz, H6), 2.99 (2H, t, J = 7.4 Hz, H7) ppm

¹³C NMR: (101 MHz, Chloroform-d) δ 168.6 (C8), 161.9 (C9), 149.9 (C1), 148.4 (C2), 136.0 (C4), 134.9 (C11 or C12), 134.6 (C5), 129.0 (C10), 124.1 (C12 or C11), 123.7 (C3), 32.4 (C7), 27.9 (C6) ppm

HRMS (m/z): (ESI⁺) calc’d for C₁₆H₁₂N₂NaO₄ [M+Na]⁺: 319.0689; found: 319.0692

IR (νmax): 3055, 2943, 2324 (br.), 1812, 1783, 1741, 1714, 1188, 1135, 1079, 970, 876 cm⁻¹

3-(2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)pyridine (312)

Activated ester 311 (77 mg, 0.26 mmol, 1.00 equiv.) was borylated with B₂cat₂ (40 mg, 0.16 mmol, 1.25 equiv.), and pinacol (63 mg, 0.53 mmol, 4.00 equiv.) according to GP8. The crude residue was purified by flash column chromatography (n-hexane:acetone 90:10) to give boric ester 312 (10 mg, 16%) as a colourless liquid.

TLC: Rf = 0.54 (n-pentane:acetone 80:20)
\(^{1}\)H NMR: (500 MHz, Chloroform-\(d\)) \(\delta\) 8.48 (1H, app. br. s, H1), 8.41 (1H, app. d, \(J^{app} = 4.8\) Hz, H2), 7.52 (1H, app. d, \(J^{app} = 7.7\) Hz, H4), 7.18 (1H, dd, \(J = 7.7, 4.8\) Hz, H3), 2.74 (2H, t, \(J = 8.0\) Hz, H6), 1.21 (12H, s, H9 & H9'), 1.14 (2H, t, \(J = 8.0\) Hz, H7) ppm

\(^{13}\)C NMR: (101 MHz, Chloroform-\(d\)) \(\delta\) 149.9 (C1), 147.2 (C2), 139.6 (C5), 135.6 (C4), 123.3 (C3), 83.4 (C8), 29.8 (C7), 27.3 (C6), 24.9 (C9) ppm

HRMS (\(m/z\)): (ESI\(^+\)) calc'd for C\(_{13}\)H\(_{20}\)BNNaO\(_2\) [M+Na]\(^{+}\): 256.1482; found: 256.1480

IR (\(\nu_{\text{max}}\)): 2978, 2929, 1575, 1479, 1422, 1372, 1311, 1144, 968, 849, 714 cm\(^{-1}\)

1,3-Dioxoisindolin-2-yl (5Z,8Z,11Z,14Z)-icoso-5,8,11,14-tetraenoate (314)

Carboxylic acid 313 (100 mg, 0.33 mmol, 1.00 equiv.) was activated with \(N\)-hydroxyphthalimide (54 mg, 0.33 mmol, 1.00 equiv.), DIC (0.05 mL, 0.33 mmol, 1.00 equiv.) and DMAP (4 mg, 0.03 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (\(n\)-pentane:Et\(_2\)O 90:10) to give activated ester 314 (110 mg, 74%) as a colourless liquid.

TLC: \(R_f = 0.15\) (\(n\)-pentane:Et\(_2\)O 90:10)

\(^{1}\)H NMR: (400 MHz, Chloroform-\(d\)) \(\delta\) 7.88 (2H, m, H23 or H24), 7.78 (2H, m, H24 or H23), 5.50 – 5.29 (8H, m, 8 × CH), 2.87 – 2.80 (6H, m, H8, H11 & H14), 2.68 (2H, t, \(J = 7.4\) Hz, H19), 2.24 (2H, td, \(J = 7.3, 7.1\) Hz, H17), 2.05 (2H, td, \(J = 7.0, 6.9\) Hz, H5), 1.87 (2H, tt, \(J = 7.4, 7.3\) Hz, H18), 1.40 – 1.22 (6H, m, H2, H3 & H4), 0.88 (3H, t, \(J = 6.8\) Hz, H1) ppm

\(^{13}\)C NMR: (101 MHz, Chloroform-\(d\)) \(\delta\) 169.6 (C20), 162.0 (C21), 134.8 (C23 or C24), 130.6 (CH), 129.8 (CH), 129.1 (C22), 128.7 (CH), 128.5 (CH), 128.3 (CH), 128.2 (CH), 128.0 (CH), 127.7 (CH), 124.1 (C24 or C23), 31.6 (CH\(_2\)), 30.5 (C19), 29.5 (CH\(_2\)), 27.3 (C5), 26.3 (C17), 25.8 (C8, C11 & C14), 24.7 (C18), 22.7 (CH\(_2\)), 14.2 (C1) ppm

HRMS (\(m/z\)): (ESI\(^+\)) calc'd for C\(_{28}\)H\(_{35}\)NNaO\(_4\) [M+Na]\(^{+}\): 472.2458; found: 472.2460

IR (\(\nu_{\text{max}}\)): 3525, 3012, 2927, 2856, 1816, 1789, 1743, 1467, 1367, 1185, 1081, 969, 878 cm\(^{-1}\)
4,4,5,5-Tetramethyl-2-((4Z,7Z,10Z,13Z)-nonadeca-4,7,10,13-tetra-1-yl)1,3,2-dioxaborolan-2-yl)tetramethyl-2-((4Z,7Z,10Z,13Z)-nonadeca-4,7,10,13-tetra-1-yl)1,3,2-dioxaborolane (315)

Activated ester 314 (58 mg, 0.13 mmol, 1.00 equiv.) was borylated with B$_2$Cat (40 mg, 0.16 mmol, 1.25 equiv.), and pinacol (63 mg, 0.53 mmol, 4.00 equiv.) according to GP8. The crude residue was purified by flash column chromatography (n-pentane:Et$_2$O 95:5) to give boronic ester 315 (29 mg, 58%) as a colourless liquid.

TLC: $R_f = 0.50$ (n-pentane:Et$_2$O 95:5)

1H NMR: (400 MHz, Chloroform-d) δ 5.48 – 5.24 (8H, m, 8 \times CH), 2.92 – 2.73 (6H, m, H8, H11 & H14), 2.06 (4H, app. q, $J_{app} = 7.0$ Hz, H5 & H17), 1.48 (2H, tt, $J = 7.8$, 7.7 Hz, H18), 1.41 – 1.27 (6H, m, H2, H3 & H4), 1.24 (12H, s, H21), 0.89 (3H, t, $J = 6.8$ Hz, H1), 0.80 (2H, t, $J = 7.9$ Hz, H19) ppm

13C NMR: (101 MHz, Chloroform-d) δ 130.5 (CH), 130.2 (CH), 128.6 (CH), 128.5 (CH), 128.0 (CH), 127.9 (CH), 127.6 (CH), 82.9 (C20), 31.5 (CH3), 29.8 (C5 or C17), 29.3 (CH3), 27.2 (C17 or C5), 25.6 (C8, C11 & C14), 24.8 (C21), 24.1 (C18), 22.6 (CH3), 14.1 (C1) ppm

The signal corresponding to C19 was not observed due to quadrupolar relaxation.

HRMS (m/z): (EI$^+$) calc’d for C$_{25}$H$_{43}$BO$_2$ [M$^+$]: 386.3356; found: 386.3338

IR (ν_{max}): 3012, 2977, 2958, 2927, 2858, 1459, 1371, 1316, 969, 846 cm$^{-1}$

Bis(1,3-dioxoisindolin-2-yl) succinate (317)

Succinic acid 316 (500 mg, 4.23 mmol, 1.00 equiv.) was activated with N-hydroxyphthalimide (1.38 g, 8.46 mmol, 2.00 equiv.), DIC (2.64 mL, 8.46 mmol, 2.00 equiv.) and DMAP (102 mg, 0.84 mmol, 0.20 equiv.) according to GP6. The crude residue was purified by flash column chromatography (CH$_2$Cl$_2$:Et$_2$O 98:2) to give activated ester 317 (1.02 g, 59%) as a colourless wax.

TLC: $R_f = 0.21$ (CH$_2$Cl$_2$:Et$_2$O 98:2)

1H NMR: (400 MHz, Dimethyl sulfoxide-d_6) δ 8.00 – 7.93 (8H, m, H1 & H2), 3.21 (4H, s, H6) ppm
\(^{13}\)C NMR: (101 MHz, Dimethyl sulfoxide-\textit{d}_6) \(\delta\) 168.8 (C5), 161.6 (C4), 135.5 (C1 or C2), 128.1 (C3), 124.0 (C2 or C1), 25.3 (C6) ppm

HRMS (\(m/z\)): (ESI\(^{+}\)) calc'd for C\(_{20}\)H\(_{12}\)N\(_2\)NaO\(_8\) [M+Na]\(^{+}\): 431.0486, found: 431.0484

IR (\(\nu_{\text{max}}\)): 3058, 2939, 1788, 1732, 1467, 1375, 1301, 1186, 1140, 1076, 972, 882, 789, 728, 694, 601, 519 cm\(^{-1}\)

1,2-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane (318)

Activated ester 317 (53 mg, 0.13 mmol, 1.00 equiv.) was borylated with B\(_2\)cat\(_2\) (80 mg, 0.32 mmol, 2.50 equiv.), and pinacol (126 mg, 1.06 mmol, 8.00 equiv.) according to GP8. The crude residue was purified by flash column chromatography (n-pentane:Et\(_2\)O 100:0→90:10) to give boronic ester 318 (15 mg, 41%) as a colourless liquid.

TLC: \(R_f = 0.37\) (n-pentane:Et\(_2\)O 85:15)

\(^1\)H NMR: (400 MHz, Chloroform-\textit{d}) \(\delta\) 1.23 (24H, s, H1), 0.84 (4H, s, H3) ppm

\(^{13}\)C NMR: (101 MHz, Chloroform-\textit{d}) \(\delta\) 83.0 (C2), 25.0 (C1), 4.6 (C3) ppm

Spectral data were in accordance with that reported in the literature.\(^{293}\)

1,3-Dioxoisooindolin-2-yl (\(R\))-4-((3\(_R\),5\(_R\),8\(_R\),9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethylhexadecahydro-1\(H\)-cyclopenta[\(a\)]phenanthren-17-yl)pentanoate (320)

Carboxylic acid 319 (1.00 g, 2.66 mmol, 1.00 equiv.) was activated with \(N\)-hydroxyphthalimide (433 mg, 2.66 mmol, 1.00 equiv.), DIC (0.41 mL, 2.66 mmol, 1.00 equiv.) and DMAP (32 mg, 0.27 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (n-pentane:EtOAc 80:20→60:40) to give activated ester 320 (418 mg, 30%) as a white solid.
TLC: $R_f = 0.42$ (n-pentane:EtOAc 50:50)

m.p.: 161 – 163 °C (ethyl acetate)

1H NMR: (400 MHz, Chloroform-d) δ 7.88 (2H, m, H28 or H29), 7.78 (2H, m, H29 or H28), 3.62 (1H, dddd, $J = 11.1, 11.0, 4.7, 4.6$ Hz, H2), 2.71 (1H, ddd, $J = 15.9, 9.6, 4.8$ Hz, H24), 2.58 (1H, ddd, $J = 15.9, 9.0, 6.9$ Hz, H24*), 2.05 – 1.93 (2H, m), 1.91 – 1.83 (2H, m), 1.81 – 1.70 (2H, m), 1.66 (1H, m), 1.61 – 1.46 (4H, m), 1.44 – 1.36 (5H, m), 1.35 – 1.21 (4H, m), 1.19 – 1.02 (5H, m), 1.01 – 0.95 (4H, m), 0.92 (3H, s, CH$_3$), 0.67 (3H, s, CH$_3$) ppm

13C NMR: (101 MHz, Chloroform-d) δ 170.2 (C25), 162.1 (C26), 134.8 (C28 or C29), 129.1 (C27), 124.1 (C29 or C28), 72.0 (C2), 56.6 (CH), 56.0 (CH), 43.0 (CIV), 42.2 (CH), 40.6 (CH), 40.3 (CH$_2$), 36.6 (CH$_2$), 36.0 (CH), 35.4 (CH), 34.7 (CIV), 30.9 (CH$_2$), 30.7 (CH$_2$), 28.3 (CH$_2$), 28.2 (CH$_2$), 27.3 (CH$_2$), 26.6 (CH$_2$), 24.3 (CH$_2$), 23.5 (CH$_3$), 21.0 (CH$_2$), 18.4 (C21), 12.2 (CH$_3$) ppm

HRMS (m/z): (ESI$^+$) calc’d for C$_{32}$H$_{43}$NNaO$_5$ [M+Na]$^+$: 544.3033; found: 544.3032

IR (ν_{\max}): 3366 (br.), 2929, 2863, 1816, 1788, 1741, 1467, 1365, 1186, 1067, 878, 732 cm$^{-1}$

$\alpha$$_D^{24}$: +18 (CHCl$_3$, c = 1.0)

(3R,5R,8R,9S,10S,13R,14S,17R)-10,13-Dimethyl-17-((R)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-ol (321)

Activated ester 320 (68 mg, 0.13 mmol, 1.00 equiv.) was borylated with B$_2$cat$_2$ (40 mg, 0.16 mmol, 1.25 equiv.), and pinacol (63 mg, 0.53 mmol, 4.00 equiv.) according to GP8. The crude residue was purified by flash column chromatography (n-pentane:Et$_2$O 60:40) to give boronic ester 321 (52 mg, 87%) as a white solid.

TLC: $R_f = 0.24$ (n-pentane:Et$_2$O 50:50)

m.p.: 159 – 161 °C (diethyl ether)

1H NMR: (400 MHz, Chloroform-d) δ 3.61 (1H, dddd, $J = 11.1, 11.0, 4.7, 4.6$ Hz, H2), 1.96 (1H, m), 1.91 – 1.70 (4H, m), 1.65 (1H, m), 1.60 – 1.46 (3H, m), 1.45 – 1.28 (7H, m), 1.28 – 1.17
(15H, m), 1.17 – 0.94 (7H, m), 0.91 (3H, s, CH₃), 0.88 (3H, d, J = 6.5 Hz, H22), 0.79 (1H, ddd, J = 15.8, 10.7, 5.1 Hz, H24), 0.68 – 0.56 (4H, m, CH₂ & H24’), ppm

¹³C NMR: (101 MHz, Chloroform-d) δ 82.9 (C25), 72.0 (C2), 56.7 (CH), 56.1 (CH), 42.8 (CIV), 42.3 (CH), 40.6 (CH), 40.4 (CH₂), 37.8 (CH), 36.7 (CH₂), 36.0 (CH), 35.5 (CH₂), 34.7 (CIV), 30.7 (CH₂), 29.9 (CH₂), 28.4 (CH₂), 27.4 (CH₂), 26.6 (CH₂), 25.0 (C26), 24.9 (C26’), 24.4 (CH₂), 23.5 (CH₂), 21.0 (CH₂), 18.2 (C22), 12.2 (CH₃) ppm

The signal corresponding to C24 was not observed due to quadrupolar relaxation.

HRMS (m/z): (ESI⁺) calc’d for C₂₉H₅₁BNaO₃ [M+Na]⁺: 481.3829; found: 481.3827

IR (νmax): 3346, 2975, 2929, 2864, 1448, 1369, 1311, 1144, 1040, 966, 909, 848, 732 cm⁻¹

[α]D²⁶: +21 (CHCl₃, c = 1.0)

1,3-Dioxoisindolin-2-yl (R)-4-((3R,5R,8R,9S,10S,13R,14S,17R)-3-((tert-butyldimethylsilyl)oxy)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate (323)

Part A: To a 100-mL round-bottom flask was added lithocholic acid 322 (1.88 g, 5.00 mmol, 1.00 equiv.) and dry DMF (13.00 mL) under nitrogen. To the stirring solution was added TBSCl (3.01 g, 20.00 mmol, 4.00 equiv.), followed by the portion-wise addition of imidazole (2.72 g, 40.00 mmol, 8.00 equiv.). The suspension was heated to 50 °C for 4 hours and then cooled to room temperature. Brine (50.00 mL) was added and the crude reaction mixture was extracted with n-hexane (2 × 50.00 mL). The combined organic extracts were washed with cold 1.00 M HCl (20.00 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to afford a viscous oil. The crude material was dissolved in a mixture of THF and MeOH (50:50, 34 mL), and an aqueous solution of K₂CO₃ (1.00 M, 17 mL) was added. The reaction was stirred at room temperature overnight, diluted with brine (30.00 mL), acidified to pH = 4 with an aqueous solution of KHSO₄ (1.00 M), and extracted with CH₂Cl₂ (3 × 50.00 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated under reduced pressure. Part B: The intermediate was activated with N-hydroxyphthalimide (816 mg, 5.00 mmol, 1.00 equiv.), DIC (0.77 mL, 5.00 mmol, 1.00 equiv.) and DMAP (61 mg, 0.50 mmol, 0.10 equiv.) according to
GP6. The crude residue was purified by flash column chromatography (n-hexane:EtOAc 95:5) to give activated ester 323 (1.37 g, 43% over 2 steps) as a white solid.

TLC: $R_t = 0.55$ (n-hexane:EtOAc 90:10)

m.p.: 194 – 198 °C (dichloromethane/methanol)

1H NMR: (400 MHz, Chloroform-d) δ 7.91 – 7.86 (2H, m, H30 or H31), 7.80 – 7.76 (2H, m, H31 or H30), 3.58 (1H, app. tt, $J_{app} = 11.0, 4.7$ Hz, H4), 2.71 (1H, m, H26), 2.59 (1H, m, H26'), 1.98 – 1.72 (6H, m), 1.58 – 0.86 (23H, m), 0.90 (3H, s, CH$_3$), 0.89 (9H, s, H1), 0.67 (3H, s, CH$_3$), 0.06 (6H, s, H3) ppm

13C NMR: (101 MHz, Chloroform-d) δ 170.2 (C27), 162.1 (C28), 134.8 (C30 or C31), 129.1 (C29), 124.1 (C31 or C30), 73.0 (C4), 56.5 (CH), 56.1 (CH), 42.9 (CIV), 42.4 (CH), 40.4 (CH), 40.3 (CH$_2$), 37.1 (CH$_2$), 36.0 (CH), 35.7 (CH$_2$), 35.4 (CH), 34.7 (CIV), 31.2 (CH$_2$), 30.9 (CH$_2$), 28.3 (CH$_2$), 28.2 (CH$_2$), 27.5 (CH$_2$), 26.5 (CH$_2$), 26.1 (C1), 24.4 (CH$_2$), 23.5 (CH$_3$), 21.0 (CH$_2$), 18.5 (C2), 18.4 (C3), –4.4 (C3) ppm

HRMS (m/z): (ESI') calc'd for C$_{38}$H$_{57}$BNO$_5$SiNa [M+Na]: 658.3898, found: 658.3888

IR (ν_{max}): 2930, 2860, 1744, 1065, 835, 781 cm$^{-1}$

$[\alpha]^2_{D}$: +20 (CHCl$_3$, c = 1.0)

tert-Butyl(((3R,5R,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)dimethylsilane (324)

Activated ester 323 (83 mg, 0.13 mmol, 1.00 equiv.) was borylated with B$_2$Cat$_2$ (40 mg, 0.16 mmol, 1.25 equiv.), and pinacol (63 mg, 0.53 mmol, 4.00 equiv.) according to GP8. The crude residue was purified by flash column chromatography (n-pentane:Et$_2$O 95:5) to give boronic ester 324 (54 mg, 72%) as a viscous solid.

TLC: $R_t = 0.38$ (n-pentane:Et$_2$O 95:5)

m.p.: 159 – 161 °C (diethyl ether)
1H NMR: (400 MHz, Chloroform-d) δ 3.57 (1H, dddd, J = 10.9, 10.7, 4.7, 4.5 Hz, H4), 1.95 (1H, m), 1.90 – 1.70 (4H, m), 1.59 – 1.50 (3H, m), 1.48 – 1.28 (8H, m), 1.28 – 1.17 (15H, m), 1.16 – 0.98 (6H, m), 0.98 – 0.75 (17H, m), 0.69 – 0.54 (4H, m), 0.05 (6H, s, C3) ppm

13C NMR: (101 MHz, Chloroform-d) δ 82.9 (C27), 73.0 (C4), 56.6 (CH), 56.2 (CH), 42.9 (CIV), 42.5 (CH), 40.4 (CH), 40.3 (CH$_2$), 37.8 (CH), 37.1 (CH$_2$), 36.1 (CH), 35.8 (CH$_2$), 34.8 (CIV), 31.2 (CH$_2$), 29.9 (CH$_2$), 28.4 (CH$_2$), 27.5 (CH$_2$), 26.6 (CH$_2$), 26.2 (C1), 25.0 (C28), 24.9 (C28$^\prime$), 24.4 (CH$_2$), 23.6 (CH$_3$), 18.5 (CH), 18.2 (CH$_3$), 12.2 (CH$_3$), –4.4 (C3) ppm

The signal corresponding to C26 was not observed due to quadrupolar relaxation.

HRMS (m/z): (ESI$^+$) calc’d for C$_{35}$H$_{65}$BNaO$_3$Si [M+Na]$^+$: 595.4695; found: 595.4690

IR (\nu$_{max}$): 2927, 2856, 1470, 1370, 1312, 1251, 1146, 1095, 1080, 871, 835, 774 cm$^{-1}$

$[\alpha]_D^{24}$: +17 (CHCl$_3$, c = 1.0)

1,3-Dioxoisooindolin-2-yl (2S,5R,6R)-3,3-dimethyl-7-oxo-6-(2-phenylacetamido)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (326)

Penicillin 325 (437 mg, 1.31 mmol, 1.00 equiv.) was activated with N-hydroxyphthalimide (213 mg, 1.31 mmol, 1.00 equiv.) and DCC (270 mg, 1.31 mmol, 1.00 equiv.) according to GP7. The crude residue was recrystallised from EtOAc/n-pentane to give activated ester 326 (182 mg, 29%) as a white solid.

TLC: R_f=0.38 (n-pentane:acetone 50:50)

m.p.: decomp. 185 – 189 °C (ethyl acetate)

1H NMR: (400 MHz, Chloroform-d) δ 7.87 (2H, m, H17 or H18), 7.79 (2H, m, H18 or H17), 7.36 (2H, m, H2), 7.30 (1H, m, H1), 7.25 (2H, m, H3), 6.14 (1H, m, H7), 5.67 (1H, dd, J = 9.0, 4.3 Hz, H8), 5.51 (1H, d, J = 4.3 Hz, H10), 4.69 (1H, s, H13), 3.62 (2H, s, H5), 1.71 (3H, s, H12), 1.53 (3H, s, H12$^\prime$) ppm

13C NMR: (101 MHz, Chloroform-d) δ 173.5 (C9), 170.5 (C6), 164.3 (C14), 161.4 (C15), 135.1 (C17 or C18), 133.9 (C4), 129.6 (C3), 129.3 (C2), 128.7 (C16), 127.8 (C1), 124.3 (C18 or C17), 68.8 (C13), 68.4 (C10), 65.0 (C11), 59.0 (C8), 43.4 (C5), 31.4 (C12), 26.9 (C12$^\prime$) ppm
HRMS (m/z): (ESI') calc'd for C$_{24}$H$_{21}$N$_3$NaO$_6$S [M+Na]$^+$: 502.1043; found: 502.1041

IR (ν$_{max}$): 3531, 3363, 3295, 3032, 2972, 2934, 1788, 1745, 1666, 1517, 1293, 1133, 967 cm$^{-1}$

$[α]_D^{24}$: +103 (CHCl$_3$, c = 1.0)

(+/-)-1,3-dioxoisooindolin-2-yl 2-phenylpropanoate (329)

Carboxylic acid 328 (1.00 g, 6.66 mmol, 1.00 equiv.) was activated with N-hydroxyphthalimide (1.09 g, 6.66 mmol, 1.00 equiv.), DIC (1.03 mL, 6.66 mmol, 1.00 equiv.) and DMAP (81 mg, 0.67 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (n-pentane:EtOAc 90:10) to give activated ester 329 (1.79 mg, 91%) as a colourless liquid.

TLC: R_f = 0.16 (n-pentane:Et$_2$O 90:10)

1H NMR: (400 MHz, Chloroform-d) δ 7.86 (2H, m, H10 or H11), 7.77 (2H, m, 2H, H11 or H10), 7.44 – 7.37 (4H, m, H2 & H3), 7.33 (1H, m, H1), 4.13 (1H, q, J = 7.2 Hz, H5), 1.68 (3H, d, J = 7.2 Hz, H6) ppm

13C NMR: (126 MHz, Chloroform-d) δ 170.9 (C7), 162.0 (C8), 138.5 (C4), 134.9 (C10 or C11), 129.07 (C9), 129.06 (C2 or C3), 128.0 (C1), 127.7 (C3 or C2), 124.1 (C11 or C10), 43.1 (C5), 19.1 (C6) ppm

HRMS (m/z): (ESI') calc'd for C$_{17}$H$_{13}$NNaO$_4$ [M+Na]$^+$: 318.0737, found: 318.0748

IR (ν$_{max}$): 2993, 2944, 1781, 1736, 1353, 1185, 1041, 875, 854, 792, 738, 692, 512 cm$^{-1}$

1,3-Dioxoisooindolin-2-yl 2-chloro-2-phenylacetate (332)

In a flame-dried Schlenk tube, 2-chloro-2-phenylacetic acid 331 (486 mg, 2.85 mmol, 1.00 equiv.) was dissolved in anhydrous CH$_2$Cl$_2$ (10.00 mL) at 0 °C under an atmosphere of nitrogen. One drop of DMF was added to the reaction mixture, followed by oxalyl chloride (0.27 mL, 3.13 mmol, 1.10 equiv.). After the addition, the ice bath was removed and the reaction
mixture was stirred at room temperature. The colourless solution turned yellow. After 1.5 h, gas
evolution ceased and volatiles were removed under reduced pressure to afford a bright yellow
liquid. In parallel, N-hydroxyphthalimide (465 mg, 2.85 mmol, 1.00 equiv.) and DIPEA
(0.75 mL, 4.27 mmol, 1.50 equiv.) were dissolved in a second flame-dried Schlenk tube in anhy-
drous CH$_2$Cl$_2$ (10.00 mL) at 0 °C under an atmosphere of nitrogen. Freshly prepared acyl chloride
as a solution in anhydrous CH$_2$Cl$_2$ (2.00 mL) was then carefully added to the reaction mixture
via syringe. After the addition, the ice bath was removed and the reaction mixture was stirred at
room temperature for 16 h. The orange solution was then washed with water (4 × 10.00 mL),
dried over MgSO$_4$, filtered and concentrated to afford a yellow solid. The crude residue was
purified by flash column chromatography (n-pentane:CH$_2$Cl$_2$ 50:50—0:100) to give activated
ester 332 (404 mg, 45%) as a white solid.

TLC: $R_f = 0.29$ (n-pentane:CH$_2$Cl$_2$ 50:50)

m.p.: 59 – 61 °C (n-hexane)

1H NMR: (400 MHz, Chloroform-d) δ 7.88 (2H, m, H9 or H10), 7.80 (2H, m, H10 or H9), 7.61
(2H, m, H2 or H3), 7.54 – 7.36 (3H, m, (H3 or H2) & H1), 5.74 (1H, s, H5) ppm

13C NMR: (101 MHz, Chloroform-d) δ 165.4 (C6), 161.4 (C7), 135.1 (C9 or C10), 134.2 (C4),
130.1 (C1), 129.3 (C2 or C3), 128.9 (C8), 128.3 (C3 or C2), 124.3 (C10 or C9), 56.3 (C5) ppm

HRMS (m/z): (ESI$^+$) calc’d for C$_{16}$H$_{10}$ClNNaO$_4$ [M+Na]$^+$: 338.0191; found: 338.0190

IR (ν_{max}): 3523, 3066, 2998, 1819, 1788, 1740, 1467, 1349, 1183, 1079, 964, 873, 737 cm$^{-1}$

1,3-Dioxoisooindolin-2-yl 2-bromoacetate (335)

In a flame-dried Schlenk tube, N-hydroxyphthalimide (808 mg, 4.95 mmol, 1.00 equiv.) and
DIPEA (0.86 mL, 4.95 mmol, 1.00 equiv.) were dissolved in anhydrous CH$_2$Cl$_2$ (20.00 mL) at
0 °C under an atmosphere of nitrogen. Bromoacetyl bromide 334 (0.43 mL, 4.95 mmol,
1.00 equiv.) was slowly added via syringe. After the addition, the red solution turned colorless.
The ice bath was removed and the reaction mixture was stirred at room temperature for 16 h. The
reaction mixture was quenched with water (20.00 mL). The organic layer was separated, washed
with water (3 × 15 mL), dried over MgSO$_4$, filtered and concentrated under reduced pressure to
afford a yellow solid. The product was recrystallised from EtOAc/n-pentane to give activated
ester 335 (1.18 g, 84%) as an off-white solid.
TLC: $R_f = 0.43$ (n-pentane:Et₂O 50:50)

m.p.: 92 – 95 °C (n-hexane)

¹H NMR: (400 MHz, Chloroform-δ) δ 7.90 (2H, m, H5 or H6), 7.81 (2H, m, H6 or H5), 4.16 (2H, s, H1) ppm

¹³C NMR: (101 MHz, Chloroform-δ) δ 164.0 (C2), 161.4 (C3), 135.1 (C5 or C6), 128.9 (C10), 124.3 (C6 or C5), 21.4 (C1) ppm

HRMS (m/z): Despite repeated attempts, a HRMS could not be obtained.

IR (νmax): 3516, 3042, 3004, 2979, 1808, 1782, 1740, 1466, 1372, 1184, 1068, 973, 877 cm⁻¹

4,5,6,7-Tetrachloro-1,3-dioxoisindolin-2-yl *trans*-2-phenylcyclopropane-1-carboxylate (337)

Carboxylic acid 307 (1.00 g, 6.17 mmol, 1.00 equiv.) was activated with tetrachloro-N-hydroxyphthalimide (1.86 g, 6.17 mmol, 1.00 equiv.), DIC (0.95 mL, 6.17 mmol, 1.00 equiv.) and DMAP (75 mg, 0.62 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (n-pentane:EtOAc 100:0→0:100) to give activated ester 337 (118 mg, 4%) as a white solid. **Note:** Product unstable on silica gel.

TLC: $R_f = 0.43$ (n-pentane:Et₂O 80:20)

m.p.: 211 – 214 °C (ethyl acetate)

¹H NMR: (400 MHz, Chloroform-δ) δ 7.35 (2H, m, H2 or H3), 7.26 (1H, m, H1), 7.16 (2H, m, H3 or H2), 2.79 (1H, ddd, $J = 9.3$, 7.0, 4.1 Hz, H5), 2.22 (1H, ddd, $J = 8.4$, 5.2, 4.1, H7), 1.84 (1H, ddd, $J = 9.3$, 5.2, 4.9 Hz, H6), 1.67 (1H, ddd, $J = 8.4$, 7.0, 4.9 Hz, H6') ppm

¹³C NMR: (101 MHz, Chloroform-δ) δ 169.4 (C8), 157.7 (C9), 141.2 (2 × C₄), 138.3 (C4), 130.6 (2 × C₄), 128.9 (C2 or C3), 127.4 (C1), 126.6 (C3 or C2), 124.9 (2 × C₄), 28.8 (C5), 21.0 (C7), 18.5 (C6) ppm

HRMS (m/z): (EI⁺) calc’d for C₃₈H₂₅Cl₁₄NO₄ [M⁺]: 442.9286; found: 442.9293

IR (νmax): 3510, 3061, 3029, 1810, 1785, 1748, 1402, 1379, 1099, 1071, 1039, 731 cm⁻¹
1,3-Dioxoisindolin-2-yl hept-6-enoate (339)

Carboxylic acid 338 (150 mg, 1.17 mmol, 1.00 equiv.) was activated with N-hydroxyphthalimide (191 mg, 1.17 mmol, 1.00 equiv.), DIC (0.18 mL, 1.17 mmol, 1.00 equiv.) and DMAP (15 mg, 0.12 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (n-hexane:acetone 90:10) to give activated ester 339 (215 mg, 67%) as a colourless liquid.

TLC: $R_f = 0.27$ (n-hexane:acetone 80:20)

1H NMR: (400 MHz, Chloroform-d) δ 7.88 (2H, m, H10 or H11), 7.78 (2H, m, H11 or H10), 5.81 (1H, ddt, $J = 17.0, 10.2, 6.7$ Hz, H2), 5.04 (1H, ddt, $J = 17.0, 2.2, 1.7$ Hz, H1'), 4.98 (1H, ddt, $J = 10.2, 2.2, 1.2$ Hz, H1), 2.67 (2H, t, $J = 7.4$ Hz, H6), 2.12 (2H, dddt, $J = 7.4, 6.7, 1.7, 1.2$ Hz, H3), 1.81 (2H, app. pent, $J_{app} = 7.4$ Hz, H5), 1.55 (2H, app. pent, $J_{app} = 7.4$ Hz, H4) ppm

13C NMR: (101 MHz, Chloroform-d) δ 169.6 (C7), 162.1 (C8), 138.2 (C2), 134.9 (C10 or C11), 129.1 (C9), 124.1 (C11 or C10), 115.2 (C1), 33.3 (C3), 31.0 (C6), 28.1 (C4), 24.2 (C5) ppm

HRMS (m/z): (ESI$^+$) calc’d for C15H15NNaO4 [M+Na]$^+$: 296.0893; found: 296.0883

IR (ν_{max}): 3522, 3076, 2934, 2865, 1815, 1787, 1738, 1467, 1362, 1185, 1133, 1081, 877 cm$^{-1}$

2-(Hex-5-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (341a) and 2-(Cyclopentylmethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (341b)

Activated ester 339 (36 mg, 0.13 mmol, 1.00 equiv.) was borylated with B$_2$cat$_2$ (40 mg, 0.16 mmol, 1.25 equiv.), and pinacol (63 mg, 0.53 mmol, 4.00 equiv.) according to GP8. The crude residue was purified by flash column chromatography (n-pentane:Et$_2$O 100:0→90:10) to give a mixture of linear boronic ester 341a and cyclized boronic ester 341b (57:43, 21 mg, 77%) as a colourless liquid. **Note:** Both products are volatile.

TLC: $R_f = 0.55$ (n-pentane:Et$_2$O 95:5)
Despite repeated attempts, a HRMS could not be obtained.

2-(Hex-5-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (341a)

\[\text{HRMS (m/z):} \]

\[\begin{align*}
\text{1H NMR:} & \ (400 \text{ MHz, Chloroform-d}) \ \delta \ 5.81 \ (1H, \text{ ddt, } J = 17.1, \ 10.1, \ 6.6 \text{ Hz, H2}), \ 4.98 \ (1H, \text{ d, } J = 17.1 \text{ Hz, H1'}), \ 4.91 \ (1H, \text{ d, } J = 10.1 \text{ Hz, H1}), \ 2.04 \ (2H, \text{ td, } J = 7.0, \ 6.6 \text{ Hz, H3}), \ 1.45 - 1.34 \ (4H, \text{ m, H4 & H5}), \ 1.24 \ (12H, \text{ s, H8}), \ 0.77 \ (2H, \text{ t, } J = 7.3 \text{ Hz, H6}) \text{ ppm}
\end{align*}\]

\[\text{13C NMR:} \ (101 \text{ MHz, Chloroform-d}) \ \delta \ 139.3 \ (C2), \ 114.2 \ (C1), \ 83.0 \ (C7), \ 33.7 \ (C3), \ 31.8 \ (C4 \text{ or C5}), \ 25.0 \ (C8), \ 23.7 \ (C5 \text{ or C4}) \text{ ppm}
\]

The signal corresponding to C6 was not observed due to quadrupolar relaxation.

2-(Cyclopentylmethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (341b)

\[\text{HRMS (m/z):} \]

\[\begin{align*}
\text{1H NMR:} & \ (400 \text{ MHz, Chloroform-d}) \ \delta \ 1.95 \ (1H, \text{ m, H3}), \ 1.76 \ (2H, \text{ m}), \ 1.60 \ (2H, \text{ m}), \ 1.50 \ (2H, \text{ m}), \ 1.05 \ (2H, \text{ m}), \ 0.83 \ (2H, \text{ d, } J = 7.4 \text{ Hz, H4}) \text{ ppm}
\end{align*}\]

\[\text{13C NMR:} \ (101 \text{ MHz, Chloroform-d}) \ \delta \ 82.9 \ (C5), \ 36.3 \ (C3), \ 35.2 \ (C2), \ 25.3 \ (C1), \ 25.0 \ (C6) \text{ ppm}
\]

The signal corresponding to C4 was not observed due to quadrupolar relaxation.

1,3-Dioxoisouindolin-2-yl (tert-butoxycarbonyl)glycinate (353)

(tert-Butoxycarbonyl)glycine 352 (2.50 g, 14.27 mmol, 1.00 equiv.) was activated with N-hydroxyphthalimide (2.33 g, 14.27 mmol, 1.00 equiv.) and DCC (2.94 g, 14.27 mmol, 1.00 equiv.)
according to GP7. The crude residue was purified by recrystallisation from EtOAc to give, after 4 crops, activated ester 353 (1.81 g, 40%) as a white solid.

TLC: $R_t = 0.59$ (n-pentane:EtOAc 50:50)

m.p.: 184 – 188 °C (ethyl acetate)

1H NMR: (500 MHz, Dimethyl sulfoxide- d_6) δ 8.03 – 7.90 (4H, m, H9 & H10), 7.51 (1H, t, $J = 6.1$ Hz, H4), 4.17 (2H, d, $J = 6.1$ Hz, H5), 1.38 (9H, s, H1) ppm

13C NMR: (126 MHz, Dimethyl sulfoxide- d_6) δ 168.4 (C6), 162.1 (C7), 156.2 (C3), 136.1 (C9 or C10), 128.5 (C8), 124.5 (C10 or C9), 79.4 (C2), 40.3 (C5), 28.5 (C1) ppm

HRMS (m/z): (ESI$^+$) calc’d for C$_{15}$H$_{16}$N$_2$NaO$_6$ [M+Na]$^+$: 343.0901; found: 343.0905

IR (ν_{max}): 3295, 2979, 2930, 2850, 1840, 1825, 1788, 1738, 1686, 1532, 1365, 1289, 1144, 1071, 970, 878, 693 cm$^{-1}$

tert-Butyl ((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)carbamate (354)

In a flame-dried Schlenk tube was diluted a solution of NaHMDS (1.00 M in THF, 1.00 mL, 1.00 mmol, 1.00 equiv.) with anhydrous THF (5.00 mL) at -78 °C under an atmosphere of nitrogen. A solution of boronic ester 385 (176 mg, 1.00 mmol, 1.00 equiv.) in anhydrous THF (1.00 mL) was added dropwise and the reaction mixture was stirred at -78 °C for 20 min. The acetone/dry ice bath was removed and the reaction mixture was stirred at room temperature for 2 h. The suspension was cooled to 0 °C and MeOH (81 µL, 2.00 mmol, 2.00 equiv.) was added. The reaction mixture was stirred at 0 °C for 1 h and Boc$_2$O (262 mg, 1.20 mmol, 1.20 equiv.) was added. After the addition, the reaction mixture was stirred at room temperature for 3 days under an atmosphere of nitrogen. The suspension was concentrated and the crude residue was purified by flash column chromatography (oven-dried silica; petroleum ether 40–60:Et$_2$O 80:20→0:100) to give boronic ester 354 (97 mg, 38%) as a pale yellow liquid.

TLC: $R_t = 0.31$ (n-pentane:EtOAc 50:50)

1H NMR: (400 MHz, Chloroform- d_6) δ 4.63 (1H, s, H4), 2.77 (2H, d, $J = 4.3$ Hz, H3), 1.44 (9H, s, H7), 1.27 (12H, s, H1) ppm

13C NMR: (101 MHz, Chloroform- d_6) δ 157.0 (C5), 84.1 (C2), 79.1 (C6), 28.4 (C3), 24.8 (C1) ppm
Spectral data were in accordance with that reported in the literature.274

1,3-Dioxoisooindolin-2-yl (tert-butoxycarbonyl)-L-leucinate ((S)-356)

Protected leucine (S)-355 (500 mg, 2.16 mmol, 1.00 equiv.) was activated with N-hydroxy-phthalimide (353 mg, 2.16 mmol, 1.00 equiv.) and DCC (446 mg, 2.16 mmol, 1.00 equiv.) according to GP7. The crude residue was triturated in cold EtOAc. The solid was removed by filtration, the filtrate was concentrated under reduced pressure and the resulting waxy solid was dried under high vacuum to afford activated ester (S)-356 (415 mg, 51%) as a colourless wax.

TLC: $R_f = 0.10$ (n-hexane:EtOAc 90:10)

1H NMR: (500 MHz, Chloroform-d) δ 7.89 (2H, m, H12 or H13), 7.79 (2H, m, H13 or H12), 4.94 (1H, m, H4), 4.62 (1H, m, H5), 1.97 – 1.80 (2H, m, H6 & H7), 1.72 (1H, m, H6’), 1.48 (9H, m, H1), 1.02 (6H, m, H8) ppm

13C NMR: (126 MHz, Chloroform-d) δ 170.1 (C9), 161.7 (C10), 155.1 (C3), 134.9 (C12 or C13), 129.0 (C11), 124.1 (C13 or C12), 80.7 (C2), 50.8 (C5), 42.0 (C6), 28.4 (C1), 24.9 (C7), 22.9 (C8) ppm

HRMS (m/z): (ESI$^+$) calc’d for C$_{19}$H$_{24}$N$_2$NaO$_6$ [M+Na]$^+$: 399.1527; found: 399.1537

IR (ν$_{max}$): 3375, 2961, 2934, 2873, 1819, 1789, 1744, 1713, 1367, 1163, 1080, 697 cm$^{-1}$

$[\alpha]_D^{24} = -33$ (CHCl$_3$, $c = 1.0$)

N-Benzyl-1,1,1-triphenylmethanamine (358)

In a round-bottomed flask, benzylamine (0.20 mL, 1.87 mmol, 1.00 equiv.) was dissolved in anhydrous CH$_2$Cl$_2$ (6.00 mL) at room temperature. Ph$_3$CCl (572 mg, 2.05 mmol, 1.10 equiv.) was added, followed by DMAP (23 mg, 0.19 mmol, 0.10 equiv.) and the reaction mixture was stirred at room temperature for 16 h. A saturated aqueous solution of NaHCO$_3$ (9.00 mL) was added,
followed by water (1.00 mL). The aqueous layer was extracted with Et₂O (3 × 5 mL). The organic phases were combined, washed with brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column chromatography (n-pentane:CH₂Cl₂ 80:20→60:40) to give amine 358 (317 mg, 49%) as a white solid.

TLC: \(R_1 = 0.38 \) (n-pentane:Et₂O 80:20)

¹H NMR: (500 MHz, Chloroform-d) \(\delta 7.58 \) (6H, m, H₉ or H₁₀), 7.41 (2H, m, H₂ or H₃), 7.37 – 7.27 (9H, m, H₁ & 8 × Hₐr), 7.22 (3H, m, H₁1), 3.36 (2H, s, H₅), 1.87 (1H, s, H₆) ppm

¹³C NMR: (126 MHz, Chloroform-d) \(\delta 146.2 \) (C₈), 141.2 (C₄), 128.8 (Cₐr), 128.5 (Cₐr), 128.0 (2 × Cₐr), 126.9 (Cₐr), 126.5 (C₁₁), 71.1 (C₇), 48.0 (C₅) ppm

Spectral data were in accordance with that reported in the literature.²⁹⁴

Benzyl benzylcarbamate (359)

In a round-bottomed flask, benzylamine (0.20 mL, 1.87 mmol, 1.00 equiv.) was dissolved in MeOH (4.00 mL) at room temperature. CbzCl (0.32 mL, 2.24 mmol, 1.20 equiv.) was added, followed by iodine (10 mg, 0.04 mmol, 0.02 equiv.) and the reaction mixture was stirred at room temperature for 16 h. The reaction mixture was diluted with Et₂O (10.00 mL) and successively washed with a saturated aqueous solution of Na₂S₂O₃ (5.00 mL), a saturated aqueous solution of NaHCO₃ (5.00 mL) and brine. The organic layer was dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column chromatography (n-pentane:Et₂O 80:20) to give carbamate 359 (217 mg, 48%) as a white solid.

TLC: \(R_t = 0.22 \) (n-pentane:Et₂O 80:20)

¹H NMR: (500 MHz, Chloroform-d) \(\delta 7.42 – 7.26 \) (10H, m, 10 × Hₐr), 5.14 (2H, s, H₈), 5.08 (1H, br. s, H₆), 4.39 (2H, d, \(J = 6.0 \) Hz, H₅) ppm

¹³C NMR: (126 MHz, Chloroform-d) \(\delta 156.5 \) (C₇), 138.5 (C₄), 136.6 (C₉), 128.8 (Cₐr), 128.7 (2 × Cₐr), 128.3 (2 × Cₐr), 127.7 (Cₐr), 67.0 (C₈), 45.3 (C₅) ppm

Spectral data were in accordance with that reported in the literature.²⁹⁵
tert-Butyl benzylcarbamate (360)

![Chemical structure](image)

In a round-bottomed flask, benzylamine (0.20 mL, 1.87 mmol, 1.00 equiv.) was dissolved in EtOH (4.00 mL) at room temperature. Boc₂O (448 mg, 2.05 mmol, 1.10 equiv.) was added and the reaction mixture was stirred at 30 °C for 4 h and at room temperature for 16 h. A saturated aqueous solution of NH₄Cl (3.00 mL) was added, followed by water (1.00 mL). The layers were separated and the aqueous phase was extracted with Et₂O (3 × 5 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column chromatography (n-pentane:CH₂Cl₂ 80:20→60:40) to give carbamate 360 (340 mg, 88%) as a white solid.

TLC: \(R_f = 0.38 \) (n-pentane:Et₂O 80:20)

¹H NMR: (500 MHz, Chloroform-d) \(\delta \) 7.33 (2H, m, H₂), 7.30 – 7.24 (3H, m, H₁ & H₃), 4.83 (1H, m, H₆), 4.32 (2H, d, \(J = 5.9 \) Hz, H₅), 1.46 (9H, s, H₉) ppm

¹³C NMR: (126 MHz, Chloroform-d) \(\delta \) 156.0 (C₇), 139.0 (C₄), 128.7 (C₂), 127.6 (C₁), 127.4 (C₃), 79.6 (C₈), 44.8 (C₅), 28.5 (C₉) ppm

Spectral data were in accordance with that reported in the literature.²⁹⁶

1,1,1-Trichloro-2-methylpropan-2-yl benzylcarbamate (361)

![Chemical structure](image)

In a round-bottomed flask, benzylamine (0.20 mL, 1.87 mmol, 1.00 equiv.) and Et₃N (0.52 mL, 3.73 mmol, 2.00 equiv.) were dissolved in CH₂Cl₂ (4.00 mL) at 0 °C. DMTrocCl (448 mg, 1.87 mmol, 1.00 equiv.) was added portionwise. After the addition, the ice bath was removed and the reaction mixture was stirred at room temperature for 16 h. The reaction mixture was diluted with EtOAc (10.00 mL) and a saturated aqueous solution of NH₄Cl (10.00 mL) was added. The aqueous phase was extracted with EtOAc (3 × 5 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column chromatography (n-pentane:CH₂Cl₂ 80:20→60:40) to give carbamate 361 (174 mg, 30%) as a pale yellow solid.

TLC: \(R_f = 0.43 \) (n-pentane:Et₂O 80:20)
\textbf{1}^\text{H} \text{ NMR:} (500 \text{ MHz, Chloroform-}d) \ \delta \ 7.35 \ (2\text{H, m, H2}), \ 7.32 – 7.27 \ (3\text{H, m, H1 & H3}), \ 5.15 \ (1\text{H, br. s, H6}), \ 4.36 \ (2\text{H, d, } J = 5.9 \text{ Hz, H5}), \ 1.95 \ (6\text{H, s, H9}) \text{ ppm}

\textbf{1}^3\text{C} \text{ NMR:} (126 \text{ MHz, Chloroform-}d) \ \delta \ 154.2 \ (\text{C7}), \ 138.2 \ (\text{C4}), \ 128.9 \ (\text{C2}), \ 127.8 \ (\text{C3}), \ 127.3 \ (\text{C1}), \ 106.7 \ (\text{C10}), \ 88.3 \ (\text{C8}), \ 45.1 \ (\text{C5}), \ 21.8 \ (\text{C9}) \text{ ppm}

Spectral data were in accordance with that reported in the literature.297

\textit{N-Benzyacetamide (362)}

\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{figure1.png}
\end{figure}

In a round-bottomed flask, benzylamine (0.20 mL, 1.87 mmol, 1.00 equiv.) and Et\textsubscript{3}N (0.52 mL, 3.73 mmol, 2.00 equiv.) were dissolved in anhydrous CH\textsubscript{2}Cl\textsubscript{2} (4.00 mL) at 0 °C. Ac\textsubscript{2}O (0.18 mL, 1.87 mmol, 1.00 equiv.) was added, followed by DMAP (23 mg, 0.19 mmol, 0.10 equiv.). After 5 min, the ice bath was removed and the reaction mixture was stirred at room temperature for 16 h. The reaction mixture was diluted with Et\textsubscript{2}O (4.00 mL) and an aqueous solution of HCl (0.20 M, 10.00 mL) was added. The aqueous phase was extracted with Et\textsubscript{2}O (3 × 5 mL). The organic layers were combined, washed with brine, dried over MgSO\textsubscript{4}, filtered and concentrated. The crude residue was purified by flash column chromatography (\textit{n-pentane}:EtOAc 50:50→25:75) to give acetamide \textit{362} (206 mg, 74%) as a white solid.

\textbf{TLC:} \textit{R}_{\text{f}} = 0.16 (\textit{n-pentane}:EtOAc 50:50)

\textbf{1}^\text{H} \text{ NMR:} (500 \text{ MHz, Chloroform-}d) \ \delta \ 7.33 \ (2\text{H, m, H2}), \ 7.30 – 7.26 \ (3\text{H, m, H1 & H3}), \ 5.79 \ (1\text{H, br. s, H6}), \ 4.43 \ (2\text{H, d, } J = 5.7 \text{ Hz, H5}), \ 2.02 \ (3\text{H, s, H8}) \text{ ppm}

\textbf{1}^3\text{C} \text{ NMR:} (126 \text{ MHz, Chloroform-}d) \ \delta \ 170.0 \ (\text{C7}), \ 138.3 \ (\text{C4}), \ 128.9 \ (\text{C2}), \ 128.0 \ (\text{C3}), \ 127.7 \ (\text{C1}), \ 43.9 \ (\text{C5}), \ 23.4 \ (\text{C8}) \text{ ppm}

Spectral data were in accordance with that reported in the literature.298

\textit{Benzyl-\textit{L}-alanine ((S)-365)}

\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{figure2.png}
\end{figure}

Alanine \textit{(S)-364} (1.00 g, 11.22 mmol, 1.00 equiv.) was dissolved in an aqueous solution of NaOH (2.00 M, 6.00 mL) at room temperature. Benzaldehyde (1.15 mL, 11.22 mmol, 1.00 equiv.) was added, and the biphasic mixture was stirred at room temperature for 1 h. The colourless solution
was cooled to 0 °C and NaBH₄ (212 mg, 5.61 mmol, 0.50 equiv.) was added portionwise. After the addition, the reaction mixture was stirred at room temperature for 30 min before benzaldehyde (1.15 mL, 11.22 mmol, 1.00 equiv.) and NaBH₄ (212 mg, 5.61 mmol, 0.50 equiv.) were added. The reaction mixture was stirred for 1 h and Et₂O (10.00 mL) was added. The biphasic mixture was vigorously stirred for 16 h. The layers were separated and the aqueous phase was washed with Et₂O (2 × 10.00 mL), acidified to pH 7 and concentrated under reduced pressure. The white precipitate was triturated in cold water, collected by filtration and dried under high vacuum to give benzylalanine (S)-365 (738 mg, 37%) as a white solid.

TLC: $R_f = 0.10$ (CH₂Cl₂:MeOH 80:20)

¹H NMR: (500 MHz, Deuteron Oxide) δ 7.56 – 7.42 (5H, m, H1, H2 & H3), 4.26 (1H, d, $J = 13.0$ Hz, H5), 4.22 (1H, d, $J = 13.0$ Hz, H5‘), 3.71 (1H, q, $J = 7.2$ Hz, H7), 1.51 (3H, d, $J = 7.2$ Hz, H8) ppm

¹³C NMR: (126 MHz, Deuteron Oxide) δ 174.7 (C9), 130.9 (C4), 129.8 (C2), 129.6 (C1), 129.2 (C3), 57.3 (C7), 49.8 (C5), 15.2 (C8) ppm

Spectral data were in accordance with that reported in the literature.²⁹⁹

1,3-Dioxoisindolin-2-yl N-benzyl-N-(tert-butoxycarbonyl)-L-alaninate ((S)-366)

Part A: Benzylalanine (S)-365 (695 mg, 3.88 mmol, 1.00 equiv.) was dissolved in a mixture of water and dioxane (50:50, 12.00 mL) by addition of Et₃N (1.62 mL, 11.63 mmol, 3.00 equiv.) at room temperature. Boc₂O (846 mg, 3.88 mmol, 1.00 equiv.) was added, and the reaction mixture was stirred at room temperature for 16 h. The colourless solution was cooled to 0 °C and an aqueous solution of HCl (2.00 M) was carefully added to bring pH to 4. The solution was extracted with EtOAc (3 × 10.00 mL), washed with brine, dried over MgSO₄, filtered and concentrated. **Part B:** The crude residue was coupled with N-hydroxyphthalimide (542 mg, 3.32 mmol, 1.00 equiv.), DIC (0.51 mL, 3.32 mmol, 1.00 equiv.) and DMAP (41 mg, 0.33 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (n-pentane:Et₂O 80:20→50:50) to give activated ester (S)-366 (1.08 g, 76% over 2 steps) as a colourless wax.

TLC: $R_f = 0.30$ (n-pentane:Et₂O 70:30)
1H NMR: (400 MHz, Chloroform-d) δ 7.88 (2H, m, H14 or H15), 7.78 (2H, m, H15 or H14), 7.38 – 7.27 (5H, m, H6, H7 & H8), 5.07 – 4.29 (3H, m, H4 & H9), 1.67 – 1.36 (12H, m, H1 & H10) ppm

13C NMR: (101 MHz, Chloroform-d) δ 168.9 (C11), 161.7 (C12), 155.2 (C3), 138.1 (C5), 134.9 (C14 or C15), 129.1 (C13), 128.7 (C7), 128.0 (C6), 127.6 (C8), 124.1 (C15 or C14), 82.2 (C2), 54.1 (C9), 51.0 (C4), 28.3 (C1), 16.4 (C10) ppm

HRMS (m/z): (ESI+) calc’d for C23H24N2NaO6 [M+Na]+: 447.1527; found: 447.1534

IR (νmax): 3065, 2977, 2933, 1816, 1789, 1742, 1697, 1367, 1153, 1052, 876, 733 cm⁻¹

2-Hydroxy-5-methylisoindoline-1,3-dione (369)

In a microwave vial, 5-methylisobenzofuran-1,3-dione 368 (4.00 g, 24.67 mmol, 1.00 equiv.) and hydroxylamine hydrochloride (3.40 g, 48.93 mmol, 2.00 equiv.) were dissolved in pyridine (20.00 mL) at room temperature. After stirring at room temperature for 5 min, the vial was sealed and the reaction mixture was stirred at 100 °C under microwave irradiation for 5 min. The yellow solution was allowed to cool to room temperature and was poured onto an aqueous solution of HCl (1.00 M, 40.00 mL) at 0 °C. The white precipitate was collected by filtration, washed with water and dried under high vacuum for 16 h to give compound 369 (3.80 g, 87%) as a white solid.

TLC: Rf = 0.33 (n-hexane:EtOAc 50:50)

1H NMR: (500 MHz, Dimethyl sulfoxide-d6) δ 10.83 (1H, br. s, H6), 7.70 (1H, d, J = 7.5 Hz, H9), 7.64 (1H, br. s, H3), 7.61 (1H, d, J = 7.5 Hz, H10), 2.45 (3H, s) ppm

13C NMR: (126 MHz, Dimethyl sulfoxide-d6) δ 164.5 (C5 or C7), 164.4 (C7 or C5), 145.7 (C2), 134.9 (C10), 129.1 (C4 or C8), 126.1 (C8 or C4), 123.7 (C3), 123.1 (C9), 21.6 (C1) ppm

Spectral data were in accordance with that reported in the literature.273

5-Methyl-1,3-dioxoisodindolin-2-yl (tert-butoxycarbonyl)-L-alaninate ((S)-371)

188
Carboxylic acid 328 (500 mg, 2.64 mmol, 1.00 equiv.) was activated with methyl-substituted N-hydroxypthalimide 369 (468 mg, 2.64 mmol, 1.00 equiv.) and DIC (0.41 mL, 2.64 mmol, 1.00 equiv.) (no DMAP) according to GP6. The crude residue was purified by flash column chromatography (n-pentane:Et₂O 50:50) to give activated ester (S)-371 (681 mg, 74%) as a colourless liquid.

TLC: $R_t = 0.28$ (n-pentane:Et₂O 50:50)

(S)-371 exists as a 50:50 mixture of rotamers.

^1H NMR: (500 MHz, Dimethyl sulfoxide-d₆) δ 7.84 (0.5H, d, $J = 7.7$ Hz, H14), 7.79 (0.5H, s, H10), 7.74 (0.5H, d, $J = 7.7$ Hz, H13), 7.70 (0.5H, d, $J = 7.6$ Hz, H14), 7.65 (0.5H, s, H10), 7.62 (0.5H, d, $J = 7.6$ Hz, H13), 7.27 (0.5H, d, $J = 6.5$ Hz, H4), 7.07 (0.5H, d, $J = 7.6$ Hz, H4), 4.46 (0.5H, app. pent, $J_{app} = 7.3$ Hz, H5), 3.90 (0.5H, app. pent, $J_{app} = 7.4$ Hz, H5), 2.50 (1.5H, s, H12), 2.45 (1.5H, s, H12), 1.45 (1.5H, d, $J = 7.4$ Hz, H6), 1.39 (4.5H, s, H1), 1.36 (4.5H, s, H1), 1.21 (1.5H, d, $J = 7.4$ Hz, H6) ppm

^13C NMR: (126 MHz, Dimethyl sulfoxide-d₆) δ 174.9 (C7), 170.7 (C7), 164.4 (C8 or C16), 164.4 (C16 or C8), 162.0 (C8 or C16), 161.9 (C16 or C8), 155.5 (C3), 155.3 (C3), 147.0 (C11), 145.7 (C11), 136.0 (C13), 135.0 (C13), 129.1 (C9 or C15), 128.6 (C9 or C15), 126.1 (C15 or C9), 125.6 (C15 or C9), 124.6 (C10), 124.2 (C14), 123.7 (C10), 123.1 (C14), 79.0 (C2), 78.2 (C2), 49.0 (C5), 47.7 (C5), 28.4 (C1), 28.3 (C1), 21.7 (C12), 21.6 (C12), 17.2 (C6), 17.1 (C6) ppm

HRMS (m/z): (ESI⁺) calc’d for C_{17}H_{20}N_{2}NaO_{6} [M+Na]^+: 371.1214; found: 371.1225

IR (ν_{max}): 3675, 3384, 2988, 2972, 2901, 1731, 1452, 1406, 1394, 1230, 1057, 869 cm⁻¹

(+/-)-5-Methyl-1,3-dioxoisooindolin-2-yl 2-phenylpropanoate (373)

Carboxylic acid 328 (500 mg, 3.33 mmol, 1.00 equiv.) was activated with methyl-substituted N-hydroxypthalimide 369 (590 mg, 3.33 mmol, 1.00 equiv.) and DIC (0.52 mL, 3.33 mmol, 1.00 equiv.) (no DMAP) according to GP6. The crude residue was purified by flash column chromatography (n-pentane:Et₂O 80:20) to give activated ester 373 (811 mg, 79%) as a colourless liquid.

TLC: $R_t = 0.51$ (n-pentane:Et₂O 50:50)
1H NMR: (500 MHz, Chloroform-d) δ 7.69 (1H, d, $J = 7.7$ Hz, H14), 7.61 (1H, s, H10), 7.52 (1H, d, $J = 7.7$ Hz, H13), 7.39 – 7.32 (4H, m, H2 & H3), 7.28 (1H, m, H1), 4.07 (1H, q, $J = 7.2$ Hz, H5), 2.47 (3H, s, H12), 1.62 (3H, d, $J = 7.2$ Hz, H6) ppm

13C NMR: (126 MHz, Chloroform-d) δ 170.9 (C7), 162.2 (C8 or C16), 162.0 (C16 or C8), 146.3 (C11), 138.4 (C4), 135.3 (C13), 129.2 (C9 or C15), 128.9 (C2 or C3), 127.8 (C1), 127.6 (C3 or C2), 126.2 (C15 or C9), 124.5 (C10), 123.9 (C14), 43.0 (C5), 22.2 (C12), 19.0 (C6) ppm

HRMS (m/z): (ESI$^+$) calc’d for C$_{18}$H$_{16}$NO$_4$ [M+H]$^+$: 310.1074; found: 310.1077

IR (ν_{max}): 3675, 2988, 2972, 2901, 1807, 1780, 1734, 1702, 1407, 1394, 1224, 1066, 1047 cm$^{-1}$

Benzyl (tert-butoxycarbonyl)glycinate (374)

(tert-Butoxycarbonyl)-glycine 352 (200 mg, 1.14 mmol, 1.00 equiv.) and Cs$_2$CO$_3$ (371 mg, 1.14 mmol, 1.00 equiv.) were suspended in DMF (2.00 mL) at room temperature. Benzyl bromide (0.14 mL, 1.14 mmol, 1.00 equiv.) was added and the reaction mixture was stirred for 16 h. Water (7.00 mL) was added and the resulting suspension was extracted with a mixture n-hexane:EtOAc (50:50, 2.00 mL), then with pure n-hexane (3 \times 2.00 mL). The organic layers were combined, washed with water (7.00 mL) and brine, dried over MgSO$_4$, filtered and concentrated to give ester 374 (275 mg, 91%) as a colourless liquid.

TLC: R_f = 0.14 (n-hexane:EtOAc 90:10)

1H NMR: (500 MHz, Chloroform-d) δ 7.42 – 7.30 (5H, m, H9, H10 & H11), 5.18 (2H, s, H7), 4.73 (1H, m, H4), 3.90 (2H, m, H5), 1.45 (9H, s, H1) ppm

13C NMR: (126 MHz, Chloroform-d) δ 170.4 (C6), 155.8 (C3), 135.4 (C8), 128.8 (C10), 128.6 (C11), 128.5 (C9), 80.2 (C2), 67.2 (C7), 42.7 (C5), 28.5 (C1) ppm

Spectral data were in accordance with that reported in the literature.300
Benzyl (N,N-bis(tert-butoxycarbonyl))glycinate (375)

\[
\text{Benzyl ester } 374 \text{ (275 mg, 1.04 mmol, 1.00 equiv.) was dissolved in anhydrous MeCN (2.00 mL) at room temperature under an atmosphere of nitrogen. DMAP (25 mg, 0.21 mmol, 0.20 equiv.) was added, followed by Boc}_2\text{O (227 mg, 1.04 mmol, 1.00 equiv.). The yellow solution was stirred at room temperature for 16 h and was concentrated under reduced pressure. The crude residue was purified by flash column chromatography (petroleum ether 40–60:EtOAc 95:5) to give compound 375 (372 mg, 98%) as a colourless liquid.}
\]

\text{TLC: } R_f = 0.30 \text{ (n-hexane:EtOAc 90:10)}

\text{1H NMR: (500 MHz, Chloroform-}d\text{) }\delta \text{ 7.40 – 7.29 (5H, m, H8, H9 & H10), 5.18 (2H, s, H6), 4.37 (2H, s, H4), 1.46 (18H, s, H1) ppm}

\text{13C NMR: (126 MHz, Chloroform-}d\text{) }\delta \text{ 169.2 (C5), 152.0 (C3), 135.6 (C7), 128.7 (C9), 128.5 (C10), 128.5 (C8), 83.3 (C2), 67.0 (C6), 47.5 (C2), 28.1 (C1) ppm}

Spectral data were in accordance with that reported in the literature.301

\[N,N\text{-Bis(tert-butoxycarbonyl)}\text{glycine (376)}\]

\[
\text{Benzyl ester 375 (370 mg, 1.01 mmol, 1.00 equiv.) and palladium on activated charcoal (10\% w/w, 99 mg, 0.10 mmol, 0.10 equiv.) were suspended in MeOH (10.00 mL) at room temperature under argon atmosphere. The black suspension was purged with argon for 20 min. The inert atmosphere was purged with hydrogen and the reaction mixture was stirred for 4 h. The hydrogen atmosphere was replaced with argon and the black solid was removed by filtration over Celite\textregistered. The filtrate was concentrated and the residue was dried under high vacuum to give compound 376 (207 mg, 74\%) as a white solid.}
\]

\text{TLC: } R_f = 0.13 \text{ (CH}_2\text{Cl}_2\text{:MeOH 95:5)}

\text{1H NMR: (500 MHz, Chloroform-}d\text{) }\delta \text{ 4.39 (2H, s, H4), 1.50 (18H, s, H1) ppm}
1H NMR: (500 MHz, Chloroform-\(d\)) \(\delta\) 7.96 – 7.85 (2H, m, H8 or H9), 7.85 – 7.73 (2H, m, H9 or H8), 4.75 (2H, s, H4), 1.54 (18H, s, H1) ppm

13C NMR: (126 MHz, Chloroform-\(d\)) \(\delta\) 166.1 (C5), 161.6 (C6), 150.9 (C3), 135.0 (C8 or C9), 129.0 (C7), 124.2 (C9 or C8), 84.2 (C2), 45.5 (C4), 28.0 (C1) ppm

HRMS (m/z): (ESI\(^+\)) calc'd for C\(_{20}\)H\(_{24}\)N\(_2\)NaO\(_8\) [M+Na\(^+\)]: 443.1425; found: 443.1437

IR (\(\nu_{max}\)): 2980, 2934, 1832, 1794, 1747, 1369, 1343, 1228, 1145, 1116, 1092, 697 cm\(^{-1}\)

Benzyl (tert-butoxycarbonyl)-L-leucinate ((S)-379)

\((\text{tert-Butoxycarbonyl})-\text{L-leucine (S)-355}\) (200 mg, 0.86 mmol, 1.00 equiv.) and Cs\(_2\)CO\(_3\) (282 mg, 0.86 mmol, 1.00 equiv.) were suspended in DMF (2.00 mL) at room temperature. Benzyl bromide (0.10 mL, 0.86 mmol, 1.00 equiv.) was added and the reaction mixture was stirred for 4 h. Water (7.00 mL) was added and the resulting suspension was extracted with \(n\)-hexane.
(4 × 2.00 mL). The organic layers were combined, washed with water (7.00 mL) and brine, dried over MgSO₄, filtered and concentrated to give ester (S)-379 (250 mg, 90%) as a colourless liquid.

TLC: Rᵣ = 0.33 (n-pentane:EtOAc 90:10)

¹H NMR: (500 MHz, Chloroform-d) δ 7.43 – 7.29 (5H, m, H12, H13 & H14), 5.19 (1H, d, J = 12.4 Hz, H10), 5.13 (1H, d, J = 12.4 Hz, H10’), 4.75 (1H, m, H4), 4.25 (1H, m, H5), 1.70 (1H, m, H7), 1.62 (1H, m, H6), 1.49 (1H, ddd, J = 13.5, 9.2, 5.7 Hz, H6’), 1.43 (9H, s, H1), 0.92 (6H, m, H8) ppm

¹³C NMR: (126 MHz, Chloroform-d) δ 173.5 (C9), 155.5 (C3), 135.7 (C11), 128.7 (C₁₆), 128.5 (C₁₀), 128.3 (C₁₁), 80.0 (C2), 67.0 (C10), 52.3 (C5), 41.9 (C6), 28.5 (C1), 24.9 (C7), 23.0 (C8), 22.0 (C₈’) ppm

Spectral data were in accordance with that reported in the literature.³⁰³

Benzyl (N,N-bis(tert-butoxycarbonyl))-L-leucinate (S)-380

Benzyl ester (S)-379 (250 mg, 0.78 mmol, 1.00 equiv.) was dissolved in anhydrous MeCN (1.00 mL) at room temperature under an atmosphere of nitrogen. DMAP (19 mg, 0.16 mmol, 0.20 equiv.) was added, followed by Boc₂O (188 mg, 0.86 mmol, 1.10 equiv.). The orange solution was stirred at room temperature for 16 h. Boc₂O (94 mg, 0.43 mmol, 0.50 equiv.) was added and the reaction mixture was stirred at room temperature for 16 h. The orange solution was concentrated and the crude residue was purified by flash column chromatography (n-hexane:Et₂O 95:5) to give compound (S)-380 (267 mg, 81%) as a colourless liquid.

TLC: Rᵣ = 0.39 (n-hexane:EtOAc 90:10)

¹H NMR: (500 MHz, Chloroform-d) δ 7.36 – 7.27 (5H, m, H11, H12 & H13), 5.16 (1H, d, J = 12.5 Hz, H9), 5.13 (1H, d, J = 12.5 Hz, H9’), 4.96 (1H, dd, J = 9.6, 5.1 Hz, H4), 1.92 (1H, ddd, J = 14.3, 9.2, 5.1 Hz, H5), 1.86 (1H, ddd, J = 14.3, 9.6, 4.8 Hz, H5’), 1.63 (1H, dheptd, J = 9.2, 6.7, 4.8 Hz, H6), 1.44 (18H, s, H1), 0.91 (6H, m, H7) ppm

¹³C NMR: (126 MHz, Chloroform-d) δ 171.4 (C₈), 152.4 (C₃), 135.9 (C₁₀), 128.6 (C₁₂), 128.2 (C₁₃), 128.1 (C₁₁), 83.1 (C₂), 66.8 (C₉), 56.8 (C₄), 38.5 (C₅), 28.1 (C₁), 25.2 (C₆), 23.4 (C₇), 21.9 (C₇’) ppm
Spectral data were in accordance with that reported in the literature.301

\textit{N,N-\textit{Bis(\textit{tert-butoxycarbonyl})-L-leucine ((S)-381)}}

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\includegraphics[width=0.3\textwidth]{leucine.png}};
\end{tikzpicture}
\end{center}

Benzyl ester (S)-\textbf{380} (265 mg, 0.63 mmol, 1.00 equiv.) and palladium on activated charcoal (10\% w/w, 335 mg, 0.32 mmol, 0.51 equiv.) were suspended in MeOH (10.00 mL) at room temperature under argon atmosphere. The black suspension was purged with argon for 20 min. The inert atmosphere was purged with hydrogen and the reaction mixture was stirred for 6 h. The hydrogen atmosphere was replaced with argon and the black solid was removed by filtration over Celite\textregistered. The filtrate was concentrated and the residue was dried under high vacuum to give compound (S)-\textbf{381} (192 mg, 92\%) as a white solid.

\textbf{TLC: }$R_f=0.16$ (CH$_2$Cl$_2$:MeOH 95:5)

\begin{itemize}
\item \textbf{\textit{H NMR: }} (500 MHz, Chloroform-d) δ 4.96 (1H, dd, $J = 9.4$, 5.2 Hz, H4), 1.88 (1H, ddd, $J = 14.2$, 9.1, 5.2 Hz, H5), 1.83 (1H, ddd, $J = 14.2$, 9.4, 4.8 Hz, H5’), 1.62 (1H, dheptd, $J = 9.1$, 6.7, 4.8 Hz, H6), 1.50 (18H, s, H1), 0.93 (6H, m, H7) ppm
\item \textbf{\textit{C NMR: }} (126 MHz, Chloroform-d) δ 176.7 (C8), 152.4 (C3), 83.4 (C2), 56.7 (C4), 38.7 (C5), 28.1 (C1), 25.2 (C6), 23.3 (C7), 22.0 (C7’) ppm
\end{itemize}

Spectral data were in accordance with that reported in the literature.301

\textit{1,3-Dioxoisooindolin-2-yl (N,N-\textit{bis(\textit{tert-butoxycarbonyl})-L-leucinate ((S)-382)}}

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\includegraphics[width=0.3\textwidth]{leucinate.png}};
\end{tikzpicture}
\end{center}

Carboxylic acid (S)-\textbf{381} (190 mg, 0.57 mmol, 1.00 equiv.) was activated with \textit{N}-hydroxyphthalimide (94 mg, 0.57 mmol, 1.00 equiv.) and DCC (118 mg, 0.57 mmol, 1.00 equiv.) according to \textbf{GP7}. The crude residue was concentrated and triturated in cold EtOAc. The solid was removed by filtration and the filtrate was concentrated under reduced pressure. The resulting
residue was dried under high vacuum to give activated ester (S)-382 (215 mg, 79%) as a pale yellow solid.

TLC: $R_t = 0.25$ (n-hexane:EtOAc 80:20)

m.p.: 96 – 98 °C (diethyl ether)

1H NMR: (500 MHz, Chloroform-d) δ 7.87 (2H, m, H11 or H12), 7.78 (2H, m, H12 or H11), 5.37 (1H, m, H4), 1.99 (2H, m, H5), 1.70 (1H, m, H6), 1.55 (18H, s, H1), 0.98 (6H, m, H7) ppm

^{13}C NMR: (126 MHz, Chloroform-d) δ 167.9 (C8), 161.7 (C9), 151.4 (C3), 134.8 (C11 or C12), 129.1 (C10), 124.0 (C12 or C11), 84.2 (C2), 55.1 (C4), 38.9 (C5), 28.0 (C1), 25.0 (C6), 23.3 (C7), 21.9 (C7') ppm

HRMS (m/z): (ESI+) calc'd for C24H32N2NaO8 [M+Na]$^+$: 499.2051; found: 499.2057

IR (νmax): 3511, 3211, 2981, 2937, 1757, 1732, 1699, 1368, 1338, 1228, 1144, 1111, 965, 853, 787 cm$^{-1}$

$[\alpha]_{D}^{24}$: +1 (CHCl$_3$, c = 2.0)

2-(Chloromethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (385)

In a flame-dried Schlenk tube, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4.08 mL, 20.00 mmol, 1.00 equiv.) and bromochloromethane (1.43 mL, 22.00 mmol, 1.10 equiv.) were dissolved in anhydrous THF (20.00 mL) at −78 °C under an atmosphere of nitrogen. A solution of n-BuLi (1.54 M in n-hexane, 14.29 mL, 22.00 mmol, 1.10 equiv.) was added dropwise and the reaction mixture was stirred at −78 °C for 30 min. TMSCI (3.05 mL, 24.00 mmol, 1.20 equiv.) was added and the reaction mixture was stirred at −78 °C for 10 min. The acetone/dry ice bath was removed and the reaction mixture was stirred at room temperature for 16 h. Water (25 mL) was added, layers were separated and the aqueous phase was extracted with Et$_2$O (3 × 10.00 mL). The organic layers were combined, washed with brine, dried over MgSO$_4$, filtered and concentrated. The crude residue was purified by distillation (60 mbar; 95–100 °C at the top of the column) to obtain boronic ester 385 (1.88 g, 53%) as a colourless liquid.

TLC: Unstable on silica.

1H NMR: (400 MHz, Chloroform-d) δ 2.95 (2H, s, H3), 1.28 (12H, s, H1) ppm

^{13}C NMR: (101 MHz, Chloroform-d) δ 84.8 (C2), 24.8 (C1), 23.8* (C3) ppm
*shift value determined by HSQC correlation.

Spectral data were in accordance with that reported in the literature.304

3-Oxo-1\(\lambda^3\)-benzo[\(d\)][1,2]iodoxol-1(3\(H\))-yl acetate (387)

\[
\begin{align*}
\text{In a round-bottomed flask, 2-iodobenzoic acid 404 (1.24 g, 5.00 mmol, 1.00 equiv.) was dissolved in a mixture of AcOH and Ac}_2\text{O (50:50, 40.00 mL) at room temperature. } \text{m-CPBA (77\% w/w, 1.23 g, 5.50 mmol, 1.10 equiv.) was added and the reaction mixture was stirred at 60 °C for 48 h. The yellow solution was allowed to cool to room temperature and Et}_2\text{O (40.00 mL) was added, followed by n-pentane (40.00 mL). The suspension was stored at −20 °C for 16 h and the white precipitate was collected by filtration to obtain compound 387 (742 mg, 48\%) as a pale yellow solid.}
\end{align*}
\]

TLC: Unstable on silica.

\(^1\text{H NMR:}\) (400 MHz, Dimethyl sulfoxide-\(d_6\)) \(\delta\) 8.01 (1H, dd, \(J = 7.5, 1.5\) Hz, H4 or H7), 7.96 (1H, ddd, \(J = 8.2, 7.2, 1.5\) Hz, H5 or H6), 7.83 (1H, dd, \(J = 8.2, 1.0\) Hz, H7 or H4), 7.70 (1H, ddd, \(J = 7.5, 7.2, 1.0\) Hz, H6 or H5), 1.90 (3H, s, H1) ppm

\(^{13}\text{C NMR:}\) (126 MHz, Dimethyl sulfoxide-\(d_6\)) \(\delta\) 172.3 (C2), 168.1 (C9), 134.8 (C5 or C6), 131.5 (C3 or C8), 131.3 (C4 or C7), 130.6 (C6 or C5), 126.4 (C7 or C4), 120.6 (C8 or C3), 21.2 (C1) ppm

Spectral data were in accordance with that reported in the literature.276

3-Oxo-1\(\lambda^3\)-benzo[\(d\)][1,2]iodoxol-1(3\(H\))-yl \textit{trans}-2-phenylcyclopropane-1-carboxylate (405)

\[
\begin{align*}
\text{In a round-bottomed flask, acetate 387 (200 mg, 0.65 mmol, 1.00 equiv.) and } \textit{trans}-2\text{-phenylcyclopropane-1-carboxylic acid 307 (106 mg, 0.65 mmol, 1.00 equiv.) were suspended in xylene (7.00 mL) at room temperature. The suspension was heated at 75 °C under reduced pressure (~200 mbar). After complete removal of the solvent, the white residual powder was suspended}
\end{align*}
\]
in petroleum ether 40–60 (4.00 mL), collected by filtration, washed with n-pentane and dried under high vacuum to obtain compound 405 (97 mg, 37%) as a white solid.

TLC: Unstable on silica.

m.p.: 201 – 205 °C (xylenes)

1H NMR: (500 MHz, Dimethyl sulfoxide-d$_6$) δ 8.01 (1H, dd, $J = 7.5$, 1.4 Hz, H10 or H13), 7.96 (1H, ddd, $J = 8.2$, 7.2, 1.4 Hz, H11 or H12), 7.83 (1H, dd, $J = 8.2$, 1.0 Hz, H13 or H10), 7.70 (1H, ddd, $J = 7.5$, 7.4, 1.0 Hz, H12 or H11), 7.26 (2H, m, H2 or H3), 7.18 (1H, m, H1), 7.14 (2H, m, H3 or H2), 2.36 (1H, ddd, $J = 9.3$, 6.4, 4.2 Hz, H5), 1.78 (1H, ddd, $J = 8.4$, 5.3, 4.2 Hz, H7), 1.41 (1H, ddd, $J = 9.3$, 5.3, 4.4 Hz, H6b), 1.32 (1H, ddd, $J = 8.4$, 6.4, 4.4 Hz, H6a) ppm

13C NMR: (126 MHz, Dimethyl sulfoxide-d$_6$) δ 174.2 (C8), 168.1 (C15), 140.4 (C4), 134.8 (C11 or C12), 131.5 (C9 or C14), 131.3 (C10 or C13), 130.6 (C12 or C11), 128.6 (C2 or C3), 126.5 (C13 or C10 or C1), 126.4 (C1 or C13 or C10), 126.1 (C3 or C2), 120.6 (C14 or C9), 25.5 (C5), 24.4 (C7), 16.8 (C6) ppm

HRMS (m/z): Despite repeated attempts, a HRMS could not be obtained.

IR (ν_{\max}): 3670, 3085, 3059, 2989, 2903, 2756, 2647, 2547, 2414, 1688, 1620, 1442, 1341, 1230, 1117, 742, 696, 546 cm$^{-1}$

1-Chloro-1λ3-benzo[d][1,2]iodaoxol-3(1H)-one (412)

![Molecule Image]

In a round-bottomed flask, 2-iiodobenzoic acid 404 (2.00 g, 7.90 mmol, 1.00 equiv.) was dissolved in anhydrous MeCN (75.00 mL) at 75 °C under an atmosphere of nitrogen. A solution of trichloroisocyanuric acid (637 mg, 2.67 mmol, 0.34 equiv.) in anhydrous MeCN (3.00 mL) was added dropwise and the reaction mixture was stirred at 75 °C for 5 min. The white precipitate was removed by filtration over Celite® in a pre-heated sintered funnel and the filtrate was concentrated to afford a yellow suspension, which was allowed to cool to room temperature. The resulting white solid was collected by filtration and dried under high vacuum to give, after two crops, compound 412 (1.25 g, 56%) as a white solid.

TLC: Unstable on silica.

1H NMR: (500 MHz, Dimethyl sulfoxide-d$_6$) δ 7.96 (1H, d, $J = 7.9$ Hz, H3 or H6), 7.69 (1H, d, $J = 7.7$ Hz, H6 or H3), 7.47 (1H, dd, $J = 7.7$, 7.5 Hz, H4 or H5), 7.22 (1H, dd, $J = 7.9$, 7.5 Hz, H5 or H4) ppm
\(^{13}\)C NMR: (126 MHz, Dimethyl sulfoxide-\(d_6\)) \(\delta\) 168.4 (C1), 140.7 (C3 or C6), 137.1 (C2 or C7), 132.7 (C4 or C5), 130.2 (C6 or C3), 128.4 (C5 or C4), 94.2 (C7 or C2) ppm

Spectral data were in accordance with that reported in the literature.\(^{277}\)

1-(tert-Butyl) 2-(1,3-dioxoisindolin-2-yl) (2S,4S)-4-fluoropyrrolidine-1,2-dicarboxylate (414)

Carboxylic acid 413 (117 mg, 0.50 mmol, 1.00 equiv.) was activated with \(N\)-hydroxyphthalimide (82 mg, 0.50 mmol, 1.00 equiv.), DIC (0.08 mL, 0.50 mmol, 1.00 equiv.) and DMAP (6 mg, 0.05 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (\(n\)-hexane:EtOAc 70:30) to give activated ester 414 (175 mg, 93%) as a white solid.

TLC: \(R_f = 0.37\) (\(n\)-hexane:EtOAc 50:50)

m.p.: 126 – 128 °C (diethyl ether)

\(^1\)H NMR: (400 MHz, Chloroform-\(d\)) \(\delta\) 7.88 (2H, m, H11 or H12), 7.78 (2H, m, H12 or H11), 5.29 (1H, \(\text{app. dt}, J_{\text{app.}} = 52.1, 4.0\) Hz, H5), 4.80 (1H, dd, \(J = 10.1, 1.5\) Hz, H7), 3.94 (1H, ddd, \(J = 25.3, 13.1, 1.9\) Hz, H4), 3.70 (1H, ddd, \(J = 35.2, 13.1, 4.2\) Hz, H4'), 2.82 (1H, m, H6), 2.60 (1H, dddd, \(J = 39.8, 14.6, 10.1, 4.0\) Hz, H6'), 1.51 (9H, m, H1) ppm

\(^{13}\)C NMR: (101 MHz, Chloroform-\(d\)) \(\delta\) 168.3 (C8), 161.7 (C9), 153.4 (C3), 134.9 (C11 or C12), 129.1 (C10), 124.1 (C12 or C11), 90.9 (d, \(J = 179.2\) Hz, C5), 81.8 (C2), 56.0 (C7), 53.1 (d, \(J = 24.4\) Hz, C4), 37.8 (d, \(J = 22.6\) Hz, C6), 28.2 (C1) ppm

\(^{19}\)F NMR (377 MHz, Chloroform-\(d\)) \(\delta\) –173.0 (dddd, \(J = 52.1, 39.8, 35.2, 25.3, 18.4\) Hz) ppm

HRMS (\(m/z\)): (ESI\(^+\)) calc’d for C\(_{18}\)H\(_{19}\)FN\(_2\)NaO\(_6\) [M+Na]\(^+\): 401.1119; found: 401.1136

IR (\(\nu_{\text{max}}\)): 2977, 1828, 1791, 1742, 1701, 1392, 1366, 1040, 877, 697 cm\(^{-1}\)

\([\alpha]_D^{23}\): –45 (CHCl\(_3\), \(c = 1.0\))
1-(tert-Butyl) 2-(1,3-dioxoisooindolin-2-yl) (S)-4,4-difluoropyrrolidine-1,2-dicarboxylate ((S)-417)

Carboxylic acid (S)-416 (125 mg, 0.50 mmol, 1.00 equiv.) was activated with N-hydroxyphthalimide (82 mg, 0.50 mmol, 1.00 equiv.), DIC (0.08 mL, 0.50 mmol, 1.00 equiv.) and DMAP (6 mg, 0.05 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (n-hexane:EtOAc 70:30) to give activated ester (S)-417 (169 mg, 85%) as a white solid.

TLC: $R_f=0.61$ (n-hexane:EtOAc 50:50)

m.p.: 116 – 119 °C (diethyl ether)

1H NMR: (400 MHz, Chloroform-d) δ 7.89 (2H, m, H11 or H12), 7.80 (2H, m, H12 or H11), 4.85 (1H, m, H7), 4.02 – 3.78 (2H, m, H4 & H4'), 2.95 (1H, m, H6), 2.82 (1H, m, H6'), 1.51 (9H, m, H1) ppm

13C NMR: (101 MHz, Chloroform-d) δ 167.9 (C8), 161.6 (C9), 152.8 (C3), 135.1 (C11 or C12), 129.0 (C10), 124.2 (C12 or C11), 82.7 (C2), 55.4 (C7), 52.9 (t, $J=31.8$ Hz, C4), 39.0 (t, $J=26.5$ Hz, C6), 28.1 (C1) ppm

Due to its low intensity, the expected triplet corresponding to C5 could not be distinguished from the baseline.

19F NMR: (377 MHz, Chloroform-d) δ –99.8 (2F, m) ppm

HRMS (m/z): (ESI$^+$) calc’d for C$_{18}$H$_{18}$F$_2$N$_2$O$_6$ [M+Na]$^+$: 419.1040; found: 419.1025

IR (ν_{\max}): 2979, 1824, 1792, 1745, 1710, 1394, 1369, 1153, 1104, 1079, 697 cm$^{-1}$

$[\alpha]_{D}^{23}$: −55 (CHCl$_3$, $c=1.0$)

(2S,4R)-1-(tert-Butoxycarbonyl)-4-hydroxypyrrolidine-2-carboxylic acid (419)

(2S,4R)-4-hydroxypyrrolidine-2-carboxylic acid (131 mg, 1.00 mmol, 1.00 equiv.) was suspended in a mixture of THF and water (2:1, 3.00 mL) at room temperature. An aqueous solution
of NaOH (10% w/w, 0.50 mL) was added, followed by Boc₂O (327 mg, 1.50 mmol, 1.50 equiv.). The reaction mixture was stirred at room temperature for 2 days and pH was brought to 3 by addition of an aqueous solution of HCl (2.00 M) and the reaction mixture was extracted with EtOAc (3 × 3.00 mL). The organic layers were combined, washed with brine, dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column chromatography (n-hexane:EtOAc 80:20) to give compound 419 (229 mg, 99%) as a white solid.

TLC: \(R_f = 0.12 \) (CH₂Cl₂:MeOH 90:10)

¹H NMR: (400 MHz, Chloroform-d) \(\delta \) 4.51 – 4.27 (2H, m, H₅ & H₈), 3.65 – 3.34 (2H, m, H₄), 2.38 – 2.05 (2H, m, H₇), 1.41 (9H, m, H₁) ppm

¹³C NMR: (101 MHz, Chloroform-d) \(\delta \) 176.1 (C₉), 154.3 (C₃), 80.5 (C₂), 69.3 (C₅ or C₈), 58.0 (C₈ or C₅), 54.6 (C₄), 39.2 (C₇), 28.4 (C₁) ppm

Spectral data were in accordance with that reported in the literature.³⁰⁵

(2S,4R)-1-(tert-Butoxycarbonyl)-4-((tert-butyldimethylsilyl)oxy)pyrrolidine-2-carboxylic acid (420)

Proline derivative 419 (229 mg, 0.99 mmol, 1.00 equiv.) and imidazole (297 mg, 4.36 mmol, 4.40 equiv.) were dissolved in DMF (3.00 mL) at room temperature. TBSCI (328 mg, 2.18 mmol, 2.20 equiv.) was added portionwise and the resulting mixture was stirred at room temperature for 16 h. Water (3.00 mL) was added and the pH was brought to 3 by addition of an aqueous solution of citric acid (10% w/w). The reaction mixture was extracted with EtOAc (3 × 5.00 mL). The organic layers were combined, washed with water (3 × 5.00 mL) and brine, dried over MgSO₄, filtered and concentrated. The residue was purified by flash column chromatography (n-hexane:EtOAc 80:20→50:50) to give compound 420 (265 mg, 77%) as a colourless liquid.

TLC: \(R_f = 0.28 \) (CH₂Cl₂:MeOH 90:10)

¹H NMR: (400 MHz, Chloroform-d) \(\delta \) 9.78 (1H, br. s, H₁₂), 4.55 – 4.27 (2H, m, H₅ & H₁₀), 3.67 – 3.26 (2H, m, H₄), 2.40 – 1.99 (2H, m, H₉), 1.44 (9H, m, H₁), 0.86 (9H, s, H₈), 0.06 (6H, s, H₆) ppm
\(^{13}\text{C NMR:}\) (101 MHz, Chloroform-\(d\)) \(\delta\) 179.1 (C11), 154.0 (C3), 80.7 (C2), 69.9 (C5 or C10), 58.1 (C10 or C5), 55.1 (C4), 39.9 (C9), 28.5 (C1), 25.8 (C8), 18.0 (C7), −4.6 (C6), −4.8 (C6') ppm

Spectral data were in accordance with that reported in the literature.\(^{306}\)

1-(tert-Butyl) 2-(1,3-dioxoisooindolin-2-yl) (2S,4R)-4-(\(t\)-butoxycarbonyl)pyrrolidine-1,2-dicarboxylate (421)

![Chemical Structure](image)

Carboxylic acid \(\text{420}\) (265 mg, 0.77 mmol, 1.00 equiv.) was activated with \(N\)-hydroxyphthalimide (125 mg, 0.77 mmol, 1.00 equiv.), DIC (0.12 mL, 0.77 mmol, 1.00 equiv.) and DMAP (9 mg, 0.08 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (\(n\)-hexane:EtOAc 80:20) to give activated ester 421 (332 mg, 88%) as a white solid.

TLC: \(R_f=0.57\) (\(n\)-hexane:EtOAc 50:50)

m.p.: 142 – 145 °C (diethyl ether)

\(^1\text{H NMR:}\) (400 MHz, Chloroform-\(d\)) \(\delta\) 7.88 (2H, m, H14 or H15), 7.77 (2H, m, H15 or H14), 4.70 (1H, m, H10), 4.51 (1H, m, H5), 3.62 (1H, m, H4), 3.13 (1H, m, H4'), 2.49 – 2.32 (3H, m, H9), 1.49 (9H, m, H1), 0.87 (9H, m, H8), 0.08 (6H, m, H6) ppm

\(^{13}\text{C NMR:}\) (101 MHz, Chloroform-\(d\)) \(\delta\) 169.8 (C11), 161.8 (C12), 153.8 (C3), 134.9 (C14 or C15), 129.0 (C13), 124.1 (C15 or C14), 81.5 (C2), 69.7 (C5), 56.4 (C10), 54.5 (C4), 40.4 (C9), 28.2 (C1), 25.8 (C8), 18.1 (C7), −4.7 (C6) ppm

HRMS (\(m/z\)): (ESI\(^+\)) calc’d for \(C_{24}H_{34}N_2NaO_7\text{Si} [M+Na]^+\): 513.2027; found: 513.2010

IR (\(\nu_{\text{max}}\)): 2954, 2931, 2886, 2858, 1820, 1791, 1745, 1707, 1392, 1367, 1267, 1161, 1119, 1080, 877, 836, 778, 696 cm\(^{-1}\)

[\(\alpha\)]\(_D^{22}\): −41 (CHCl\(_3\), \(c = 1.0\))
(2S,3aS,7aS)-1-(tert-Butoxycarbonyl)octahydro-1H-indole-2-carboxylic acid (423)

(2S,3aS,7aS)-octahydro-1H-indole-2-carboxylic acid (102 mg, 0.60 mmol, 1.00 equiv.) was dissolved in CH$_2$Cl$_2$ (2.00 mL) by addition of Et$_3$N (0.17 mL, 1.20 mmol, 2.00 equiv.) at room temperature. Boc$_2$O (144 mg, 0.66 mmol, 1.10 equiv.) was added and the reaction mixture was stirred at room temperature for 2 days. CH$_2$Cl$_2$ (3.00 mL) was added and the reaction mixture was washed with an aqueous solution of HCl (1.00 M, 6.00 mL). The layers were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (3 × 5.00 mL). The organic layers were combined, dried over MgSO$_4$, filtered and concentrated. The crude residue was purified by flash column chromatography (n-hexane:Et$_2$O 90:10, then CH$_2$Cl$_2$:MeOH 95:5) to give compound 423 (147 mg, 91%) as a white solid.

TLC: R_f = 0.49 (CH$_2$Cl$_2$:MeOH 90:10)

1H NMR: (400 MHz, Chloroform-d) δ 9.81 (1H, br. s, H13), 4.27 (1H, br. s, H11), 3.80 (1H, br. s, H4), 2.43 – 1.82 (4H, m 4 × CH), 1.77 – 1.56 (3H, m, 3 × CH), 1.52 – 1.37 (10H, m, H1 & CH), 1.36 – 1.21 (2H, m, 2 × CH), 1.20 – 1.04 (1H, m, CH) ppm

13C NMR: (101 MHz, Chloroform-d) δ 176.0 (C12), 156.1 (C3), 81.2 (C2), 59.2 (C11), 58.0 (C4), 36.6 (C9), 30.7 (CH$_2$), 28.5 (C1), 28.0 (CH$_2$), 25.9 (CH$_2$), 23.8 (CH$_2$), 20.6 (CH$_2$) ppm

Spectral data were in accordance with that reported in the literature.307

1-(tert-Butyl) 2-(1,3-dioxoisindolin-2-yl) (2S,3aS,7aS)-octahydro-1H-indole-1,2-dicarboxylate (424)

Carboxylic acid 423 (147 mg, 0.55 mmol, 1.00 equiv.) was activated with N-hydroxyphthalimide (89 mg, 0.55 mmol, 1.00 equiv.), DIC (0.08 mL, 0.55 mmol, 1.00 equiv.) and DMAP (7 mg,
0.06 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (n-hexane:EtOAc 80:20) to give activated ester 424 (168 mg, 74%) as a colourless wax.

TLC: \(R_f = 0.22 \) (n-hexane:EtOAc 80:20)

\(^1\)H NMR: (400 MHz, Chloroform-\(d\)) \(\delta \) 7.88 (2H, m, H15 or H16), 7.77 (2H, m, H16 or H15), 4.59 (1H, m, H11), 3.86 (1H, m, H4), 2.48 – 2.22 (3H, m, H9 & CH\(_2\)), 2.04 (1H, m, CH), 1.78 (1H, m, CH), 1.72 – 1.62 (2H, m, 2 \times CH), 1.53 – 1.44 (10H, m, H1 & CH), 1.43 – 1.28 (2H, m, 2 \times CH), 1.15 (1H, m, CH) ppm

\(^{13}\)C NMR: (101 MHz, Chloroform-\(d\)) \(\delta \) 170.3 (C12), 161.9 (C13), 153.2 (C3), 134.9 (C15 or C16), 129.1 (C14), 124.0 (C16 or C15), 81.1 (C2), 57.4 (C4), 57.2 (C11), 36.7 (C9), 33.3 (C10), 28.3 (C1), 27.7 (CH\(_2\)), 25.9 (CH\(_2\)), 23.7 (CH\(_2\)), 20.6 (CH\(_2\)) ppm

HRMS (m/z): (ESI\(^+\)) calc'd for C\(_{22}\)H\(_{26}\)N\(_2\)NaO\(_6\) [M+Na\(^+\)]: 437.1683; found: 437.1689

IR (\(\nu_{max}\)): 2974, 2930, 1819, 1790, 1742, 1697, 1391, 1366, 1163, 1081, 972, 877, 696 cm\(^{-1}\)

\([\alpha]_D^{22} = -38 \) (CHCl\(_3\), \(c = 1.0 \))

(+/-)-1-(tert-Butyl) 2-(1,3-dioxoisoundolin-2-yl) piperidine-1,2-dicarboxylate (427)

Carboxylic acid 426 (229 mg, 1.00 mmol, 1.00 equiv.) was activated with \(N \)-hydroxyphthalimide (163 mg, 1.00 mmol, 1.00 equiv.), DIC (0.15 mL, 1.00 mmol, 1.00 equiv.) and DMAP (12 mg, 0.10 mmol, 0.10 equiv.) according to GP6. The crude residue was purified by flash column chromatography (n-hexane:EtOAc 80:20) to give activated ester 427 (328 mg, 88%) as a white solid.

TLC: \(R_f = 0.24 \) (n-hexane:EtOAc 80:20)

m.p.: 96 – 99 °C (diethyl ether)

\(^1\)H NMR: (400 MHz, Chloroform-\(d\)) \(\delta \) 7.88 (2H, m, H12 or H13), 7.78 (2H, m, H13 or H12), 5.26 (1H, m, H8), 4.02 (1H, m, H4), 3.07 (1H, m, H4\(^+\)), 2.36 (1H, m, CH), 1.94 – 1.64 (3H, m, 3 \times CH), 1.57 – 1.39 (11H, m, H1 & 2 \times CH) ppm

\(^{13}\)C NMR: (101 MHz, Chloroform-\(d\)) \(\delta \) 168.9 (C9), 161.8 (C10), 155.3 (C3), 134.9 (C12 or C13), 129.1 (C11), 124.1 (C13 or C12), 81.2 (C2), 53.7 (C8), 41.3 (C5), 28.3 (C1), 27.3 (CH\(_2\)), 24.5 (CH\(_2\)), 20.4 (CH\(_2\)) ppm
HRMS (m/z): (ESI⁺) calc’d for C₁₉H₂₂N₂NaO₆ [M+Na]⁺: 397.1370; found: 397.1379

IR (νmax): 2974, 2941, 2867, 1815, 1787, 1745, 1704, 1367, 1162, 1066, 877, 697 cm⁻¹
REFERENCES

Bi, N.
Lebel, H.; Huard, K.
Chankeshwara, S. V.; Chakraborti, A. K.
Yang, R.
Beckendorf, A. F.; Chong, J. M.; Nielsen, N.
Nikolic, N. A.; Beak, P.
Iinuma, M.; Moriyama, K.; Togo, H.
Burchat, A. F.; Chong, J. M.; Nielsen, N.
SAINT+ v8.38A Integration E