
Publisher's PDF, also known as Version of record
License (if available):
CC BY-NC-ND
Link to published version (if available):
10.1016/j.jacc.2019.05.024

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Elsevier at http://www.onlinejacc.org/content/74/2/238 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Serial Magnetic Resonance Imaging to Identify Early Stages of Anthracycline-Induced Cardiotoxicity

Carlos Galán-Arriola, DVM, Manuel Lobo, MD, Jean Paul Vilchez-Tschischke, MD, Gonzalo J. López, RT, Antonio de Molina-IRacheta, DVM, Claudia Pérez-Martinez, DVM, PaD, Jaume Aguiero, MD, PaD, Rodrigo Fernández-Jiménez, MD, PaD, Ana Martín-García, MD, PaD, Eduardo Oliver, PaD, Rocío Villena-Gutierrez, MB, Gonzalo Pizarro, MD, PaD, Pedro L. Sánchez, MD, PaD, Valentin Fuster, MD, PaD, Javier Sánchez-González, PaD, Borja Ibanez, MD, PaD

ABSTRACT

BACKGROUND Anthracycline-induced cardiotoxicity is a major clinical problem, and early cardiotoxicity markers are needed.

OBJECTIVES The purpose of this study was to identify early doxorubicin-induced cardiotoxicity by serial multiparametric cardiac magnetic resonance (CMR) and its pathological correlates in a large animal model.

METHODS Twenty pigs were included. Of these, 5 received 5 biweekly intracoronary doxorubicin doses (0.45 mg/kg/injection) and were followed until sacrifice at 16 weeks. Another 5 pigs received 3 biweekly doxorubicin doses and were followed to 16 weeks. A third group was sacrificed after the third dose. All groups underwent weekly CMR examinations including anatomical and T2 and T1 mapping (including extracellular volume [ECV] quantification). A control group was sacrificed after the initial CMR.

RESULTS The earliest doxorubicin-cardiotoxicity CMR parameter was T2 relaxation-time prolongation at week 6 (2 weeks after the third dose). T1 mapping, ECV, and left ventricular (LV) motion were unaffected. At this early time point, isolated T2 prolongation correlated with intracardiomyocyte edema secondary to vacuolization without extracellular space expansion. Subsequent development of T1 mapping and ECV abnormalities coincided with LV motion defects: LV ejection fraction declined from week 10 (2 weeks after the fifth and final doxorubicin dose). Stopping doxorubicin therapy upon detection of T2 prolongation halted progression to LV motion deterioration and resolved intracardiomyocyte vacuolization, demonstrating that early T2 prolongation occurs at a reversible disease stage.

CONCLUSIONS T2 mapping during treatment identifies intracardiomyocyte edema generation as the earliest marker of anthracycline-induced cardiotoxicity, in the absence of T1 mapping, ECV, or LV motion defects. The occurrence of these changes at a reversible disease stage shows the clinical potential of this CMR marker for tailored anthracycline therapy. (J Am Coll Cardiol 2019;73:779–91) © 2019 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Anthracyclines are highly effective and frequently used chemotherapy drugs (1), with the most commonly used being doxorubicin, alone or in combination with other anticancer agents. A prominent undesired effect of anthracycline therapy is cardiotoxicity and subsequent heart failure; depending on the accumulated dose, the incidence of severe anthracycline-induced cardiotoxicity resulting in overt systolic heart failure can be as high as 25% (2). The trade-off between...
cancer and chronic heart failure places an immense personal burden on patients, with physical and psychological consequences.

Anthracyclines bind to topoisomerase 2β in the cardiomyocyte’s DNA. Anthracyclines-topoisomerase 2β complexes bind to promoters of mitochondrial antioxidative, biogenesis, and electron transport chain genes leading to a downstream mitochondrial dysfunction. In fact, genetic ablation of topoisomerase 2β in mice ameliorates anthracycline-induced cardiotoxicity (3). In addition, anthracyclines bind to cardiolipin in the inner mitochondrial membrane, contributing to increased reactive oxygen species generation, iron deposition, and defective mitochondrial biogenesis (3,4). Altogether, these phenomena lead to mitochondrial swelling, intracardiomyocyte vacuolization, and ultimately, cell death and replacement of cardiomyocytes by fibrotic tissue (5-7).

Current algorithms to identify early stages of anthracycline-induced cardiotoxicity are far from optimal. Diagnosis generally occurs once left ventricular (LV) functional deterioration becomes manifest, either as a decline in left ventricular ejection fraction (LVEF) or longitudinal LV strain abnormalities (8,9). By this stage, the damage to the myocardium is often irreversible. The lack of a validated early damage marker limits the development of preventive strategies. Cardiac magnetic resonance (CMR) is the gold standard technique for anatomical and functional evaluation of the heart, and the advent of multiparametric algorithms allows accurate characterization of myocardial tissue. CMR is thus suitable for the detection of myocardial edema (10-12) and diffuse myocardial fibrosis (13-15), which are present at different stages of anthracycline-induced cardiotoxicity (16-21). To date, there has been a lack of comprehensive serial multiparametric CMR tissue studies characterizing the full anthracycline treatment cycle from pre-treatment, through treatment, to overt LV systolic dysfunction and heart failure.

Here, we used a large animal model (pig) of doxorubicin-induced cardiotoxicity to identify the earliest CMR marker of myocardial damage and its pathological correlates. We also studied the reversibility of cardiotoxicity upon detection of the early CMR marker.

METHODS

STUDY DESIGN. The study was approved by the Institutional Animal Research Committee and conducted in accordance with recommendations of the Guide for the Care and Use of Laboratory Animals. The study design is summarized in Figure 1. The study population consisted of 20 castrated male large pigs (25 to 35 kg). Pigs in group 1 received 5 biweekly doxorubicin injections (final injection at week 8) and were followed-up until sacrifice at week 16 by intravenous injection of pentobarbital sodium in overdose. In group 2, pigs underwent 3 biweekly doxorubicin injections (final injection at week 4) and were similarly followed-up until sacrifice at week 16. Group 3 pigs underwent the same doxorubicin protocol as group 2 (3 biweekly injections) but were sacrificed earlier, at week 6 (2 weeks after the final doxorubicin injection). Group 4 was a control group sacrificed after baseline CMR without doxorubicin exposure. In all groups, weekly comprehensive multiparametric CMR examinations were performed until sacrifice. In the treatment weeks, CMR scans were performed immediately before doxorubicin injections.

DOXORUBICIN ADMINISTRATION PROCEDURE. We used a modification of a previously described approach (22,23). Animals were anesthetized and endotracheally intubated. The femoral artery was then accessed by the Seldinger technique, and a 7-F sheath was inserted. Pigs were anticoagulated with 150 IU/kg of intravenous heparin, and a 5-F coronary diagnostic catheter was inserted via a femoral sheath and placed at the origin of the left coronary artery. Under angiography guidance, a 0.014-mm coronary guidewire was positioned distally in the left anterior descending (LAD) coronary artery. The catheter was

Manuscript received August 13, 2018; revised manuscript received October 14, 2018, accepted November 8, 2018.
docked selectively in the LAD, and a 0.45 mg/kg dose of doxorubicin (Farmilastina, Pfizer, New York, New York) diluted in 30 ml saline was given as a slow bolus injection over 3 min. Electrocardiographic and hemodynamic monitoring was maintained during doxorubicin administration. Once the infusion was completed, coronary angiography was performed to document normal coronary flow, the catheter material was removed, and the animal was allowed to recover.

CMR PROTOCOL. All studies were performed with a Philips 3-T Achieva Tx whole body scanner (Philips Healthcare, Best, the Netherlands) equipped with a 32-element phased-array cardiac coil. The CMR protocol included a standard segmented cine steady-state free-precession sequence to provide high-quality anatomical references, a T2 gradient-spin-echo mapping sequence, and native and post-contrast T1 mapping and late gadolinium enhancement (LGE) sequences.

The imaging parameters for the standard segmented cine steady-state free-precession sequence were as follows: field of view (FOV) of 280 × 280 mm, slice thickness 6 mm with no gaps, repetition time (TR) 2.8 ms, echo time (TE) 1.4 ms, flip angle 45°, cardiac phases = 30, voxel size 1.8 × 1.8 mm, and number of excitations = 3. The imaging parameters for the T2-gradient-spin-echo mapping sequence mapping were FOV 300 × 300 mm with an acquisition voxel size of 1.8 × 2.0 mm² and slice thickness 8 mm, and 8 echo times ranging from 6.7 to 53.6 ms. To reduce T1 effects, a 2-heartbeat interval was used between excitations. The T1 mapping sequence (Modified Look-Locker Inversion recovery [MOLLI]) was acquired before and 10 min after contrast administration. All MOLLI sequences were based on a 5(3)3 scheme using a single shot steady-state free precession readout sequence (TR/TE/flip angle = 2.1 ms/1.05 ms/35°) with an in-plane acquisition resolution of 1.5 × 1.8 mm² and an 8-mm slice thickness. T2 and T1 mapping sequences were both triggered at mid-diastole and acquired from a single short-axis midapical slice.

LGE imaging was performed 15 min after intravenous administration of 0.2 mmol/kg gadopentetate dimeglumine contrast agent using an 3-dimensional inversion-recovery spoiled turbo field echo sequence (TR/TE/flip angle = 2.4 ms/1.13 ms/10°) with an isotropic resolution of 1.5 × 1.5 × 1.5 mm³ on a FOV of 340 × 340 × 320 mm³ in the FH, LR, and AP directions. Data were acquired in mid-diastole with a 151.2-ms acquisition window. Acquisition was accelerated using a net SENSE factor of 2.25 (1.5 × 1.5 in the
AP and LR directions) with a bandwidth of 853 Hz per pixel. Inversion time was adjusted before acquisition using a look-locker scout sequence with different inversion times to ensure proper nulling of the healthy myocardium signal. For the analysis, 3-dimensional volume was reconstructed in short-axis, 2-chamber, and 4-chamber views with a slice thickness of 6 mm.

CMR analysis. CMR studies were analyzed by 2 experienced and independent observers using dedicated software (MR extended Work Space 2.6, Philips Healthcare; and Qmass MR 7.6, Medis, Leiden, the Netherlands). T2 maps were automatically generated on the acquisition scanner by fitting the signal intensity of all echo times to a monoexponential decay curve at each pixel with a maximum likelihood expectation maximization algorithm. T1 maps were generated using a maximum-likelihood expectation-maximization algorithm and fitting the MR signal to a T1 inversion recovery with 3 independent model parameters. T2 and T1 relaxation maps were quantitatively analyzed by placing a wide transmural region of interest at the infused myocardial area (irrigated by the LAD) of the corresponding slice in all studies. Delayed gadolinium-enhanced regions were defined as >50% of maximum myocardial signal intensity (full width at half maximum) and qualitatively analyzed. Extracellular volume (ECV) was estimated with native T1-MOLLI values and 10-min postcontrast T1-MOLLI values corrected by hematocrit, as described elsewhere (13).

Ex-vivo analysis. After heart extraction, samples of the doxorubicin-infused region (anteroseptal wall) and the remote area were collected for histology and water content quantification. For histological studies, samples were fixed in 4% formalin and then transferred to 70% ethanol. After paraffin embedding, 4-µm sections were cut and stained with hematoxylin and eosin, Masson trichrome, and Sirius Red. Stained sections were scanned, and 20 × 20 magnification images were taken for collagen quantification using a modified macro (24).

For water content quantification, harvested tissue samples were immediately blotted to remove surface moisture and then introduced into laboratory crystal containers previously weighed on a high-precision scale. The tissue-loaded containers were weighed before and after drying for 48 h at 100°C in a desiccating oven. Tissue water content (% dry weight) was calculated using the following formula: water content = [(wet weight – dry weight)/dry weight] × 100. An empty container was weighed before and after desiccation as an additional calibration control.

STATISTICAL ANALYSIS. Sample size selection. Objective 1 was hypothesis generating, and for this reason, we used an arbitrary same sample size of 5 animals (similar to previous hypothesis-generating pig studies [25]). For objective 2, we based the sample size selection on results (T2 relaxation times) from objective 1, and on the capacity to detect a meaningful 5-ms difference in T2 relaxation time between examination time points. Taking into consideration an anticipated SD of 3 ms, and multiple pairwise comparisons between time points, a sample size of 5 individuals/group resulted in a statistical power of 80% to detect differences.

Variables are expressed as mean ± SD or median (interquartile range [Q1, Q3]) as appropriate. Data normality was assessed with the Shapiro-Wilk test.

The Student’s t-test was used for 2-group comparisons, and the changes of imaging variables across time was assessed using 1-way repeated measures analysis of the variance test. To identify the timepoints showing statistically significant changes compared with the baseline values, pairwise paired Student’s t-tests were performed taking into account p value adjustment for multiple comparisons (Bonferroni method). Differences were considered statistically significant at p < 0.05. All data were analyzed with RStudio (RStudio Team [2015], Integrated Development for RStudio, Inc., Boston, Massachusetts), and graphics were created with ggplot2.

RESULTS

None of the pigs showed adverse events during doxorubicin administration at any time point (i.e., no changes were noted in electrocardiogram or systolic arterial pressure during injections). None of the pigs died during the study.

SERIAL CMR TISSUE CHARACTERIZATION OF DOXORUBICIN-INDUCED CARDIOTOXICITY. A total of 5 pigs received 5 biweekly doxorubicin injections (weeks 0, 2, 4, 6, and 8). Multiparametric CMR was performed weekly until week 16, when animals were sacrificed and hearts were harvested for pathology evaluation.

LV ejection fraction. Weekly CMR examinations revealed no changes in LVEF until week 9 (1 week after the fifth and final doxorubicin injection). From week 9 onwards, LVEF declined progressively, the decline becoming significant at week 12 (55 ± 4% at baseline vs. 33 ± 6% at week 12; p < 0.01). The lowest LVEF value was recorded at the 16-week time point (30 ± 8%; p = 0.01 vs. baseline). Group and
individual LVEF trajectories are presented in Figures 2A and 2B. LVEF data are presented in Online Table 1. In agreement with the LVEF data, no regional contractile abnormalities were documented until week 12, when the doxorubicin-infused myocardium showed regional wall motion defects (data not shown).

T2 relaxation times. Weekly CMR examinations revealed no changes in T2 relaxation times on CMR examinations performed at weeks 0 through 5. At week 6, T2 relaxation times were significantly longer than at baseline (45.2 ± 0.5 ms and 52.0 ± 1.4 ms at baseline and week 6, respectively; p = 0.007). T2 relaxation times subsequently increased, reaching a maximum at end follow-up (73.0 ± 4.6 ms and 72.8 ± 4.6 ms on weeks 12 and 16; p = 0.003 and p = 0.001 vs. baseline, respectively). Group and individual T2 trajectories are presented in Figures 2A and 2B. T2 relaxation times at all time points are presented in Online Table 1.
T1 relaxation times. Native T1 relaxation times showed no change from baseline until week 10 (2 weeks after the fifth and final doxorubicin dose). A nonsignificant increase was noted at week 10, followed by a progressive increase to end follow-up at week 16. Native T1 values were significantly longer than at baseline only from week 12 onwards (1,087 ± 101 ms and 1,220 ± 59 ms at baseline and week 12 respectively; p = 0.02). Group and individual native T1 trajectories are presented in Online Figures 1A and 1C. Complete T1 relaxation time data are presented in Online Table 1.

Extracellular volume. ECV expansion was tracked using a validated formula that includes pre- and post-contrast T1 values and hematocrit (13). In parallel with the native T1 trajectory, ECV did not differ from baseline until week 10 (2 weeks after the fifth and final doxorubicin dose). ECV subsequently expanded progressively, but with no statistically significant difference from baseline until week 14 (26.03 ± 5.81% and 41 ± 1.34% at baseline and week 14, respectively; p = 0.006). Group and individual ECV trajectories are presented in Figures 2A and 2C. Complete ECV data are presented in Online Table 1. Post-contrast T1 relaxation times are presented in Online Figures 1B and 1C.

Late gadolinium enhancement. Positive LGE areas first appeared in the doxorubicin-infused area from week 10 onwards. The enhanced areas formed a patchy pattern at week 12, becoming more evident at 16 weeks follow-up (Figure 3D).

T2-driven strategy for the prevention of anthracycline-induced cardiotoxicity. Having documented T2 mapping abnormalities preceding systolic function deterioration, we next explored whether T2 relaxation time prolongation occurred at a
reversible stage of anthracycline-induced cardiotoxicity. To address this question, we studied a group of 5 pigs (group 2) in which doxorubicin treatment was stopped upon detection of T_2 prolongation. As in group 1, T_2 relaxation times in group 2 pigs were nonsignificantly prolonged at week 5 and this prolongation became significant at week 6 (i.e., immediately before the scheduled fourth doxorubicin dose). Group 2 pigs therefore received only 3 doxorubicin doses (weeks 0, 2, and 4) and were followed-up until week 16. T_2 relaxation times in group 2 pigs were significantly prolonged at week 6 (45.6 ± 0.6 ms and 51.6 ± 0.8 ms at baseline and week 6, respectively; $p = 0.004$) but returned to baseline levels at week 8 (45.5 ± 1.3 ms; $p = 1.00$ vs. baseline), and these levels were maintained until the end of follow-up (44.8 ± 1.4 ms at week 16; $p = 1.00$ vs. baseline) (Figure 3B and 3E, red lines). LVEF in group 2 showed no deterioration during follow-up (Figure 3A), and regional LV wall motion was similarly unaffected. All other evaluated parameters in group 2 remained within normal ranges throughout follow-up (Figure 3, red lines, and Online Table 1).

PATHOLOGICAL CORRELATES OF EARLY T_2 MAPPING CHANGES. The underlying tissue composition changes leading to early T_2 relaxation-time prolongation in the presence of normal T_1 and ECV readings was investigated in another group of 5 pigs (Group 3). Group 3 animals received 3 doxorubicin doses at weeks 0, 2, and 4, and were sacrificed immediately after detection of T_2 prolongation (at week 6). Like the other groups, these animals underwent a weekly CMR examination. Tissue samples from group 3 animals were compared with samples from groups 1 and 2 animals, which were sacrificed at the end of the 16-week protocol.

Myocardial water content. As expected, T_2 relaxation-time prolongation was associated with an increase in myocardial water content (10). At week 6, after 3 doxorubicin doses, T_2 relaxation times were significantly prolonged in group 3 animals (45.8 ± 2.52 ms and 52.6 ± 2.2 ms at baseline and week 6, respectively; $p = 0.01$) (Figures 3B and 3E, gray lines). Myocardial water content was significantly elevated in samples harvested at this time point ($396 \pm 12\%$ of dry weight and $375 \pm 0.7\%$ in group 3 and control, respectively; $p = 0.014$) (Figure 4C). ECV CMR data for group 3 revealed no expansion of the extracellular space at week 6 (Figures 3C and 3F, gray line), indicating that the increased myocardial water content and T_2 prolongation likely corresponds to intracellular edema.

At the end of follow-up in group 1 (5 biweekly doxorubicin doses followed by sacrifice at week 16), myocardial water content was also significantly increased ($500 \pm 39\%$ of dry weight; $p < 0.001$ vs. control). At this time point, ECV CMR data revealed an overt increase in extracellular space (Figures 3C and 3F, blue line), a finding compatible with extracellular edema formation. This is consistent with the positive LGE at this disease stage (Figure 3D). Interestingly, myocardial end follow-up water content in group 2 (3 biweekly doxorubicin doses and follow-up to week 16) did not differ from control subjects ($365 \pm 0.5\%$; $p = 0.13$ vs. control). Myocardial water content in all groups is shown in Figure 4C.

Structural myocardial changes. Hematoxylin and eosin staining of group 3 samples (harvested at week 6, after 3 doxorubicin doses) revealed cardiomyocyte vacuolization (Figure 4E, left panel) with no other overt alteration to myocardial tissue structure; cardiomyocytes maintained their shape, and there was no increase in extracellular space. Interestingly, at 16-week follow-up of animals receiving 3 doxorubicin doses (group 2), samples showed no intracardiomyocyte vacuolization (Figure 4E, right panel). Conversely, myocardial samples from group-1 pigs (5 doxorubicin doses and 16-week follow-up) showed even larger intracardiomyocyte vacuolae and a dis-arrayed myocardial structure, with increased extracellular space and replacement fibrosis, suggestive of end-stage disease (Figures 4A and 4E, middle panel).

Complete histopathology data (fibrosis, myocardial water content, and vacuolae presence) and CMR data (ECV and T_2 relaxation times) are shown for all groups and sacrifice time points in Figure 4.

DISCUSSION

In a pig model of anthracycline-induced cardiotoxicity with serial multiparametric CMR evaluations, we demonstrate that T_2 mapping abnormalities provide the earliest marker of subtle myocardial damage, with T_2 relaxation times prolonged long before LV motion abnormalities were detected (Central Illustration). At this early stage of cardiotoxicity, T_1 relaxation times and ECV quantification were unaltered. Pathology evaluation upon T_2 prolongation demonstrated an absolute increase in myocardial water content, correlating with vacuolae formation in preserved cardiomyocytes but with no concomitant fibrosis or increased extracellular space. These findings demonstrate that T_2 relaxation-time prolongation in the presence of normal T_1 mapping and ECV identifies intracardiomyocyte edema as the
FIGURE 4 End Follow-Up Ex Vivo and Imaging Studies of the Infused Area in Each Group

A. Fibrosis (%)

B. ECV (%)

C. Water Content (%)

D. T2 (ms)

E. Sirius Red

Continued on the next page
earliest anthracycline-induced cardiotoxic event. Our results further demonstrate that stopping doxorubicin administration upon detection of T₂ relaxation-time prolongation prevents progression to myocardial dysfunction, with subsequent T₂ normalization as a surrogate of cardiomyocyte vacuolae resolution. These findings indicate that this marker of intracardiomyocyte edema appears at a reversible disease stage and, thus, has important clinical implications.

Previous CMR evaluations of anthracycline-induced cardiotoxicity have been performed in mice (26), rats (27,28), and rabbits (29,30); however, ours is the first study to use the pig model with serial CMR evaluations. We chose the pig because of its anatomical and physiological similarity to humans (including heart rate and metabolism) and because the CMR protocols are the same as those used clinically. Our study is the most comprehensive to date, because it includes weekly multiparametric CMR evaluations over 4 months to cover all cardiotoxicity stages, from baseline to end-stage disease with overt LVEF deterioration. Following a modification of a published protocol in pigs (22,23), doxorubicin was injected directly into the coronary arteries rather than intravenously. This approach achieves high local doxorubicin concentrations in the heart without exposing animals to undesired systemic adverse effects like myelosuppression, which would render the animals vulnerable to infection and thus potentially affect survival and even cardiac readouts. This approach is validated by the absence of casualties in our study.

Current clinical approaches for the early detection of cardiotoxicity are based on deterioration of LV motion, detected as LVEF or global longitudinal strain (8,9); however, these changes reflect profound damage to myocardial function and thus only become manifest at an advanced stage of the disease. Almost 90% of patients developing anthracycline-mediated LVEF deterioration never fully recover pretreatment LVEF even with heart failure therapies (31). The identification of T₂ relaxation-time prolongation as a very early marker of reversible intracardiomyocyte vacuolization thus has important clinical implications. Serial T₂ mapping might allow tailored anthracycline dose management, with patients showing no T₂ mapping abnormalities perhaps able to receive further doses, even beyond currently accepted high cardiotoxicity limits, without increasing the risk of future LV dysfunction. This could be especially helpful for patients requiring high anthracycline doses to halt cancer progression. There is also the potential to monitor and possibly modify anthracycline therapy in vulnerable populations, such as patients with pre-existing myocardial disease; pediatric or geriatric patients; smokers; obese or sedentary patients; patients consuming alcohol; or patients with hypertension, diabetes, or hypercholesterolemia (8). The chemotherapy dose-management potential of serial T₂ mapping is supported by the finding that cessation of doxorubicin therapy upon detection of T₂ mapping abnormalities prevented progression to LV motion deterioration or fibrosis development and led to regression of cardiomyocyte vacuoles formation.

Another potential application of serial T₂ mapping is decision making about heart failure therapy initiation (e.g., with beta-blockers and/or ACE inhibitors). This is highly significant, because a major predictor of therapeutic myocardial recovery is the time elapsed between anthracycline therapy and cardiotoxicity diagnosis (32). Cardinale et al. (32) found that only 42% of patients with anthracycline-induced cardiotoxicity fully recovered LV function in response to heart failure therapy; in that study, the percentage of responders decreased progressively as the time from the end of anthracycline therapy to the start of heart failure treatment increased. Therefore, early detection and prompt treatment of cardiotoxicity is crucial to ensuring substantial recovery of cardiac function. With current approaches (based on LVEF and global longitudinal strain), the mean interval from the end of anthracycline therapy to the detection of cardiotoxicity is 3.5 months (31). The ability to identify patients at a much earlier stage would allow earlier initiation of heart failure therapy and would thus prevent many cases of overt LV dysfunction.

FIGURE 4 Continued

Asterisks indicate statistically significant statistical differences compared with week 0 for each time point: *p < 0.05, **p < 0.01, ***p < 0.001, or nonsignificant (NS). (A) Fibrosis (%) in the infused area for each group at sacrifice. Representative images show Sirius Red staining. (B) ECV (%) in the infused area for each group at sacrifice. Representative images show CMR native T₁-MOLLI with a 550 to 1,750 ms masked range. Red arrows mark areas with significantly increased signal. (C) Water content (normalized to dry weight) in the infused area for each group at sacrifice. Representative hematoxylin and eosin images are shown. Black arrows mark intracardiomyocyte vacuolization. (D) T₂-GraSE mapping (ms) in the infused area for each group at sacrifice. Representative images show CMR T₂-GraSE mapping with a 20 to 120 ms mask range. Red arrows mark areas with significantly increased signal. Abbreviations as in Figures 2 and 3.
T₂ mapping is an accurate technique for the detection and quantification of myocardial edema (10). We have previously used T₂ mapping to characterize the edematous reaction of porcine (11,25,33) and human (12) myocardium to ischemia/reperfusion. T₂ relaxation time prolongation correlates with increased myocardial water content (10), but by itself does not differentiate between intracellular and extracellular edema. Our multiparametric approach, combining T₂ mapping with T₁ mapping and ECV fraction quantification, here allowed us to define the spatial location of increased myocardial water. T₂ mapping prolongation in the absence of T₁ mapping or T₂-based ECV changes is highly suggestive of intracellular edema formation. Intracellular vacuolization is an early change in the anthracycline-injured myocardium, identified as a pre-apoptotic phenomena in animal models and human biopsies (5-7,34). Our analysis records not only in vivo changes in T₂ mapping, but also the very early presence of intracardiomyocyte vacuolization, before the appearance of LV functional abnormalities. At the end of follow-up in animals undergoing the full doxorubicin protocol (5 biweekly injections and follow-up to 16 weeks), T₂ relaxation times were even longer than at early stages and were accompanied by

<table>
<thead>
<tr>
<th>Features</th>
<th>T₂ Mapping</th>
<th>T₁ Mapping</th>
<th>Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Cumulative Anthracycline Dose</td>
<td>No Toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No changes in T₂/T₁ Mapping</td>
<td>• LV motion not affected</td>
<td>• No changes in histology</td>
</tr>
<tr>
<td>Higher Cumulative Anthracycline Dose</td>
<td>Subtle Damage</td>
<td>Reversible Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• T₂ mapping affected</td>
<td>• T₁ mapping/extracellular volume/ left ventricular motion not affected</td>
<td>• Intra-cardiomyocyte vacuolization</td>
</tr>
<tr>
<td>Higher Cumulative Anthracycline Dose</td>
<td>Anthracycline</td>
<td>Irisolable Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continues</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• T₂ mapping affected</td>
<td>• T₁ mapping/extracellular volume/ left ventricular motion affected</td>
<td>• Massive vacuolization + fibrosis + cardiomyocyte loss</td>
</tr>
<tr>
<td>Higher Cumulative Anthracycline Dose</td>
<td>Anthracyline</td>
<td>Halted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haltered</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• T₂ mapping normalization</td>
<td>• T₁ mapping/extracellular volume/ left ventricular motion not affected</td>
<td>• Vacuolae regression</td>
</tr>
</tbody>
</table>

Isolated T₂ relaxation times prolongation (with normal T₁, extracellular volume [ECV], and left ventricular [LV] motion) is able to identify intracardiomyocyte vacuolization, the earliest cardiotoxic event. Stopping anthracycline therapy at this early time point results in no progression to LV motion abnormalities and normalization of T₂ values (corresponding to vacuole regression). These phenomena support that T₂ mapping identifies anthracycline-induced cardiotoxicity at a reversible stage of the disease. If anthracycline therapy is not halted, T₁ mapping and ECV become pathological at a stage where LV motion is already deteriorated. Serial multiparametric cardiac magnetic resonance (CMR) might serve to implement a personalized treatment approach for patients undergoing anthracycline therapy to prevent cardiotoxicity.
significant T_1 relaxation-time prolongation, a significantly elevated T_1-based ECV fraction, and patchy LGE. The pathological correlate at this end-stage of the disease was the presence of larger and more numerous intracardiomyocyte vacuoles accompanied by intense extracellular matrix remodeling and diffuse fibrosis.

Our results are in line with those reported by Farhad et al. (26). Using a mouse model of anthracycline-induced cardiotoxicity, these authors found that 5 weekly doxorubicin injections induced early prolongation of T_2 relaxation times accompanied by intracellular vacuolization (26). This study and ours confirm the feasibility of in vivo noninvasive identification of vacuoles formation inside cardiomyocytes as a direct toxic effect of anthracyclines in 2 different species. However, Farhad et al. (26) found that T_2 mapping abnormalities were associated with concurrent T_1 relaxation-time prolongation and expanded extracellular space on electron microscopy images, a finding not observed in our analysis until later disease stages. This indicates that we identified doxorubicin cardiotoxic effects at an earlier disease stage, when only intracardiomyocyte changes were present, with preservation of the extracellular space. Our weekly protocol was able to identify the onset of cardiac damage, whereas Farhad et al. (26) performed the first scan at the end of the doxorubicin protocol, thus missing the earliest on-treatment tissue composition changes. In another study, Hong et al. (30) used a rabbit model of doxorubicin-induced cardiotoxicity to study the evolution of changes in T_1 mapping and T_1-based ECV, but did not include T_2 mapping. These authors found that T_1 relaxation-time prolongation occurred concurrently with ECV expansion at a time when LVEF had already deteriorated (albeit not significantly vs. baseline). Histological evaluation revealed intracardiomyocyte vacuolization and interstitial fibrosis, indicating that this time point corresponds to more advanced disease stage than that identified by us.

To date, very few studies have used a serial multiparametric CMR strategy including T_2 mapping in patients undergoing anthracycline therapy. Several authors have reported CMR findings in patients treated with anticancer therapies (16-19,35,36). In some of these studies, increased ECV coincided with cardiac function deterioration. Few studies have reported serial CMR examinations before and after anthracycline exposure, and in most of them, CMR was performed only after completion of anthracycline administration, thus missing early changes occurring during treatment (37-40). More recently, Schulz-Menger’s group (41) reported the findings of serial multiparametric CMR examinations in a cohort of 30 sarcoma patients on high anthracycline regimes. Patients underwent comprehensive T_2/T_1 mapping and ECV assessment before treatment, 48 h after the first dose, and after finishing the anticancer therapy; 30% of patients developed cardiotoxicity. In contrast with our results, T_2 mapping showed no differences between patients developing cardiotoxicity and those who did not, although both groups showed a nonsignificant trend toward increased T_2 relaxation times over time. ECV did not change over time. Interestingly, patients who subsequently developed cardiotoxicity had significantly shortened T_1 relaxation times 48 h after the first dose. In our study, we observed no drop in T_1 relaxation time after doxorubicin dosing; however, this might reflect the performance of CMR examinations 1 week after dosing in our protocol and not after 48 h as in the study by Muehleg (41).

Currently, the performance of frequent surveillance, comprehensive, multiparametric, contrast-enhanced CMRs as part of routine care is likely not feasible given the high volume of patients receiving anthracycline-based chemotherapy, high cost, and lack of access to CMR capabilities. We speculate that the development of ultra-fast CMR protocols able to gather the minimum info required for this screening might help alleviate these limitations. In the meantime, this CMR strategy might be offered for those patients at high risk for developing anthracycline-induced cardiotoxicity (8).

STUDY LIMITATIONS. One potential limitation of the present study is the intracoronary doxorubicin administration route, contrasting the intravenous route used in cancer patients. In the pig, the intravenous route requires very high doxorubicin doses that result in significant myelosuppression and compromise the experimental setting (42). The intracoronary approach in the pig model was described by Christiansen et al. (23) and has been validated by several imaging approaches as a valid alternative. In this study, all animals showed a very similar behavior in terms of time to intracardiomyocyte edema and time to LVEF fall. In the clinical setting, this is expected to be more variable. In addition, the time window between T_2 relaxation time prolongation and LVEF fall (3 weeks) appears narrow to be picked-up in the clinical setting. We speculate that this time window might be significantly wider in patients due to the more concealed evolution of the disease but this is to be demonstrated in the clinics.
CONCLUSIONS

In a large animal model of anthracycline-induced cardiotoxicity, we show that the earliest CMR on-treatment event is a prolongation of T2 relaxation time. T2 mapping and T1-based ECV are normal at this early time point and do not change until later in the cardiotoxic process. At this early stage, T2 mapping abnormalities correspond to intracardiomycyte edema secondary to doxorubicin-induced vacuolization, unaccompanied by any extracellular alteration. Early identification of intracardiomycyte edema from T2 mapping abnormalities has prognostic implications, because stopping doxorubicin treatment upon detection of this early CMR marker stops the progression of LV dysfunction and triggers regression of intracardiomycyte vacuolization. Serial multiparametric T2 mapping during treatment has the potential to support personalized anthracycline regimes.

ACKNOWLEDGMENTS The authors thank Eugenio Fernández, Santiago Rodriguez-Colilla, Tamara Córdoba, Óscar Sanz, Nuria Valladares, Inés Sanz, and Rubén Mota for technical and veterinary support at the CNIC animal facility and the farm. They also thank Marta Gaviñán, Ángel Macías, and Braulio Pérez for technical support in CMR studies. Simon Bartlett (CNIC) provided English editing.

REFERENCES

11. Fernandez-Jimenez R, Garcia-Prieto J, Sanchez-Gonzalez J, Sanchez-Gonzalez Almagro, 3, 28029 Madrid, Spain. E-mail: javier.sanchez.portugal@philips.com. OR Dr. Javier Sanchez-Gonzalez, MR Clinical Scientist Philips Healthcare Iberia, c/n Maria de Portugal, 1, 28050 Madrid, Spain. E-mail: Javier.Sanchez.Gonzalez@philips.com.

ADDRESS FOR CORRESPONDENCE: Dr. Borja Ibanez, Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), and IIS-Fundación Jiménez Díaz University Hospital, c/ Melchor Fernandez Almagro, 3, 28029 Madrid, Spain. E-mail: bibanez@cnic.es. OR Dr. Javier Sanchez-Gonzalez, MR Clinical Scientist Philips Healthcare Iberia, c/n Maria de Portugal, 1, 28050 Madrid, Spain. E-mail: Javier.Sanchez.Gonzalez@philips.com.

PERSPECTIVES

COMPETENCY IN PATIENT CARE AND PROCEDURAL SKILLS: T2 mapping abnormalities identified by CMR imaging in the presence of normal T1, ECV, and LV wall motion correlate with cardiomyocyte vacuolization at an early and reversible stage of anthracycline-induced cardiotoxicity.

TRANSLATIONAL OUTLOOK: Prospective trials of chemotherapeutic strategies guided by serial T2 mapping could incorporate earlier cardiac intervention to preserve ventricular function in those with early cardiotoxicity and higher cumulative anthracycline therapy for those without evidence of toxicity.

KEY WORDS anthracycline, cardiotoxicity, CMR, doxorubicin

APPENDIX For a supplemental table and figure, please see the online version of this paper.