
Peer reviewed version

Link to published version (if available): 10.1109/VETEC.1995.504842

Link to publication record in Explore Bristol Research

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Implementation Issues of a Frequency Hopped Modem

M.P. Fitton, D.J. Purle, M.A. Beach, and J.P. McGeehan
Centre for Communications Research, University of Bristol
Queens Building, University Walk
Bristol. BS8 1TR, United Kingdom
Tel: +44 117 928 7740, Fax: +44 117 925 5265
e-mail: mike.fitton@bristol.ac.uk

Abstract

Investigations into Code Division Multiple Access (CDMA) have shown that Frequency Hopping (FH) possesses many of the advantages claimed by Direct Sequence (DS) spread spectrum techniques [1]. This paper investigates the theoretical and practical implementation issues associated with designing a FH modem. The criteria which are explored include areas which are specifically associated with the frequency hopping nature of the modem, such as the hopping synthesizer, hop duration, and hop bin separation. Furthermore, consideration is made of the impact of frequency hopping on more general design issues, such as coding, modulation, and multiple access. Work at the Centre for Communications Research (CCR) in Bristol has been carried out to develop a practical implementation of a prototype frequency hopped modem. The paper includes the modem design, and preliminary performance in an additive white noise channel.

1 Introduction

The evaluation of both TDMA and CDMA air interface techniques for third generation wireless networks is now gathering considerable momentum. The recent allocation of spectrum to personal communications systems (PCS) by the Federal Communications Commission (FCC) in the US can only encourage this trend. This is also evident in Europe with numerous activities funded under both E.C. RACE and UK DTI/EPSRC LINK initiatives addressing UMTS. Recent research considering CDMA has been largely aimed towards the use of the Direct Sequence (DS) spreading technique, and consequently commercial applications of Frequency Hopping (FH) have received less attention. Analytical work at Bristol [1] and elsewhere [2] has shown that the claimed advantages of DS can also apply to FH CDMA networks when evaluating the relative performance of low and medium rate data bearers in both PCS and UMTS like environments.

Frequency hopping systems employ a conventional modem structure, however the RF carrier frequency is not fixed, and the modem will hop between a number of frequencies in a predetermined pattern. Similar to Direct Sequence, using frequency hopping spread spectrum (FH SS) affords inherent frequency diversity in transmission. Even if one or more of the carriers are corrupted due to multipath effects, no outage will result provided the majority of the bearers provide perfect transmission. Furthermore, FH provides resilience to interference, since a given interferer will only corrupt one packet before the modem hops away to another frequency. This interference diversity is of particular use in the multi-user scenario, where it can be exploited to reduce the effects of inter-cell interference.

Since a frequency hopping system will hop to different frequencies, it does not require contiguous spectrum, unlike TDMA and DS CDMA. This is of particular advantage in certain cases when licensing does not permit the use of contiguous spectrum, such as the FCC recommendations on Special Mobile Radio Services.

Previous propagation work [3] and computer simulations [2] of Slow Frequency Hopping CDMA have shown this technique to have considerable potential. This research has indicated the need to evaluate both theoretical and practical design issues related to implementing a FH transmitter and receiver for use in the mobile channel. The use of frequency hopping in the modem introduces complexities which are not necessarily present in other types of air interface techniques, including the choice of hopping generator, hop rate, and hop separation. Furthermore, the FH nature of the modem impacts on other design issues, such as coding, modulation scheme, multiple access, and services offered. This paper attempts to address these considerations, by exploring the options available at each stage of the design. In particular this investigation is biased towards a mobile communication system with low to medium data rate capability, for application in the PCS-type field.

Work at the Centre for Communications Research (CCR) in Bristol has been undertaken to develop a practical implementation of a narrowband frequency hopping modem. This prototype has been constructed employing π/4-DQPSK modulation and direct digital synthesis for hopped carrier generation, allowing a capability for con-
ventional voice transmission. The preliminary performance of the modem is validated using both back-to-back testing and transmission through an additive white noise channel.

2 Design Issues

2.1 Services Offered

The services which are offered by the frequency hopping modem will greatly impact on other system criteria. The distinction between the requirements for data and those for voice traffic mainly affect the choice of coding and interleaving (see section 2.5). Unlike voice communications, data traffic does not have the same stringent limitations imposed on interleaving depth.

In general, data communication will require much lower bit error rates than those that are acceptable with voice (a BER in the order of $10^{-6}$ as compared to $10^{-3}$). However, it would be possible for a data modem to employ Automatic Repeat Request (ARQ) protocols rather than Forward Error Correcting (FEC) codes. Investigations have shown that ARQ protocols do not exploit the randomising effects of frequency hopping as effectively as FEC schemes. Consequently, using FEC coding would appear to limit an FH system to predominantly speech, with limited data transmission capability.

2.2 Hopping Synthesizer

The hopping synthesizer is used to produce a signal at a number of different frequencies over the band of interest, and furthermore must be capable of hopping at the required rate. The hopped signal can either occupy a section of contiguous spectrum centered on a particular frequency, or may be sub-divided further due to the necessities of the licensing. A number of different methods can be used to synthesize the required hopping signal, with the two main areas of interest being phase locked loop (PLL) and Direct Digital Synthesizer (DDS) techniques.

The PLL approach produces a solution which is compact and power efficient, and therefore feasible to integrate into a handset. Recent development of conventional PLL methods into fractional-$\alpha$ techniques has resulted in improved settling times.

DDS techniques can be used to provide very fast settling times and fine frequency resolution, along with ease of integration and control. Unfortunately, current device technologies consume large amounts of power, are expensive, and often have a limited output frequency. Investigations into hybrid PLL/DDS systems have shown that they could combine the advantages of both systems.

2.3 Modulation Scheme

The traditional modulation scheme for FH systems tends to be M-ary Frequency Shift Keying (FSK). However, there is also a great deal of interest in linear modulation [2]. Since linear modulation can utilise both amplitude and phase information to convey message information, the signal bandwidth required is reduced. The spectral occupancy can be reduced still further by employing pulse shaping.

Whether the FH receiver is coherent or differential is also source of some controversy. Coherent detection will obviously improve system performance, but creates the problem of recovering carrier phase. Even though it can be assumed that phase coherence will be maintained during the hop period, it is almost impossible to track the phase across hop boundaries due to the effects of the hopping synthesizer and the channel itself. The need for a small, power efficient handset in PCS would seem to preclude the complexities of coherent reception, at least at the present time. Using a differential system considerably eases the complexities of implementing the FH receiver.

In addition, the choice of linear modulation scheme is quite complex. The use of certain modulation schemes, such as offset-QPSK and $\pi/4$-shifted QPSK, is beneficial in reducing the stringent linearity requirements of the power amplifier. This means that the amplifier can be operated at a more power efficient level, for specified levels of in-band and out-of-band interference. Alternatively, multi-level schemes could be employed, in order to improve bandwidth efficiency at the expense of performance in noise. One such suitable modulation scheme is known as 16-level Amplitude and Phase Shift Keying (16APSK) and has been investigated at the University of Bristol [4].

2.4 Hopping Characteristics

The main hopping characteristics associated with the FH modem are the hop rate, and hop bin separation. If the modem is not hopping at a sufficiently high rate, the maximum interleaving depth for intelligible voice transmission will not allow for sufficiently uncorrelated symbols in the de-interleaved code word. This will then limit the effectiveness of any coding scheme that is employed.

Similarly, implementation of an efficient coding scheme requires careful study of hop bin separation (ie. the frequency separation between subsequent positions in the hopping pattern). If two adjacent hop periods are too close in frequency, the high degree of correlation between them will result in an impairment of the efficiency of the coding (since the symbols in the codeword will not be independent of each other). This necessitates a separation of subsequent hops which is greater than the coherence
bandwidth of the channel. This can be accomplished by careful choice of hop bin separation and hop pattern [5].

2.5 Coding and Interleaving

The issue of coding in a frequency hopping channel is one of great importance, since without interleaving and coding a SFH system will have no performance advantage over a conventional narrowband modem. The action of interleaving the constituent symbols of a given codeword over a number of different hop frames will result in effectively randomising the fading characteristic experienced by the codeword. Although a coding scheme employed will become more efficient as the code length is increased, the necessity of produce intelligible speech limits interleaving depth to the order of 40 ms.

Furthermore, the type of coding itself will have great impact on the overall system performance. Conventional codes, such as BCH or half-rate convolutional codes, can be utilised with reasonable success, provided the code length (or constraint length) are suitable for the interleaving depth.

Other methods to improve effectiveness do exist, including schemes which recover side information from the received signal. The technique of developing channel information from test symbols, or concatenated coding, can be easily incorporated into existing system design, and is more straightforward to implement [6]. The side information can be used to detect errors and mark them as erasures, thus improving the efficiency of the final decoding. One possible scheme is shown in figure 1. The inner code (such as BCH) processes the received data before de-interleaving, marking the entire block as an erasure if any errors are detected. De-interleaving then occurs, and the outer code is used on the remaining errors and erasures.

![Figure 1: Concatenated Coding Scheme](image)

3 Hardware Implementation

This section describes the hardware which was implemented in the development of a prototype frequency hopping modem. The design itself is based on the criteria set out in the previous section, and demonstrates the issues and compromises which relate to practical implementation.

The aim of the prototype development was to develop a system which could transmit voice data over a mobile channel. The modulation scheme employed is that of \( \pi/4 \) DQPSK, due to ease of reception and noise performance (as detailed in section 2.3). The system specifications are shown in table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Carrier</td>
<td>1.823 GHz</td>
</tr>
<tr>
<td>System Bandwidth</td>
<td>2 MHz</td>
</tr>
<tr>
<td>Channel Spacing</td>
<td>( &gt; 20 ) kHz</td>
</tr>
<tr>
<td>Modulation</td>
<td>( \pi/4 ) DQPSK</td>
</tr>
<tr>
<td>FH Channels</td>
<td>( \leq 100 )</td>
</tr>
<tr>
<td>Gross Bit Rate</td>
<td>20 kbps</td>
</tr>
<tr>
<td>Vocoder Rate</td>
<td>8 kbps</td>
</tr>
<tr>
<td>Interleaving</td>
<td>variable depth ( \leq 40 ) ms</td>
</tr>
<tr>
<td>Hop Rate</td>
<td>( \leq 1000 ) per second</td>
</tr>
</tbody>
</table>

Table 1: FH Modem Specifications

3.1 Modulator DSP

The modulator is implemented using a digital signal processor (DSP) to carry out interfacing, modulation and root-raised cosine filtering of the signal. By operating the modulator at 2 samples per symbol, the processing required was not particularly complex and permitted the use of a relatively simple (and cheap) DSP device.

3.2 Demodulator DSP

Implementation of the \( \pi/4 \) DQPSK demodulator was more complex than the relatively simple task of designing the modulator. The receiver samples the input signal at a relatively slow rate of approximately 4 samples per symbol, due to the upper limit of the DSP clocking rate.

One of the main problems involves recovering the symbol timing from the incoming signal. The algorithm used is
based on the 'spectral-line' technique [8], which is implemented on-board the DSP. The baseband signal is passed through a non-linearity (in this case a squaring operation) to produce a spectral line at the symbol rate. This signal is then band-pass filtered, and used to drive a DSP implemented phase-locked loop. The use of the phase-locked loop ensures that the system is more resilient to noise.

The recovered timing signal is then used to calculate the ideal sampling point. To provide a greater degree of resolution in the decoded signal, the received waveform is interpolated up to 32 samples per symbol. Conventionally this interpolation would also result in a large increase in the processing required to perform the match filtering and the interpolation filtering. However, to make a decision on the received symbol only requires a single sample, corresponding to the ideal sampling point. Consequently, the filtering need only be carried out once per symbol [9], thus reducing processing overhead for both filtering operations.

3.3 Hopping Synthesizer

The prototype modem synthesizer was implemented using direct digital frequency synthesis. This technique has certain disadvantages, namely high power consumption and limited frequency output. However, control of the DDS device is very simple, via an interface connecting directly to a DSP. In addition, a dual DDS was used to provide frequency quadrature, allowing the baseband signal to be converted directly to an IF without the need for other complexities such as a Hilbert Transform.

3.4 Acquisition and Tracking

The modem is envisaged to be operating in a multiple-access scheme where users in the same cell are synchronised, each having a different offset in the same hopping code. Provided other cells operate with an orthogonal code, the requirements specified in section 2.6 are fulfilled. The demodulator DSP can then implement a 'camp and wait' algorithm, where the receiver will only hop to the next hop frequency in the sequence when it detects energy at its current frequency. By requiring a number of consecutive hops to be successfully detected, the system is made more tolerant to interference from stray users in other cells, as an orthogonal code is very unlikely to give high correlation with the wanted sequence over several hops.

An experimental, analogue version of the early-late tracking system [10] was implemented in hardware using a frequency discriminator and some associated logic functions. The system was shown to recover the frequency of the hop clock perfectly, however there still existed a degree of uncertainty in the time resolution of the signal, which translated as variation of ±20μs, which could result in the loss of one sample in any one hop frame. The main drawback with this implementation of a hop clock recovery circuit is that the frequency discriminator required a channel spacing of at least 100 kHz for reasonable performance.

Operation of this system at an IF, rather than baseband would result in improvement in both the timing uncertainty and the minimum channel spacing. To date, this hop clock recovery system has not been integrated with the remaining receiver hardware.

4 Results

The performance of the frequency hopping modem is validated using an additive white Gaussian noise (AWGN) channel, and comparing the bit error rate performance with theoretical results. The modem was also tested back-to-back to determine the irreducible error rate, and no errors were observed when approximately 10⁹ bits were transmitted.

Figure 2: BER Performance of Modem at IF of 5 MHz

The modem was tested in a number of different configurations, in order to determine performance with and without frequency hopping. Figure 2 shows the performance of the π/4 DQPSK modem as a conventional narrowband system, operating at an IF of 5 MHz (ie. with no frequency hopping). The results produced show only limited degradation as compared to the theoretical results, with spread of points well within the bounds of experimental error due to difficulty of measuring signal-to-noise ratio. The main reason for any degradation is due sub-optimal sampling points resulting from inaccuracies in timing point interpolation.

The last set of results included (figure 3) illustrate the performance of the full frequency hopping system, operating with 20 hop frequencies over a 2 MHz hopping bandwidth.
The results show reasonable performance of the overall frequency hopping system, although the configuration has synchronised hopping of transmitter and receiver.

5 Conclusions and Future Work

This paper set out to highlight some of the practical and theoretical problems associated with the construction of a frequency hopped modem. This was further illustrated by the construction of a prototype frequency hopping modem at the University of Bristol.

The current modem operates with a synchronised hop clock for transmitter and receiver. Obviously, for full functionality it would be necessary for the transmitter and receiver to be able to 'stand alone', thus requiring integration of a tracking circuit into the overall system.

When tested in an additive white Gaussian channel, the prototype modem produced results which agreed well with theoretical bit error rate characteristics. However, to accurately test the prototype modem in realistic conditions would require incorporating fading characteristics into the channel model. It would then be possible characterise the modem much more thoroughly, including the effects of coding and performance in the multi-user scenario. The final stage in the development would be to convert the signal up to RF, and carry out field trials with the modem.

Overall, the work carried out has shown the feasibility of implementing a practical frequency hopped modem. Future work will aim to further validate the performance of the modem, as well as exploring other issues including multiple access and increasing bit rate to facilitate efficient data transmission.

6 Acknowledgements

The authors would like to thank the University of Bristol for their financial support, and the Centre for Communication Research and Prof. J.P. McGeehan for providing laboratory facilities and a marvellous working environment. In addition, the authors gratefully acknowledge the invaluable assistance of Dr. A.R. Nix, Dr. T. Busby, Mr. R.J. Wilkinson, and Mr. A. Mansell in developing the modem.

References