
Peer reviewed version

Link to published version (if available):
10.1109/VTCF.2006.53

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html
A Line-of-Sight Optimised MIMO Architecture for Outdoor Environments
Presentation Outline

• MIMO notation
• Performance of MIMO in LoS
• Rank-one and full-rank LoS response
• Maximum capacity criterion
• Measurement procedure
• Results
• Conclusions
System Model and MIMO Capacity

The input-output relationship in an $n_t \times n_r$ MIMO system is represented mathematically by:

$$y = Hx + n$$

y - received signal vector

H - channel response matrix

x - transmitted signal vector

n - noise at the receiver

The capacity of such a system is given by:

$$C = \log_2 \left(\det \left(I_{n_r} + \frac{\rho}{n_t} HH^H \right) \right)$$
Channel Response Matrix (LoS)

• In LoS conditions the channel response matrix is commonly modelled as:

\[H = \sqrt{\frac{K}{K+1}} H_{\text{LoS}} + \sqrt{\frac{1}{K+1}} H_{\text{NLoS}} \]

• In systems with inter-element spacing of the order of a wavelength the capacity reduces with increasing \(K \)
Rank-One vs Full-Rank LoS Channel

- It is possible to achieve a full-rank LoS channel response by increasing the inter-element spacing.
- The capacity then increases with increasing K.

$$H_{LOS} = \begin{pmatrix} \frac{\pi}{2} & 0 & 3\frac{\pi}{2} & \pi \\ \frac{\pi}{2} & 0 & 3\frac{\pi}{2} & \pi \\ \frac{\pi}{2} & 0 & 3\frac{\pi}{2} & \pi \\ \frac{\pi}{2} & 0 & 3\frac{\pi}{2} & \pi \end{pmatrix}$$
Maximum Capacity Criterion

- It is trivial to show that for a static MIMO channel the capacity is maximised when

\[HH^H = n_t I \]

Using the above formula and assuming a free-space channel a simplified maximum capacity criterion for Uniform Linear Arrays was previously derived:

\[s_1 s_2 = \frac{\lambda D}{n_t \sin \omega \sin \theta} \]

This equation gives the required inter-element spacing to achieve the maximum capacity in a MIMO system in free-space as a function of the T-R distance \(D \) and the orientation of the arrays \((\theta, \omega) \).
Previous Work and Motivation

• The performance of LoS-optimised antenna array structures has been previously investigated using MIMO measurements in an anechoic chamber an office environment and a home environment

• Here we present an investigation on the performance of a distributed MIMO architecture suitable for an outdoor deployment corresponding to a hotspot scenario

• The channel response is modelled using a MIMO-capable ray-tracing software

• The operating frequency for the simulation was chosen to be 5.2 GHz
Scenario 1 (narrow-spaced arrays)

- Lamppost-level (h=10m) access-points (AP) are employed
- Each AP consists of two omni-directional antenna elements spaced by 20 cm and downtilted by 45 degrees facing the middle of the road
- At the mobile terminal (MT) a 2-element ULA with 4 cm spacing is used
- At each point in the route the MT communicates with the nearest AP
Capacity Results (Scenario 1)
Scenario 2 (LoS-optimised arrays)

- A LoS-optimised architecture was employed where the AP elements were distributed at 10 m intervals along the deployment area.
- At each point in the route the two successive elements that are nearest to the MT are used for communication.
- At the MT the same array as in Scenario 1 is used.

![Scenario 2 Diagram](image_url)
Capacity Results (Scenario 2)
Results (Fixed SNR = 20 dB)

Mean capacities for Scenarios 1 and 2 along different parts of the route (r.p. = route point):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>9.59 bps/Hz</td>
<td>9.02 bps/Hz</td>
<td>9.10 bps/Hz</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>10.56 bps/Hz</td>
<td>13.08 bps/Hz</td>
<td>11.45 bps/Hz</td>
</tr>
<tr>
<td>Improvment</td>
<td>10.1%</td>
<td>45.3%</td>
<td>25.7%</td>
</tr>
</tbody>
</table>
Fixed SNR vs Measured SNR

• The results presented correspond to a system with normalised channel response (fixed SNR = 20 dB)

• This assumption corresponds to a system employing optimal power control

• In reality the SNR varies considerably especially between LoS/NLoS positions

• To investigate the effect of the path loss on the capacity the capacity was also calculated for a system with fixed transmit power (variable SNR)
Results (Fixed Tx Power – Variable SNR)

Chart 1: Mean Capacities for Scenarios 1 and 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>1.61 bps/Hz</td>
<td>9.31 bps/Hz</td>
<td>5.54 bps/Hz</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>1.37 bps/Hz</td>
<td>13.44 bps/Hz</td>
<td>7.22 bps/Hz</td>
</tr>
<tr>
<td>Impr/ment</td>
<td>-14.9%</td>
<td>44.4%</td>
<td>30.3%</td>
</tr>
</tbody>
</table>

Conclusions

• LoS-optimised arrays can be used to overcome the problem of excessive correlation in environments with strong LoS signal such a LoS hotspot scenario

• Capacity improvements of the order of 45.3% were observed in the deployment area

• Even though the array geometry influences the capacity very considerably, when designing practical systems the SNR needs also to be taken into account

• Future work needs to focus on the verification of the presented findings using MIMO measurements and in identifying potential implementation issues