
Peer reviewed version

Link to published version (if available):
10.1109/VETECF.2008.460

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
I. Feedback Overhead Implications at Vehicular Speeds with Conventional Channel State Information in OFDMA

- Most commonly used CQI metric is the instantaneous Signal to Noise Ratio (SNR).
- A scheduler exploiting Multiuser Diversity is required to have access to Channel State Information (CSI), at least at the rate at which the channel is changing, i.e. depends on the coherence time of the channel.
- The channel coherence time depends on the speed of the Mobile Stations. Hence for high vehicular speeds, higher feedback overhead conveying CSI is required.
- The channel coherence time depends on the speed of the Mobile Stations. Hence for high vehicular speeds, higher feedback overhead conveying CSI is required.
- Due to the requirement of SNR knowledge across the frequency domain, for OFDMA systems exploiting Multiuser Diversity, overall capacity quickly reaches bottlenecks point, at which the entire uplink channel is occupied with feedback information.

II. Feedback Reduction by Clustering and Selective Cluster Transmission

- Adjacent frequency subcarriers can be treated as a single feedback unit, considering the average SNR of these subcarriers as CQI.
- Provided that the correlation of these adjacent subcarriers is high, only minor throughput degradations are observed. Subcarrier correlation is dependent on the rms delay spread of the channel (τ_{rms}).
- For a specified τ_{rms}, a cluster size R giving best tradeoff between feedback overhead reduction and downlink throughput degradation exists.
- The optimum cluster size reduces as τ_{rms} increases, thus limiting the possibility of further feedback reduction. Provided R being the total number of subcarriers, the number of generated clusters is given by: $D=N/R$.
- A scheduler employing Multiuser Diversity does not schedule user on weak clusters. Hence, CSI for weak clusters conveys redundant information, due to the limited probability of resource allocation on these clusters.
- Selective Cluster transmission limits the number of clusters each Mobile Station can be served to. Despite this, resources only on its S strongest clusters for each OFDM symbol.
- Provided B is the number of bits representing quantised SNR (typically 5-6, but reaching 30 with coding) the total number of CSI per user on each OFDM symbol is: $B[log_2(D)]$.
- Spectral usage defines the ratio of allocated clusters over the total number of clusters, as a function of the number of users $\phi = \frac{D}{U}$.
- U_i defined as $U_i = \frac{D}{S}$
- As spectral usage converges to 1, selective cluster scheme converges to full feedback scheme.
- Convergence achieved for a high number of users and/or high number of eligible fed back clusters.
- Both requirements increase uplink feedback overhead.

III. Selective Cluster Index (SCI) for Channel Quality Indicator

- For the selective cluster scheme replace SNR with only the index of the S strongest clusters of each user. Elimination of SNR feedback can achieve major feedback overhead reductions.
- Comparison of feedback overhead for SCI scheme with a threshold based feedback scheme shows improved savings in uplink feedback overhead.
- The Base Station has no knowledge of instantaneous channel conditions on the frequency subcarriers.
- Resource allocation is performed through a random selection process amongst users identified as eligible for current cluster.
- Loss in spectral efficiency is expected due to the randomness in the allocation process.

IV. Implications of cluster outage probability

- Any selective scheduling policy introduces an uncertainty on spectral usage.
- Define cluster outage probability as the probability of a cluster not being identified as eligible for resource allocation by any of the K users, feeding back CSI for their S strongest clusters.
- Cluster outage probability: $P_{out}=\frac{D-U}{D}$
- $P_i(t)$ the ith element of vector PI containing the stacked, non-zero probabilities of the number of feedback clusters, when K users are active.
- Simulation results confirm theoretical results for expected cluster outage probability.

V. Performance Enhancements for Selective Cluster Index via Multiple Weighting Vector Transmission

- Random assignment of clusters in outage improves fairness and average system throughput. It also shifts higher the maximum tolerable cluster outage for rate maximisation by further reduction in feedback parameters.
- The use of multiple weighting vectors in Opportunistic Beamforming increases spectral efficiency even with omission of SNR feedback. Adaptive use of vectors for feedback overhead constraint.
- Any selective scheduling policy introduces an uncertainty on spectral usage.
- Define cluster outage probability as the probability of a cluster not being identified as eligible for resource allocation by any of the K users, feeding back CSI for their S strongest clusters.
- Cluster outage probability: $P_{out}=\frac{D-U}{D}$
- $P_i(t)$ the ith element of vector PI containing the stacked, non-zero probabilities of the number of feedback clusters, when K users are active.
- Simulation results confirm theoretical results for expected cluster outage probability.

VI. Adaptive Cluster Request for fixed cluster outage probability

- Variations in downlink performance observed for different numbers of feedback clusters S for changing number of users, due to change in cluster outage probability.
- The Base Station can request a variable number of feedback clusters from each Mobile Station, depending on the number of available users in the system, in order to maintain an (approximately) fixed cluster outage probability for any given number of active users.
- Compare the performance of the Selective Cluster Index Scheme with adaptive cluster request for two different expected cluster outage probabilities and a variable cluster outage scheme (fixed S).
- Variations in rate growth are attributed to the discrete nature of S: giving variations of the actual cluster outage probability with the target one.
- Reducing the cluster size, i.e. increasing the number of available clusters returns a more accurate cluster outage at the expense of increasing feedback load.
- The adaptive cluster request method gives better performance for a range of active users.
- A cluster outage probability of 15% returns higher throughput than that of 1% as it allows the Base Station to better identify strong users.

Conclusions

- OFDMA systems exploiting Multiuser Diversity impose heavy uplink feedback requirements. At high vehicular speeds, the rate at which feedback is required at the Base Station increases, mitigates diversity gains and results in a bottleneck in link performance.
- This paper suggests the introduction of a new channel quality metric that has a reduced load. Signal to Noise Ratio (SNR) is replaced by a relative channel strength metric given by the cluster index of the strongest clusters of each user.
- The use of this new metric results in a new scheduling policy, that involves random resource allocations amongst eligible users. By tolerating a certain cluster outage probability, not only the uplink feedback requirements reduce, but also the strong user identification process at the Base Station becomes more efficient, allowing for increased downlink rates.
- The proposed Selective Cluster Index scheme has shown strong resilience to high vehicular speeds due to the reduced uplink overhead, allowing Multiuser Diversity to be exploited at much higher speeds than an SNR based feedback scheme.