
Peer reviewed version

Link to published version (if available):
10.1109/VETECS.2008.394

Link to publication record in Explore Bristol Research

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Resource Allocation Techniques in OFDMA-Based Decode-and-Forward Relaying Networks

Yuwen Pan, Andrew Nix, Mark Beach
University of Bristol
Outline

- Motivations
- Backgrounds
- System Model
- Centralized Resource Allocation
- Distributed Resource Allocation
- Simulation Results
- Conclusion
Motivations

- Multi-hop relaying in cellular network: Enhance coverage; Increase data rate; Ensure cell edge connectivity.

- Efficient resource utilization: Design efficient spectrum/power allocation schemes for OFDMA-based relaying networks.

- Objective: Maximize the total capacity. Users’ data rate requirements (fairness) are also considered.

- Constraint: Limited individual transmission power at each transmitter.
Backgrounds

- Resource allocation in relay-aided cellular network employing OFDMA system:

A Cellular System with Multihop Relaying
System Model

- **Relaying scenarios**
 - The system consists of 1 Base Station (BS), \(L \) Relay Stations (RS), and \(K \) User Equipment (UEs)
 - Two-hop transmission is assumed
 - OFDMA-based downlink transmission
 - Decode-and-forward cooperation strategy
 - Interference is considered as Gaussian noise
System Model

• **System assumptions**
 • In centralized resource allocation, BS knows the entire channel information of BS-UE and RS-UE links.
 • This information needs to be fed back from UEs and RSs using control channels.
 • In distributed resource allocation, each RS knows all the information about the links from itself to the UEs.
 • This can be fed back by the UEs or estimated by uplink transmissions if time division duplex (TDD) is used.
System Model

- Symbols used
 - $h_{l,k}^{(n)}$: the channel gain at subcarrier n from RS l to UE k
 - $p_{l,k}^{(n)}$: the power allocated to subcarrier n at RS l to UE k
 - $\Omega_{l,k}$: the ordered subcarriers set allocated to UE k at RS l
 - $\Omega_{l,k}(j)$: the jth element of $\Omega_{l,k}$
 - R_k: the total system capacity
Centralized Resource Allocation

• Problem formulation

• Find the optimal subcarrier $\Omega_{l,k}$ and power $p_{l,k}^{(n)}$ allocation schemes to maximize the total capacity

$$\max_{\Omega_{l,k}, p_{l,k}^{(n)}} \sum_{k=1}^{K} R_k$$

• Under the following constraints:

• Subcarrier constraint

$$\Omega_{l,k_1} \cap \Omega_{l,k_2} = \emptyset, \text{ for all } l \text{ and } k_1 \neq k_2$$

$$\bigcup_{k=1}^{K} \Omega_{l,k} = [1, N], \text{ for all } l$$

• Power constraint

$$\sum_{k=1}^{K} \sum_{n \in \Omega_{l,k}} p_{l,k}^{(n)} = P_L, \text{ for all } l$$

$$p_{l,k}^{(n)} \geq 0, \text{ for all } l, k, n$$
Centralized Resource Allocation

• Challenges
 • Due to the combinatorial nature of the subcarrier allocation, the problem is proven to be NP-hard.

• Traditional approach to such problem is to split the problem into two sub-problems
 • Step 1: Allocate subcarrier using greedy methods assuming equal power allocation.
 • Step 2: Adjust power allocation after subcarrier allocation has been done.
 • However, allocate subcarrier by assuming equal power allocation is not applicable for relaying scenarios.

• We propose subcarrier and power co-allocation scheme
Centralized Resource Allocation

• Why co-allocation?

 • *Theorem:* In the general situation, for a relaying network where the number of subcarriers \(N \) is much larger than the number of RSs \(L \), and \(L \) is a small integer value, there is approximately only one RS among all \(L \) RSs that
 \[
 h_{s,k}^{(m)} \neq 0.
 \]

• Intuitions behind the theorem

 • The theorem says that for each symbol from BS to UE, at the optimal solution, only 1 among all RSs is required to relay for this symbol.

 • Even when subcarriers at all RSs are allocated to UEs, for optimal solution, they may not be used because they can be allocated with null power.

 • Subcarrier and power co-allocation is necessary.
Centralized Resource Allocation

• Algorithm design
 • Algorithm design is guided by the theorem as well as the following Lemmas.

 • **Lemma 1**: when power for all other RSs has been allocated, the optimal power allocation of a RS l is water-filling.

 • **Lemma 2**: $p_{l,k}^{\Omega_{l,k}(j)}$ is not 0 only if $\frac{|h_{l,k}^{(\Omega_{l,k}(j))}|^2}{\mu_k} \geq \frac{|h_{l',k}^{(\Omega_{l',k}(j))}|^2}{\rho_{l'}}$ for all $l', l \neq l$, where $\frac{1}{\mu_k}$ is related to the water level of RS l.
Centralized Resource Allocation

- Algorithm design
 - Intuitively, if a RS has a better channel to user k, or it has a higher water-level (either due to it has higher power constraint or it allocates power for less users), it is more likely that it relays data for UE k.
 - Our proposed algorithm greedily allocates subcarriers by considering both channel conditions as well as current water-level of each RSs.
Centralized Resource Allocation

• Algorithm Details

• Initialization: greedily map subcarriers to UEs. Decide the initial set of subcarriers that have non-zero power for each RS. Apply water-filling algorithm for these subcarriers.

\[
\text{let } |h_l^{(n)}| = \max_k |h_{l,k}^{(n)}|, \text{ for all } l \in [1, L] \\
\text{sort } |h_l^{(n)}| \text{ in descending order for all } l \in [1, L] \\
\text{let } i_l = N \frac{|h_l^{(n)}|^2}{\sum_{l'}=1} |h_{l'}^{(n)}|^2, \text{ for all } l \\
\text{do water-filling on } |h_l^{(1)}| \text{ to } |h_l^{(i_l)}|, \text{ water level is } \frac{1}{\mu_l} \text{ for all } l
\]
Centralized Resource Allocation

• **Algorithm Details**
 - Iteratively adjust the subcarriers for RSs that have non-zero power. Redo water-filling algorithm for these subcarriers.

 \[
 \text{while } \max\left(\frac{|h_l^{(i_l)}|^2}{\mu_l}\right) - \min\left(\frac{|h_l^{(i_l)}|^2}{\mu_l}\right) > \Delta \\
 i_l^{\text{max}} = i_l^{\text{max}} + 1, \quad i_l^{\text{min}} = i_l^{\text{min}} - 1 \\
 \text{do water-filling for } l^{\text{max}} \text{ and } l^{\text{min}} 	ext{ again}
 \]

• Finalization: finalize the matching of subcarriers for each RS. Water-filling is used to determine the power.
Centralized Resource Allocation

• **Proportional Fairness**
 - One more condition for each UE k
 \[
 \frac{R_{k}}{c_{K}} - \frac{R_{k}}{c_{k}} = 0
 \]
 - The theorem still holds for subcarrier and power allocation for each UE. I.e., if the subcarriers and total power for a UE k at each RS are determined, the same algorithm can still be applied.
 - Greedy algorithm is proposed
 - Decide the number of subcarriers allocated to the UEs according to their required data rate respectively.
 - Apply previous algorithm for subcarrier and power allocation of each UE.
 - Greedily adjust the subcarrier and power allocation by considering fairness.
Distributed Resource Allocation

- For a distributed system, each RS makes decision on its own.

- Communications among RSs are not required, which reduces the control cost.

- Allocation is assumed to be in rounds. At each round, a RS makes its own decision based on UE feedback of SNR (allocation results of all other RSs if MRC is used).
Distributed Resource Allocation

• Subcarriers are firstly greedily allocated

• From Lemma 1, the best power allocation strategy is water-filling.

• Adjustment is required for user fairness.
Simulation Results

• Parameters
 • Number of RSs
 • Number of UEs
 • Individual transmit power constraint at each RS
 • Fairness weight for each UE

• Assumptions
 • Decode-and-Forward relaying strategy
 • Perfect CSI
 • Frequency selective Rayleigh fading channel
 • 5MHz bandwidth
 • 512 FFT size
 • 300 data subcarriers
Simulation Results

- The total capacity vs. the received SNR (BS-UE & RS-UE links)
 - With 3 UEs and 3 RSs
Simulation Results

- The total capacity & Fairness performances
 - With 3 UEs at SNR=10dB
 - Vary the number of RSs up to 3
Conclusion

- Theorem derived based on maths analysis.
 - Co-allocation of subcarrier and power is necessary.
- Centralized and distributed resource allocation algorithms were proposed and compared by simulations
 - The proposed resource allocation algorithms outperform random allocation scheme.
 - Algorithms with fairness considerations have small loss in system capacity, but achieves significant gain in fairness.
 - Distributed resource allocation algorithms do not perform as good as centralized resource allocation algorithms, but with much less burden to the network.
Thanks for your attention!

Yuwen.Pan@bristol.ac.uk