
Peer reviewed version

Link to published version (if available):
10.1109/PIMRC.2011.6140109

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
A Performance Evaluation of 60 GHz MIMO Systems for IEEE 802.11ad WPANs

Xiaoyi Zhu\textsuperscript{1} Angela Doufexi\textsuperscript{1} Taskin Kocak\textsuperscript{2}

\textsuperscript{1}Department of Electrical and Electronic Engineering
University of Bristol, UK

\textsuperscript{2}Department of Computer Engineering
Bahcesehir University, Turkey

22\textsuperscript{nd} IEEE International Symposium
on Personal, Indoor and Mobile Radio Communications
Outline

1 Introduction
   - Overview of Wireless Personal Area Network (WPAN)
   - IEEE 802.11ad Standard

2 System Model
   - Channel Frequency Response
   - Optimization Criteria

3 OFDM Based Beamforming
   - Subcarrier-wise
   - Symbol-wise
   - Hybrid

4 Numerical Results
   - Link Level Simulation
   - Throughput Performance
   - Operation Range
Overview of 60 GHz WPAN

### Standards over 60 GHz WPAN
- IEEE 802.15.3c
- WirelessHD
- WiGig
- ECMA-387
- IEEE 802.11ad

### Characteristics of 60 GHz millimeter-wave WPANs
- In-door (<10m)
- Uncompressed HDTV and high rate data transfer
- At least 1 Gbps throughput, 3-4 Gbps preferable
Overview of Wireless Personal Area Network (WPAN)

Overview of 60 GHz WPAN

Standards over 60 GHz WPAN

- IEEE 802.15.3c
- WirelessHD
- WiGig
- ECMA-387
- IEEE 802.11ad

Characteristics of 60 GHz millimeter-wave WPANs

- In-door (<10m)
- Uncompressed HDTV and high rate data transfer
- At least 1 Gbps throughput, 3-4 Gbps preferable
# Outline

## 1. Introduction
- Overview of Wireless Personal Area Network (WPAN)
- IEEE 802.11ad Standard

## 2. System Model
- Channel Frequency Response
- Optimization Criteria

## 3. OFDM Based Beamforming
- Subcarrier-wise
- Symbol-wise
- Hybrid

## 4. Numerical Results
- Link Level Simulation
- Throughput Performance
- Operation Range
Operating Modes

- **Single Carrier**: Low complexity and control information
- **OFDM**: High performance applications

### Table: OFDM Modulation and Coding Schemes

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Coding Rate</th>
<th>Coded Bits/Symbol</th>
<th>Data Bits/Symbol</th>
<th>Data Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>1/2</td>
<td>672</td>
<td>336</td>
<td>1386.00</td>
</tr>
<tr>
<td>QPSK</td>
<td>5/8</td>
<td>672</td>
<td>420</td>
<td>1732.50</td>
</tr>
<tr>
<td>QPSK</td>
<td>3/4</td>
<td>672</td>
<td>504</td>
<td>2079.00</td>
</tr>
<tr>
<td>16-QAM</td>
<td>1/2</td>
<td>1344</td>
<td>672</td>
<td>2772.00</td>
</tr>
<tr>
<td>16-QAM</td>
<td>5/8</td>
<td>1344</td>
<td>840</td>
<td>3465.00</td>
</tr>
<tr>
<td>16-QAM</td>
<td>3/4</td>
<td>1344</td>
<td>1008</td>
<td>4158.00</td>
</tr>
<tr>
<td>16-QAM</td>
<td>13/16</td>
<td>1344</td>
<td>1092</td>
<td>4504.50</td>
</tr>
<tr>
<td>64-QAM</td>
<td>5/8</td>
<td>2016</td>
<td>1260</td>
<td>5197.50</td>
</tr>
<tr>
<td>64-QAM</td>
<td>3/4</td>
<td>2016</td>
<td>1512</td>
<td>6237.00</td>
</tr>
<tr>
<td>64-QAM</td>
<td>13/16</td>
<td>2016</td>
<td>1638</td>
<td>6756.75</td>
</tr>
</tbody>
</table>
IEEE 802.11ad Standard

Operating Modes

- Single Carrier: Low complexity and control information
- OFDM: High performance applications

**Table: OFDM Modulation and Coding Schemes**

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Coding Rate</th>
<th>Coded Bits/Symbol</th>
<th>Data Bits/Symbol</th>
<th>Data Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>1/2</td>
<td>672</td>
<td>336</td>
<td>1386.00</td>
</tr>
<tr>
<td>QPSK</td>
<td>5/8</td>
<td>672</td>
<td>420</td>
<td>1732.50</td>
</tr>
<tr>
<td>QPSK</td>
<td>3/4</td>
<td>672</td>
<td>504</td>
<td>2079.00</td>
</tr>
<tr>
<td>16-QAM</td>
<td>1/2</td>
<td>1344</td>
<td>672</td>
<td>2772.00</td>
</tr>
<tr>
<td>16-QAM</td>
<td>5/8</td>
<td>1344</td>
<td>840</td>
<td>3465.00</td>
</tr>
<tr>
<td>16-QAM</td>
<td>3/4</td>
<td>1344</td>
<td>1008</td>
<td>4158.00</td>
</tr>
<tr>
<td>16-QAM</td>
<td>13/16</td>
<td>1344</td>
<td>1092</td>
<td>4504.50</td>
</tr>
<tr>
<td>64-QAM</td>
<td>5/8</td>
<td>2016</td>
<td>1260</td>
<td>5197.50</td>
</tr>
<tr>
<td>64-QAM</td>
<td>3/4</td>
<td>2016</td>
<td>1512</td>
<td>6237.00</td>
</tr>
<tr>
<td>64-QAM</td>
<td>13/16</td>
<td>2016</td>
<td>1638</td>
<td>6756.75</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
   - Overview of Wireless Personal Area Network (WPAN)
   - IEEE 802.11ad Standard

2. System Model
   - Channel Frequency Response
   - Optimization Criteria

3. OFDM Based Beamforming
   - Subcarrier-wise
   - Symbol-wise
   - Hybrid

4. Numerical Results
   - Link Level Simulation
   - Throughput Performance
   - Operation Range
MIMO Communication System

Let $y_m$ be the received decision baseband signal for the $m$th subcarrier

$$y_m = \tilde{H}_m x_m + n_m, \quad m = 1, \ldots, N$$

where $x_m$ is the transmitted data symbol, $n_m$ is the Gaussian noise vector with zero mean and variance $\sigma^2$, $N$ is the number of subcarriers, and $\tilde{H}_m$ represents the frequency response of the equivalent channel matrix for the $m$th subcarrier after beamforming, which is given by:

$$\tilde{H}_m = c^H H_m w, \quad m = 1, \ldots, N$$

$w$ and $c$ are the transmitter and the receiver beam steering vector respectively, and $H_m$ is the response of the MIMO channel for the $m$th subcarrier.
## MIMO Communication System

Let $y_m$ be the received decision baseband signal for the $m$th subcarrier

$$ y_m = \tilde{H}_m x_m + n_m, \quad m = 1, \ldots, N $$

where $x_m$ is the transmitted data symbol, $n_m$ is the Gaussian noise vector with zero mean and variance $\sigma^2$, $N$ is the number of subcarriers, and $\tilde{H}_m$ represents the frequency response of the equivalent channel matrix for the $m$th subcarrier after beamforming, which is given by:

$$ \tilde{H}_m = c^H H_m w, \quad m = 1, \ldots, N $$

$w$ and $c$ are the transmitter and the receiver beam steering vector respectively, and $H_m$ is the response of the MIMO channel for the $m$th subcarrier.
Let $y_m$ be the received decision baseband signal for the $m\text{th}$ subcarrier

$$y_m = \tilde{H}_m x_m + n_m, \quad m = 1, \ldots, N$$

where $x_m$ is the transmitted data symbol, $n_m$ is the Gaussian noise vector with zero mean and variance $\sigma^2$, $N$ is the number of subcarriers, and $\tilde{H}_m$ represents the frequency response of the equivalent channel matrix for the $m\text{th}$ subcarrier after beamforming, which is given by:

$$\tilde{H}_m = c^H H_m w, \quad m = 1, \ldots, N$$

$w$ and $c$ are the transmitter and the receiver beam steering vector respectively, and $H_m$ is the response of the MIMO channel for the $m\text{th}$ subcarrier.
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1</strong> Introduction</td>
</tr>
<tr>
<td>- Overview of Wireless Personal Area Network (WPAN)</td>
</tr>
<tr>
<td>- IEEE 802.11ad Standard</td>
</tr>
<tr>
<td><strong>2</strong> System Model</td>
</tr>
<tr>
<td>- Channel Frequency Response</td>
</tr>
<tr>
<td>- Optimization Criteria</td>
</tr>
<tr>
<td><strong>3</strong> OFDM Based Beamforming</td>
</tr>
<tr>
<td>- Subcarrier-wise</td>
</tr>
<tr>
<td>- Symbol-wise</td>
</tr>
<tr>
<td>- Hybrid</td>
</tr>
<tr>
<td><strong>4</strong> Numerical Results</td>
</tr>
<tr>
<td>- Link Level Simulation</td>
</tr>
<tr>
<td>- Throughput Performance</td>
</tr>
<tr>
<td>- Operation Range</td>
</tr>
</tbody>
</table>
Choose the Optimal Weight Vectors

Optimization Criteria

- Max-codeword-distance
- Max-BER
- Max-mutual-information
- Max-effective-SNR

\[ \gamma_{\text{eff}} = -\beta \ln \left[ \frac{1}{N} \sum_{m=1}^{N} \exp \left( -\gamma_m/\beta \right) \right] \]

where \( \gamma_m \) is the symbol SNR experienced on the \( m \)th subcarrier, \( \beta \) is a parameter dependent on MCS.
Choose the Optimal Weight Vectors

**Optimization Criteria**

- Max-codeword-distance
- Max-BER
- Max-mutual-information
- Max-effective-SNR

\[
\gamma_{\text{eff}} = -\beta \ln \left( \frac{1}{N} \sum_{m=1}^{N} \exp\left(-\frac{\gamma_m}{\beta}\right) \right)
\]

where \(\gamma_m\) is the symbol SNR experienced on the \(m\)th subcarrier, \(\beta\) is a parameter dependent on MCS.
Choose the Optimal Weight Vectors

Optimization Criteria

- Max-codeword-distance
- Max-BER
- Max-mutual-information
- Max-effective-SNR

$$\gamma_m = \frac{E \left[ c^H H_m w x_m \right]^2}{E \left[ |n_m|^2 \right]} = \frac{|c^H H_m w x_m|^2}{M_t M_r \sigma^2}$$

where $M_t$ and $M_r$ are the number of antenna elements at the transmitter and the receiver respectively. When normalized, $w^H w = M_t$ and $c^H c = M_r$. 
### Outline

1. **Introduction**
   - Overview of Wireless Personal Area Network (WPAN)
   - IEEE 802.11ad Standard

2. **System Model**
   - Channel Frequency Response
   - Optimization Criteria

3. **OFDM Based Beamforming**
   - Subcarrier-wise
   - Symbol-wise
   - Hybrid

4. **Numerical Results**
   - Link Level Simulation
   - Throughput Performance
   - Operation Range
Maximize the Received SNR on Each Subcarrier

Figure: Block diagram of subcarrier-wise beamforming

$$\gamma_{\text{eff,subcarrier}} = -\beta \ln \left[ \frac{1}{N} \sum_{m=1}^{N} \exp \left( -\frac{\max_{c,w} |c^H H_m w|^2}{\beta M_t M_r \sigma^2} \right) \right]$$
Maximize the Received SNR on Each Subcarrier

\[ \gamma_{\text{eff, subcarrier}} = -\beta \ln \left( \frac{1}{N} \sum_{m=1}^{N} \exp \left( -\frac{\max_{c,w} |c^H H_m w|^2}{\beta M_t M_r \sigma^2} \right) \right) \]

**Figure:** Block diagram of subcarrier-wise beamforming
Maximize the Received SNR on Each Subcarrier

Figure: Block diagram of subcarrier-wise beamforming

Optimal but not practical

- Need full channel state information
- Requires one FFT/IFFT processor per antenna
# Outline

<table>
<thead>
<tr>
<th>1</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overview of Wireless Personal Area Network (WPAN)</td>
</tr>
<tr>
<td></td>
<td>IEEE 802.11ad Standard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>System Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Channel Frequency Response</td>
</tr>
<tr>
<td></td>
<td>Optimization Criteria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>OFDM Based Beamforming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subcarrier-wise</td>
</tr>
<tr>
<td></td>
<td>Symbol-wise</td>
</tr>
<tr>
<td></td>
<td>Hybrid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Numerical Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Link Level Simulation</td>
</tr>
<tr>
<td></td>
<td>Throughput Performance</td>
</tr>
<tr>
<td></td>
<td>Operation Range</td>
</tr>
</tbody>
</table>
Each Subcarrier Applies the Same Weight Vector

**Figure**: Block diagram of symbol-wise beamforming

- Pre-defined beam codebook
  - Full channel state information is not required
  - Depends on the number of antenna elements and beams
Each Subcarrier Applies the Same Weight Vector

Figure: Block diagram of symbol-wise beamforming

Pre-defined beam codebook

- Full channel state information is not required
- Depends on the number of antenna elements and beams
Each Subcarrier Applies the Same Weight Vector

\[ \gamma_{\text{eff}, \text{symbol}} = \max_{c, w \in C} (-\beta) \ln \left( \frac{1}{N} \sum_{m=1}^{N} \exp \left( - \frac{|c^H H_m w|^2}{\beta M_t M_r \sigma^2} \right) \right) \]
Outline

1. Introduction
   - Overview of Wireless Personal Area Network (WPAN)
   - IEEE 802.11ad Standard

2. System Model
   - Channel Frequency Response
   - Optimization Criteria

3. OFDM Based Beamforming
   - Subcarrier-wise
   - Symbol-wise
   - Hybrid

4. Numerical Results
   - Link Level Simulation
   - Throughput Performance
   - Operation Range
Compromise the Complexity and Performance

Symbol-wise at Tx, and subcarrier-wise at Rx

- Optimal each receiver steering vector
- Also use pre-defined codebook
Compromise the Complexity and Performance

Figure: Block diagram of hybrid beamforming

Symbol-wise at Tx, and subcarrier-wise at Rx
- Optimal each receiver steering vector
- Also use pre-defined codebook
Compromise the Complexity and Performance

Figure: Block diagram of hybrid beamforming

\[ \gamma_{\text{eff, hybrid}} = \max_{w \in C} \left( -\beta \right) \ln \left[ \frac{1}{N} \sum_{m=1}^{N} \exp \left( -\frac{|c^H H_m w_{opt}|^2}{\beta M_t M_r \sigma^2} \right) \right] \]
Outline

1. Introduction
   - Overview of Wireless Personal Area Network (WPAN)
   - IEEE 802.11ad Standard

2. System Model
   - Channel Frequency Response
   - Optimization Criteria

3. OFDM Based Beamforming
   - Subcarrier-wise
   - Symbol-wise
   - Hybrid

4. Numerical Results
   - Link Level Simulation
   - Throughput Performance
   - Operation Range
Preliminaries

System assumptions

- $N=512$ OFDM subcarriers
- 1D half wavelength isotropic radiators
- $M = M_t = M_r$ antenna elements

Channel assumptions

- 60 GHz channel models
- Both LOS and NLOS
## Preliminaries

### System assumptions
- $N=512$ OFDM subcarriers
- 1D half wavelength isotropic radiators
- $M = M_t = M_r$ antenna elements

### Channel assumptions
- 60 GHz channel models
- Both LOS and NLOS
LOS Scenario

Evaluate beamforming performance

\[ G = \frac{\gamma_{\text{eff, beamforming}}}{\gamma_{\text{eff, SISO}}} \]

- Beamforming gain has a bound when single path exists.
- The performance difference is not noticeable, because the LOS component exists.

Figure: Beamforming gain with LOS
Introduction

System Model

OFDM Based Beamforming

Numerical Results

Summary

Link Level Simulation

LOS Scenario

Evaluate beamforming performance

\[ G = \frac{\gamma_{\text{eff, beamforming}}}{\gamma_{\text{eff, SISO}}} \]

- Beamforming gain has a bound when single path exists
- The performance difference is not noticeable, because the LOS component exists

Figure: Beamforming gain with LOS
NLOS Scenario

Evaluate beamforming performance

\[ G = \frac{\gamma_{\text{eff,beamforming}}}{\gamma_{\text{eff,SISO}}} \]

- Subcarrier-wise is the best, hybrid is the next and symbol-wise is the worst
- The more antenna elements, the higher improvement can be achieved by hybrid beamforming

Figure: Beamforming gain with NLOS
Outline

1. Introduction
   - Overview of Wireless Personal Area Network (WPAN)
   - IEEE 802.11ad Standard

2. System Model
   - Channel Frequency Response
   - Optimization Criteria

3. OFDM Based Beamforming
   - Subcarrier-wise
   - Symbol-wise
   - Hybrid

4. Numerical Results
   - Link Level Simulation
   - Throughput Performance
   - Operation Range
Throughput Performance

Bit Error Rate

Figure: BER for QPSK 1/2 with LOS

- A 2-by-2 antenna system is assumed
- The simulated BER performance verified the numerical results

Figure: BER for QPSK 1/2 with NLOS
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. <strong>Introduction</strong></td>
</tr>
<tr>
<td>- Overview of Wireless Personal Area Network (WPAN)</td>
</tr>
<tr>
<td>- IEEE 802.11ad Standard</td>
</tr>
<tr>
<td>2. <strong>System Model</strong></td>
</tr>
<tr>
<td>- Channel Frequency Response</td>
</tr>
<tr>
<td>- Optimization Criteria</td>
</tr>
<tr>
<td>3. <strong>OFDM Based Beamforming</strong></td>
</tr>
<tr>
<td>- Subcarrier-wise</td>
</tr>
<tr>
<td>- Symbol-wise</td>
</tr>
<tr>
<td>- Hybrid</td>
</tr>
<tr>
<td>4. <strong>Numerical Results</strong></td>
</tr>
<tr>
<td>- Link Level Simulation</td>
</tr>
<tr>
<td>- Throughput Performance</td>
</tr>
<tr>
<td>- Operation Range</td>
</tr>
</tbody>
</table>
Link Throughput in LOS

**Link Adaptation Scheme**

- The PHY mode with highest throughput will be selected:
  \[
  \text{Throughput} = R(1 - \text{PER})
  \]

- The throughput envelop is the ideal adaptive MCS based on the optimum switching point.

- At a certain SNR, beamforming systems offer higher throughput than SISO.

**Figure**: Link throughput with LOS
Introduction

System Model

OFDM Based Beamforming

Numerical Results

Summary

Operation Range

Link Throughput in LOS

Link Adaptation Scheme

- The PHY mode with highest throughput will be selected:

\[ \text{Throughput} = R(1 - \text{PER}) \]

- The throughput envelop is the ideal adaptive MCS based on the optimum switching point

- At a certain SNR, beamforming systems offer higher throughput than SISO

Figure: Link throughput with LOS
Link Throughput in NLOS

Link Adaptation Scheme

- The PHY mode with highest throughput will be selected:

\[ \text{Throughput} = R(1 - \text{PER}) \]

- Beamforming schemes do not improve the peak error-free throughput.

- More gain can be achieved for very high throughput (>4500 Mbps).

Figure: Link throughput with NLOS
Operation Range in LOS

Path Loss Model

\[ PL(dB) = A + 20 \log_{10}(f) + 10n \log_{10}(D) \]

- The system operates at its maximum throughput when the device are close
- Adaptively switch to the lower speed when a device moves further away

Figure: Operation range in LOS
**Operation Range in LOS**

### Link Budget Model

\[ P_T - PL \geq kTB + NF + \text{ReceiverSNR} \]

- The system operates at its maximum throughput when the device are close.
- Adaptively switch to the lower speed when a device moves further away.

**Figure:** Operation range in LOS
operation range in NLOS

Link Budget Model

\[ P_T - PL \geq kTB + NF + \text{ReceiverSNR} \]

- The SISO system could not provide service beyond 1m
- Subcarrier-wise and hybrid beamforming extend the achievable range significantly

Figure: Operation range in NLOS
Summary

- A performance evaluation of three types of MIMO schemes over the OFDM based 60 GHz WPAN are studied;
- STBC produces the best performance due to its robustness in all conditions;
- SM doubles the error-free data rate and increase the reliability for lower MCS modes;
- Beamforming increase the performance significantly. In NLOS, hybrid beamforming provide considerable improvements while maintaining reasonable hardware complexity.
Summary

- A performance evaluation of three types of MIMO schemes over the OFDM based 60 GHz WPAN are studied;
- STBC produces the best performance due to its robustness in all conditions;
- SM doubles the error-free data rate and increase the reliability for lower MCS modes;
- Beamforming increases the performance significantly. In NLOS, hybrid beamforming provide considerable improvements while maintaining reasonable hardware complexity.
A performance evaluation of three types of MIMO schemes over the OFDM based 60 GHz WPAN are studied;

- STBC produces the best performance due to its robustness in all conditions;
- SM doubles the error-free data rate and increase the reliability for lower MCS modes;
- Beamforming increase the performance significantly. In NLOS, hybrid beamforming provide considerable improvements while maintaining reasonable hardware complexity.
Summary

- A performance evaluation of three types of MIMO schemes over the OFDM based 60 GHz WPAN are studied;
- STBC produces the best performance due to its robustness in all conditions;
- SM doubles the error-free data rate and increase the reliability for lower MCS modes;
- Beamforming increase the performance significantly. In NLOS, hybrid beamforming provide considerable improvements while maintaining reasonable hardware complexity.
For Further Reading I

S. Yoon, et.al
Hybrid beam-forming and beam-switch for OFDM based WPAN

IEEE 802.11 Task Group AD
*IEEE 802.11-10/0433r2.*
May 2010.

A. Maltsev, et.al
*Channel models for 60 GHz WLAN systems.*
May 2010.
Thank you! and Questions?

or Email to <x.zhu@Bristol.ac.uk>