

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Short Stereoselective Synthesis of the Phytophthora Universal Mating Hormone Alpha 1 using Lithiation/Borylation Reactions

Alexander P. Pulis,* Philipp Fackler* and Varinder K. Aggarwal*

Abstract: Alpha 1, the universal mating hormone of the virulent plant pathogen, Phytophthora, has been synthesized in 12 steps and 28% overall yield. Key C–C bond forming steps involved the use of two lithiation/borylation reactions to couple together enantioenriched building blocks, one of which also set up the stereochemistry at C11. Detailed analysis showed that the diastereomeric purity of the target molecule was >91%, the highest obtained to date.

The fungus-like parasite, Phytophthora infestans, was responsible for the Irish potato famine in the mid 19th century, and continues to be responsible for billions of dollars worth of crop damage annually.[1,2] Control of this virulent plant pathogen is essential, and of increasing importance as food resources for a growing population become increasingly challenging to supply. Phytophthora reproduces by creating sexual spores called oospores, a process triggered by the universal hormone α1 (1, Figure 1). Although it had been proposed as early as 1929 that sexual reproduction in Phytophthora was induced by a hormone-like compound,[1] it was not until 2005 that the gross structure was reported after isolation of 1.2 mg of α1 from 1830 L of culture broth.[3] Vajima reported the first asymmetric synthesis of a stereoisomer library of α1 and concluded that the absolute stereoisomer library of α1 obtained to date.201

All syntheses involve coupling of enantioenriched building blocks. This inevitably leads to diastereomers, which are essentially impossible to separate due to the remoteness of the stereogenic centres and so are carried through. Based on the enantiomeric purity of the building blocks, the maximum isomeric purity of α1 obtained in previous total syntheses ranges from 80-90%, with 10-20% mixture of the remaining isomers. If these are divided into several diastereoisomers they may not be readily apparent during analysis, especially as some diastereoisomers are virtually identical, making isomeric purity difficult to assess. In this paper we report a short, highly stereoselective and convergent synthesis of α1 using our lithiation/borylation methodology.

Our retrosynthetic analysis of 1 involves lithiation/borylation disconnections between C3-C4 and C11-C12, leading to three key fragments: secondary boronic ester (BE) 2, bis-carbamate 3, and allylic BE 4 (Scheme 1). In particular, we envisaged that the bis-3 could be selectively lithiated at the allylic carbamate first and coupled with allylic BE 4, followed by a second lithiation and coupled with secondary BE 2.[7] If the fragments could be obtained in high er (≥99:1) then the diastereomeric purity of the product would be determined in the lithiation/borylation reaction of the allylic carbamate, a reaction which we had found to give ≥98:2 er.

Fragment 2 could be derived from the known β-BE 5 and vinyl BE 6. We anticipated that bis-carbamate 3 could be derived from enone 7 using Noyori’s Ru-catalyzed asymmetric hydrogenation,[13] which itself could be derived from citronellal. The third fragment, allylic BE 4, could be derived from allylic alcohol 8 via Pd catalysed borylation, which in turn could be synthesised from the known aldehyde 9.

Building block 2 was prepared as shown in Scheme 2. Cu-catalyzed conjugate borylation of ethyl but-2-ynoate followed by asymmetric conjugate reduction gave β-BE 5 in high yield (98%) and excellent en (99:1). Chemoselective reduction of the ester moiety in the presence of the boronic ester was achieved simply with a NaBH₄. Finally, TBDDS protection gave the desired secondary BE 2 in high yield (71% two steps), and 99:1 er.

The synthesis of the central fragment 3 began with Horner-Wadsworth-Emmons reaction between citronellal (99:1 er) and dimethyl (2-oxopropyl)phosphonate under Masamune-Roush conditions[10] giving enone 7 in 88% yield (Scheme 3). Selective ozonolysis of the electron rich trisubstituted olefin in 7 in the presence of the enone was achieved using pyridine as an additive.[11] In the presence of pyridine, the chemoselectivity of the reaction was easier to control and since ozonides are not intermediates in the ozonolysis it is safer too. Chemoselective reduction of the aldehyde with LiAlH₄(OrBu₃) gave the desired alcohol 10 in 74% yield from enone 7 in a one-pot operation.[12] Catalytic asymmetric hydrogenation of the enone moiety in 10 with Noyori’s (S,S)-11 catalyst[9] gave the desired diol 12 in 90% yield and 99:1 dr and >99:1 er. Finally, bis-carbamoylation with N,N-disopropyl carbamoyl chloride gave the desired bis-carbamate 3 in 94% yield.

The last of the key fragments was synthesised from known aldehyde 9 (>99:1 er), available in 3 steps from the Roche ester (Scheme 4).[13] Aldehyde 9 was treated with vinyl magnesium bromide to form the corresponding alcohol in 1:1 dr, >99:1 er and 68% yield. Following formation of carbonate 13, palladium catalyzed borylation with B₂(pin) gave the desired allylic BE 4 in high yield (83%) and er (>99:1).

With the key fragments in hand, we set about their union using our lithiation/borylation methodology. Thus treatment of bis-carbamate 3 with iBuLi/TMEDA effected chemoselective lithiation.
at the more acidic allylic carbamate and addition of the allylic BE 4 followed by warming and oxidation gave tertiary alcohol 14 in 81% yield and 97:3 dr (Scheme 5).[14]

Hydrogenation of the alkenes in 14 initially proved problematic as use of Pd/C led to a complex mixture of products, including possible epimerisation at C12, silyl deprotection and elimination of the tertiary alcohol. Using PdO₂ instead resulted in a much cleaner reaction giving the corresponding tertiary alcohol in high yield (98%) and without epimerisation at C12.[15]

Protection of the tertiary alcohol with TESCl gave carbamate 15, our precursor for the second and final lithiation/borylation reaction. However, under the standard condition (Et₂O, TMEDA, sBuLi, −78 °C, 5 h) we obtained a complex mixture of products. We suspected that lithiation might be the problem and so tested this part of the process by deprotonation and trapping with Me₂SnCl under a variety of conditions (Table 1). Under standard conditions [Et₂O/TMEDA (Entry 1)], we obtained a complex mixture of products as before. The use of TBME as solvent gave significantly improved results affording 40% of stannane 16 (Entry 2). Alternative diamines were then explored as they can have a major impact on the outcome of lithiation reactions. Whilst TMCDa gave similar results, use of the more hindered (−)-sparteine gave the stannane 16 in high yield (71%) together with recovered starting material 15 (22%) (Entry 3 and 4).[16,17]

Table 1. Optimization of conditions for lithiation of 15.[b]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Diamine</th>
<th>Yield of 16 / %[h]</th>
<th>Yield of 15 / %[h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1[b]</td>
<td>Et₂O</td>
<td>TMEDA</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>2[b]</td>
<td>TBME</td>
<td>TMEDA</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>3[b]</td>
<td>TBME</td>
<td>TMCDa</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>4[b]</td>
<td>TBME</td>
<td>(−)-sparteine</td>
<td>71</td>
<td>22</td>
</tr>
</tbody>
</table>

[b]Conditions: (R/S)-carbamate 15 (1 eq), diamine (2.1 eq), sBuLi (2 eq), −78 °C for 5 h, then CSnMe₃ (2.5 eq). [h]Isolated yield.

Using these conditions in the lithiation/borylation reaction with secondary BE 2 followed by oxidation gave the desired secondary alcohol in 72% yield together with recovered carbamate 15 in 24% (94% BRSM, Scheme 6). Oxidation of the secondary alcohol with Dess-Martin periodinane gave the known ketone[18] and subsequent deprotection with TBAF in AcOH/THF as described by Yajima[19] gave α₁ in high yield (83%). Its characterization data was identical with the reported data in every respect.

Based on the enantioemic purity of the building blocks the maximum isomeric purity of α₁ was calculated to be 96:4, considerably greater than any previous synthesis. In order to measure the isomeric purity, the bis-Moshers ester of α₁ was prepared and analysed according to Curran’s stereoisomer method.[16] The product was determined to be 95:5 at C3 (3R:3S) indicating that a small degree of epimerization at the labile C3 center had occurred during deprotection and 99:1 at C15 (15R:15S). The anti-syn (C3/C7) ratio was approximately 94:6 indicating that the C7 was 99:1 (7R:7S). Stereosomers at C11 was approximately 98:2 (11R:11S), consistent with the measured dr of intermediate 14. Thus, based on analysis of the bis-Moshers’ ester the overall diastereomeric purity of α₁ must be >91%, the highest measured to date.

In conclusion we have reported the shortest (12 steps, longest linear sequence), highest yielding (21.3% overall yield, (27.8% BRSM)[18] and most stereoselective synthesis (>91% diastereomeric purity) of the α₁ hormone by coupling together highly enantioenriched building blocks. Key steps involved two late stage lithiation/borylation reactions to couple the building blocks together, giving high diastereoregulation (97:3) at the difficult tertiary alcohol stereocentre. Our route enables the synthesis of significant quantities of α₁ (~100 mg was prepared) which should aid the study of Phytophthora reproduction.

Received: (will be filled in by the editorial staff) Published online on: (will be filled in by the editorial staff)

Keywords: natural products • total synthesis • lithiation • boron • asymmetric synthesis

[13] Using catalyst 11, reduction of the of the aldehyde-eneon obtained after ozonolysis (without the LiAlH₄/µBu; reduction step) was unsuccessful and gave a mixture of products.

[15] These results suggest that coordination of sBuLi to the carbonyl of the primary alkyl carbamate is reversible, allowing for complete lithiation at the α-oxygen allylic site. Reversibility in pre-lithiation complexes of alkyl carbamates has been noted by others, see M. J. McGrath, P. O’Brien, *Synthesis* 2006, 13, 2233.

4913; c) reference 4. The use of PtO₂ or Pt avoided epimerization; see reference 15a and 15b.

TES protection of the tertiary alcohol in 15 was important for high yields. Attempted double lithiation of the free tertiary alcohol (15 minus TES) with excess sBuLi under the optimised conditions from Table 1, Entry 4 gave 15% of the intended stannane and 60% recovered starting material.

We considered the use of hindered achiral diamines such as N,N-dibutyl bispidine as it has similar reactivity to (−)-sparteine with regard to lithiation efficiency: see M. J. McGrath, J. L. Bilke, P. O’Brien, Chem. Commun. 2006, 2607. However, N,N-dibutyl bispidine is not as available as (−)-sparteine.

Previous stereoselective syntheses range from 17-21 steps and 2-7% overall yield.

Figure 1. Structure of the **Phytophthora** universal mating hormone α1.

Scheme 1. Retrosynthetic analysis of 1. P = protecting group, pin = pinacol, Cb = N,N-diisopropyl carbamoyl.

Scheme 2. Synthesis of fragment 2. PMHS = polymethylhydrosiloxane, TBDPS = tert-butyldiphenylsilyl.

Scheme 3. Synthesis of bis-carbamate 3 from citronellal.

Scheme 4. Synthesis of boronic ester 4 from the Roche ester.

Scheme 5. Union of allylic boronic ester 4 and biscarbamate 3. TES = triethyl silyl.

Scheme 6. Coupling of boronic ester 2 with carbamate 12 and completion of the synthesis.
Short Stereoselective Synthesis of the Phytophthora Universal Mating Hormone Alpha 1 using Lithiation/Borylation Reactions

Alpha 1, the universal mating hormone of the virulent plant pathogen, Phytophthora, has been synthesized in 12 steps, and 28% overall yield. Key C-C bond forming steps involved the use of two lithiation/borylation reactions to couple together enantioenriched building blocks, one of which also set up the stereochemistry at C11. Detailed analysis showed that the diastereomeric purity of the target molecule was >91%, the highest obtained to date.