
Early version, also known as pre-print

Link to published version (if available): 10.1063/1.3592732

Link to publication record in Explore Bristol Research
PDF-document

Copyright 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Reduced dimensionality spin-orbit dynamics of \(\text{CH}_3 + \text{HCl} \rightleftharpoons \text{CH}_4 + \text{Cl} \) on \emph{ab initio} surfaces.

Sarah M. Remmert,1, a) Simon T. Banks,2 Jeremy N. Harvey,3 Andrew J. Orr-Ewing,3 and David C. Clary1, b)
1) Department of Chemistry, University of Oxford, PTCL, South Parks Road, Oxford, OX1 3QZ, U.K.
2) Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.
3) School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K.
(Dated: 11th April 2011)

A reduced dimensionality quantum scattering method is extended to the study of spin-orbit nonadiabatic transitions in the \(\text{CH}_3 + \text{HCl} \rightleftharpoons \text{CH}_4 + \text{Cl} \) reaction. Three two-dimensional potential energy surfaces are developed by fitting a 29 parameter double-Morse function to CCSD(T)/IB//MP2/cc-pV(T+d)Z-dk \emph{ab initio} data; interaction between surfaces is described by geometry-dependent spin-orbit coupling functions fit to MCSCF/cc-pV(T+d)Z-dk \emph{ab initio} data. Spectator modes are treated adiabatically via inclusion of curvilinear projected frequencies. The total scattering wavefunction is expanded in a vibronic basis set and close-coupled equations are solved via R-matrix propagation. Ground state thermal rate constants for forward and reverse reactions agree well with experiment. Multi-surface reaction probabilities, integral cross sections, and initial-state selected branching ratios all highlight the importance of vibrational energy in mediating nonadiabatic transition. Electronically excited state dynamics are seen to play a small but significant role as consistent with experimental conclusions.

I. INTRODUCTION

Reactions involving hydrogen transfer between chlorine radicals and hydrocarbon molecules are widely studied both theoretically and experimentally. In particular, the reaction processes:

\begin{align*}
\text{HCl} + \text{CH}_3 & \rightarrow \text{Cl}(2P_J) + \text{CH}_4 & \text{(1)} \\
\text{Cl}(2P_J) + \text{CH}_4 & \rightarrow \text{HCl} + \text{CH}_3 & \text{(2)}
\end{align*}

have been the focus of intense investigation. Accurate description of reaction (2) is essential in polar atmospheric chemistry; it is a major sink for chlorine radicals and hinders competing processes which lead to the degradation of the stratospheric ozone.1–3 Hence, knowledge of the reaction rate at low temperatures is necessary for modelling ozone depletion.4 Conversely, the reaction can also be viewed as a major sink for the greenhouse gas methane, second to the destruction of methane via reaction with the OH radical.5 Furthermore, it is hypothesised that reaction (2) is essential in interpreting the combustion of chlorinated hydrocarbons – a topic necessary for understanding the consequences of toxic waste incineration.6

In addition to its physical importance, this reaction has emerged in the laboratory as a prototype for understanding the basic principles of polyatomic reaction dynamics. Numerous sophisticated experimental and theoretical studies have been performed in recent years, designed not only to measure forward and reverse reaction rates, but to probe in detail the transfer of internal and kinetic energy for the ground state reaction. Reaction (2) is mildly endothermic7,8 with a late (product-like) transition state.9 \(C_{3v} \) symmetry10,11 and a collinear angle of abstraction (Cl–H–C) are maintained along the reaction path.7,10,12,13 Steric hindrance is expected to have a significant effect with a tight TS structure;14 the experimental pre-exponential factor (1 × 10–11 cm molecule–1 s–1) is approximately 30 times less than that of the hard sphere collision rate.15 Furthermore, due to the heavy-light-heavy (HLH) nature of this system, quantum effects such as oscillating reactivity and resonances govern the kinetics and dynamics.11,16 Quasi-bound states in the TS region have been predicted17 corresponding to HLH “chattering” of the light atom.16 Thermal rate constant data shows significant curvature of the Arrhenius plot, further emphasizing the need for a quantum mechanical treatment.15,18

In general, two reaction mechanisms have been characterized.19 Small impact parameter (b) collisions produce backwards scattered products in a rebound mechanism.7,16 Peripheral (high b) collisions lead to a so-called “stripping” mechanism with a more forward scattered distribution.7,16,20 especially at high collision energies.17,21,22 Reaction (2) is preferentially enhanced by excitation in both the C–H symmetric stretch and the umbrella excitation of the \(\text{CH}_4 \) group, whereas reaction (1) is enhanced by excitation of the H–Cl vibration but decreased by umbrella excitation of the \(\text{CH}_4 \).23–25 Intramolecular vibrational redistribution is thought to be significant;26 the reaction path coordinate couples to the \(\text{CH}_4 \) symmetric stretch and umbrella mode in the Cl + \(\text{CH}_4 \) channel24,27 and to the H–Cl stretch and \(\text{CH}_4 \) bending modes in the HCl + \(\text{CH}_4 \) channel.27 One would expect coupling between bending and stretch motions to significantly influence the reaction.

Though studies have primarily focused on the ground state, several recent experiments have investigated the

a) Electronic mail: smremmert@gmail.com
b) Electronic mail: david.clary@chem.ox.ac.uk
role of nonadiabatic processes involving the spin-orbit state \(\text{Cl}^2P_\frac{1}{2} \). Liu et al. have characterized the reactions \(\text{Cl}^2P_\frac{1}{2} + \text{CH}_3 \) \(^{28}\) and \(\text{Cl}^2P_\frac{1}{2} + \text{CH}_2\text{D}_2 \) \(^{29}\) confirming the small but significant contribution to reaction of spin-orbit excited states\(^{29}\) and noting in both studies the production of vibrationally excited HCl (\(v = 1 \)). Orr-Ewing and coworkers have instead quantified production of \(\text{Cl}^2P_\frac{1}{2} \) from the reaction \(\text{CH}_3 + \text{HCl} \)\(^{30–33}\) the nonadiabatic branching ratio was found to be \(\Gamma = 0.14 \pm 0.02 \) (at an average collision energy of 22.3 kcal mol\(^{-1}\)).\(^{32}\) Both forward and reverse experiments indicated a two-step mechanism for nonadiabatic transition, leading to similar dynamics for ground and excited state processes.\(^{28,31}\) Direct comparison between these experiments is difficult given different initial vibrational distributions; experiments for \(\text{CH}_3 + \text{HCl} \) contain umbrella excited \(\text{CH}_3 \) radicals with a vibrationally cold HCl distribution, whereas the experiments probing reaction (2) yield stretch excited HCl.

Nonadiabatic effects in triatomic \(\text{X} + \text{H}_2 \) reactions have been well characterized (\(\text{X}=\text{Cl},^{34–39} \text{X}=\text{F},^{40–43} \text{X}=\text{Br}^{44–46} \)). Generally, \(\text{X}^2P_\frac{1}{2} + \text{H}_2 \) reactions were found to be a small but significant reaction pathway, accounting for approximately 10\% (\(\text{Cl}^{45,37} \)), 10-25\% (\(\text{F}^{40,41} \)), or 10-40\% (\(\text{Br}^{44,46} \)) of total reactivity. Several studies also noted the release or excitation of one quantum of \(\text{H}–\text{H} \) stretch associated with nonadiabatic transition.\(^{45,46}\)

Multiple-surface quantum scattering studies of polyatomic collisions have been rare due to computational limitations: investigation of atom + molecule systems such as \(\text{O}^3P + \text{CH}_3 \rightarrow \text{CH}_3\text{O} \) have required reduced dimensionality (RD) approximations and surface coupling simplifications to achieve computational feasibility.\(^{47}\) Despite the detailed experimental work for the title reaction, to the best of our knowledge no multi-surface characterisation has been performed, leaving several remaining questions regarding nonadiabatic properties. The extent and location of nonadiabatic transition, the mechanism of nonadiabatic coupling and the role of vibrational motion in mediating nonadiabatic reaction are all addressed in this study in an attempt to bridge the gap between forward and reverse experimental results.

A full dimensional treatment of the title reaction would be challenging for a ground state study, but the problem becomes prohibitively large in considering multiple electronic surfaces. The current approach makes use of a two-dimensional time-independent quantum scattering method derived from the bending corrected rotating linear model (BCRLM) of Walker and Hayes,\(^{48}\) combined with an analytical potential energy surface (PES) fit to high-level \(\text{ab initio} \) data.\(^{49}\) Internal degrees of freedom (DOF) are divided into two active modes explicitly treated in the quantum scattering, and \(3N–8 \) spectator modes, which are approximately treated via inclusion of curvilinear-projected zero-point energies (ZPE) in the PES.\(^{50,51}\) Variants of this approach have been successfully applied to a number of ground state reactions,\(^{49,52–56} \) including \(\text{Cl} + \text{CH}_4 \rightarrow \text{HCl} + \text{CH}_3 \).\(^{11}\) In this paper, the method is extended to include multi-surface characterization of nonadiabatic transitions.

This paper is organized as follows. In section II, the multi-surface reaction model is discussed in the diabatic representation and the hyperspherical coordinate system is introduced. In section III, the energetic properties, \(\text{ab initio} \) calculations, and development of potential energy surfaces are discussed. Section IV presents the solution of the quantum scattering equations while sections V and VI discuss scattering in the single and multi-surface representations, respectively. General conclusions are given in section VII.

II. BACKGROUND THEORY

A. Approximate diabatic representation

Diabatic and adiabatic representations may be used to solve multi-surface time-independent quantum scattering problems, differing in the choice of electronic basis set.\(^{57}\) The diabatic representation involves choosing electronic basis functions such that the nonadiabatic coupling terms in the kinetic energy operator (KEO) are sufficiently small in comparison to the coupling in the electronic Hamiltonian that they can be neglected in scattering calculations.\(^{58}\) This advantage is countered by the difficulty in obtaining diabatic surfaces, which must be generated by a non-unique unitary transformation of the adiabatic potentials.\(^{57}\) In a detailed diabatic representation, off-diagonal coupling terms include all nuclear and electronic angular momenta couplings, such as spin-orbit, electronic, rotational, and Coriolis couplings.\(^{59}\) In the current study an approximate diabatic basis is implemented by assuming spin-orbit coupling (SOC) dominates the coupling terms.\(^{58}\) This results in a potential matrix where the diagonal terms are the spin-free electronic energies and the off-diagonal terms are the SOC constants, both of which can be generated from \(\text{ab initio} \) calculations. Hereafter all references to the diabatic representation refer to this approximate approach.\(^{58}\)

B. Multi-surface reaction model

The title reaction system contains three, two-fold degenerate potential energy surfaces (PES); the two-fold degeneracy arises from the spin states of the unpaired electron in the valence p-shells of the Cl radical. In the diabatic, \(C_{3v} \) symmetric representation, all three states are degenerate in the asymptotic limit of infinite separation of the Cl atom from methane. The ground state reaction occurs along the doubly-degenerate \(\text{A}_1 \) potential (\(1\text{A}' \) in \(C_s \) symmetry). The four-fold degenerate E potential (\(2\text{A}'' + 1\text{A}' \) in \(C_s \) symmetry) correlates instead to excited state \(\text{HCl} + \text{CH}_3 \), which are sufficiently high in
energy to be negligible in the study of low to moderate collision energy dynamics. Complexity arises when SOC splits the degeneracy of the asymptotic states into the four-fold degenerate Cl (2P2) ground state and the two-fold degenerate (2P4) excited state, as shown in Figure 1. In the asymptotic limit, the splitting between the states equals $\Delta E_{\text{SOC}} = 882 \text{ cm}^{-1}$, the spin-orbit splitting of the Cl atom.60 The two lower diabatic surfaces decrease by 1/3 of ΔE_{SOC}, whereas the upper state increases by 2/3 of the same value. Due to this energy splitting, any reaction from (to) Cl (2P4)+ CH$_4$ to (from) ground state HCl+CH$_3$ must involve a nonadiabatic transition, which occurs in the Cl + CH$_4$ channel. A primary interest of multi-surface scattering calculations is understanding these nonadiabatic interactions. (In all subsequent discussions, Cl (2P4) will be abbreviated as Cl*; Cl (2P2) as Cl.)

\begin{center}
\includegraphics[width=\textwidth]{fig1.png}
\end{center}

Figure 1. Diagram of the three HCl+CH$_3$ ⇔ Cl+CH$_4$ potential energy surfaces as a function of reaction coordinate. The two excited states in the diabatic representation break degeneracy due to spin-orbit coupling in the adiabatic representation, leading to a four fold degenerate ground state and a two fold degenerate excited state split by 882 cm$^{-1}$.

C. Hyperspherical Coordinates

Hyperspherical coordinates are used, allowing for a smooth description of the reaction surface from reactants to products without requiring coordinate matching procedures.61-64 These coordinates are particularly suited to the study of HLH systems, which are characterized by large skewing angles with greater separability of motion between the ρ and δ coordinates.65

Product Jacobi coordinates are defined by approximating Cl + H–C–H$_3$ as a pseudo tetra-atomic system: R is defined as the centre of mass (COM) distance between fragments Cl-H and CH$_3$, while r is the distance between Cl and the abstracted atom, H$_a$ (Figure 2(a)). For large separations, R roughly corresponds to the translational motion of the HCl towards CH$_3$, whereas the r correlates to the vibrational motion of the H–Cl bond. The reduced mass definitions

\begin{equation}
M_1 = m_{\text{HCl}} m_{\text{CH}_3} / m_{\text{tot}}
\end{equation}

\begin{equation}
M_2 = m_{\text{CH}_4} m_{\text{HCl}} / m_{\text{tot}}
\end{equation}

\begin{equation}
M_3 = m_{\text{HCl}} m_{\text{CH}_3} / m_{\text{tot}}
\end{equation}

\begin{equation}
\mu = (M_1 M_2 M_3)^{1/3}
\end{equation}

are used to define the hyperspherical radius, ρ and angle, δ by11,49,55,66

\begin{equation}
\frac{M_1}{\mu} R^2 = \left[\rho \cos(\delta) \right]^2
\end{equation}

\begin{equation}
\frac{M_2}{\mu} r^2 = \left[\rho \sin(\delta) \right]^2.
\end{equation}

The maximum value of the hyperangle (skewing angle) is defined according to

\begin{equation}
\delta_{\text{max}} = \tan^{-1} \left[\frac{m_{\text{HCl}} m_{\text{tot}}}{m_{\text{HCl}} m_{\text{CH}_3}} \right].
\end{equation}

Large δ values correspond to the Cl+CH$_4$ channel; small δ values the CH$_3$ + HCl channel.

III. SYSTEM ENERGETICS

A. Basis Set Tests

Basis set tests were performed in order to determine the most appropriate method for development of the ground and excited state diabatic PESs (Table I). All \textit{ab initio} calculations in this study were performed using the Molpro electronic structure package.67 Geometry calculations were performed at the MP2 level of theory; CCSD(T) was used for single point energy calculations, with correlation consistent basis sets cc-pV(X+d)Z-dk (X = T, Q), where (+d) indicates additional d-polarization functions for the Cl atom68,69 and (-dk) refers to the use of Douglas-Kroll scalar relativistic basis sets. In Table I, basis sets are indicated by order X//X', where geometries were computed at the X' level with X energy corrections, and where [T,Q]//X notation indicates geometries at the X level with two-point (T-Q) basis set extrapolated energies determined via the method of Halkier et al.70

In general, it was found that increasing the order of the basis set decreases the forward and reverse barrier heights and reaction energies. The Q//T vibrationally corrected reverse reaction barrier height (3.57 kcal mol$^{-1}$) compares favorably to CCSD(T)/aug-cc-pVTZ and CCSD(T)/aug-cc-pVQZ//CCSD(T)/aug-cc-pVTZ results of Troya et al.41 which were found to be 3.64 and 3.06 kcal mol$^{-1}$, respectively. Geometry calculations with a Q basis were prohibitively expensive for surface development. Therefore, \textit{ab initio} surfaces were
Table I. Basis set tests for reaction HCl + CH$_3$ \rightleftharpoons Cl + CH$_4$. CCSD(T) relative energies in kcal mol$^{-1}$; vibrationally corrected barrier heights shown in parentheses.

<table>
<thead>
<tr>
<th>Seriesa</th>
<th>ΔV_r</th>
<th>ΔE</th>
<th>ΔV_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>T//T</td>
<td>9.41 (5.12)</td>
<td>-7.04 (-1.92)</td>
<td>2.37 (3.19)</td>
</tr>
<tr>
<td>Q//Q</td>
<td>7.86 (3.80)</td>
<td>-5.93 (-1.08)</td>
<td>1.93 (2.72)</td>
</tr>
<tr>
<td>Q//T</td>
<td>7.86 (3.57)</td>
<td>-5.92 (-0.79)</td>
<td>1.96 (2.78)</td>
</tr>
<tr>
<td>[T, Q]/T</td>
<td>6.88 (2.57)</td>
<td>-5.33 (-0.21)</td>
<td>1.55 (2.37)</td>
</tr>
<tr>
<td>[T, Q]/Q</td>
<td>6.86 (2.80)</td>
<td>-5.34 (-0.48)</td>
<td>1.52 (2.32)</td>
</tr>
</tbody>
</table>

a ΔV_r is the reverse barrier height, ΔE is the reaction energy (products – reactants) and ΔV_f is the forward barrier height. Numbers in parentheses indicate zero-point corrected energies.

Table II. TS geometric parameters at MP2/cc-pV(T+d)Z-dk level of theory. Stationary point moments of inertia in amu\timesbohr2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bond length / nm</th>
<th>Parameter</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl–H$_a$</td>
<td>1.45</td>
<td>C–H$_a$–Cl</td>
<td>180°</td>
</tr>
<tr>
<td>H$_a$–C</td>
<td>1.36</td>
<td>H–C–H</td>
<td>116.1°</td>
</tr>
<tr>
<td>H–C</td>
<td>1.08</td>
<td>H–C–H$_a$</td>
<td>101.6°</td>
</tr>
<tr>
<td>Species</td>
<td></td>
<td>I_a</td>
<td>I_b</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>6.23</td>
<td>6.23</td>
<td>12.46</td>
</tr>
<tr>
<td>HCl</td>
<td>5.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>12.10</td>
<td>314.65</td>
<td>314.65</td>
</tr>
</tbody>
</table>

- ΔV_r is the reverse barrier height, ΔE is the reaction energy (products – reactants) and ΔV_f is the forward barrier height. Numbers in parentheses indicate zero-point corrected energies.

B. Stationary Points

Ground state stationary point geometries and frequencies were calculated at the MP2-cc-pV(T+d)Z-dk level of theory. The transition state (TS) and reactant/product geometries are shown in Figures 2(a) and 2(b), respectively; it was found that the reactant and product bond lengths accurately reproduce experimental values72,73.

TS geometries and stationary point moments of inertia are given in Table II; the TS possesses a collinear geometry as consistent with the assumptions of this study (Figure 2(a)). Intrinsic reaction coordinate (IRC) calculations performed at the same level of theory also confirmed the presence of a collinear, C_{3v} symmetric reaction path. Stationary point frequencies are given in Table III.

C. Grid Development and Frequency Projection

A grid of ab initio data for the PES was generated by performing partial geometry optimizations at MP2/cc-pV(T+d)Z-dk level of theory, where bond lengths pertaining to the active coordinates (H$_a$–C and Cl–H$_a$) were held fixed and spectator DOF were allowed to relax. Frequency calculations were performed at each grid point. Ground state (A_1) frequencies were assumed to be valid for the excited E surfaces in the Cl+CH$_4$ channel, where behavior on both diabatic surfaces should be very similar. Preliminary tests showed that the reaction maintained a collinear Cl–H$_a$–C angle across the grid, and therefore C_{3v} symmetry was enforced in the calculations. Data points were computed from $\delta_{\min} = 0$ to δ_{\max} and from $\rho \sim 7$ au to $\rho \sim 21$ au. Hyperspherical coordinates were recomputed following COM changes post-optimization. Due to the different symmetries of the ground (A_1/A') and excited (E/A'') electronic states, energy corrections were performed using single reference approaches: CCSD(T)/IB and CCSD(T)/cc-pV(Q+d)Z-dk. Surfaces were generated for both ab initio methods; the majority of the results presented in this paper were generated with the higher level IB surface.

Spectator modes were treated approximately via ad-
Table III. Harmonic frequencies for stationary points at the MP2/cc-pV(T+d)-Z-dk level, in cm$^{-1}$. Transition state frequencies are given prior to (pre) and following (post) curvilinear projection of explicitly treated vibrational modes.

<table>
<thead>
<tr>
<th>CH$_3$HCl</th>
<th>CH$_4$</th>
<th>TS (pre)</th>
<th>TS (post)</th>
</tr>
</thead>
<tbody>
<tr>
<td>486.0</td>
<td>3054.3</td>
<td>1349.6</td>
<td>1232.5i</td>
</tr>
<tr>
<td>1445.4</td>
<td>1349.7</td>
<td>324.5</td>
<td>324.5</td>
</tr>
<tr>
<td>1445.7</td>
<td>1349.7</td>
<td>334.1</td>
<td>336.7</td>
</tr>
<tr>
<td>3177.9</td>
<td>1586.3</td>
<td>512.1</td>
<td></td>
</tr>
<tr>
<td>3368.7</td>
<td>1586.4</td>
<td>959.4</td>
<td>888.1</td>
</tr>
<tr>
<td>3368.7</td>
<td>3075.7</td>
<td>965.3</td>
<td>965.3</td>
</tr>
<tr>
<td>3211.3</td>
<td>1214.0</td>
<td>973.3</td>
<td></td>
</tr>
<tr>
<td>3211.3</td>
<td>1442.7</td>
<td>1433.7</td>
<td></td>
</tr>
<tr>
<td>3211.3</td>
<td>1446.6</td>
<td>1446.6</td>
<td></td>
</tr>
<tr>
<td>3127.0</td>
<td>3113.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3294.7</td>
<td>3294.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3127.0</td>
<td>3113.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3294.7</td>
<td>3127.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3296.3</td>
<td>3296.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

olution of zero-point energy to the potential; the spectator mode ZPE was determined by projecting the two active modes from the Hessian prior to diagonalization. Previous studies have shown that the curvilinear projection method50,51 is an improvement upon the rectilinear scheme;14 the latter was shown to result in the unphysical loss of vibrational energy due to the introduction of large post-projection imaginary frequencies.50,51 Both methods were implemented in the current study; curvilinear coordinates were defined in terms of 5 bonds, 5 angles, and one doubly-degenerate linear angle bend. The curvilinear method was chosen as it significantly reduced the number of post-projection imaginary frequencies, though some remained and were set to zero. Curvilinear projection of the TS frequencies is shown in Table III.

The active modes are the reaction coordinate at 1232i cm$^{-1}$, (hydrogen chattering of the transferring hydrogen with some umbrella-like bending motion of the CH$_3$ group) and the mode at 512 cm$^{-1}$ (heavy atom breathing of the Cl and CH$_4$ groups). There is a small degree of coupling between the spectator and active modes as observed by post-projection decrease of the modes at 1214, 959.4, 3296.3 and 3127 cm$^{-1}$ by 19.8%, 7.4%, 0.6% and 0.4%, respectively, amounting to a loss of 334.1 cm$^{-1}$ of vibrational energy at the TS. The largest coupling is due to the umbrella mode at 1214 cm$^{-1}$ and it is likely that this coupling remains important along the reaction path.

D. Potential Energy Surfaces

The potential matrix, $V(\rho, \delta)$, is constructed from four ab initio surfaces, namely the ground diabatic state $V_{d}^{A_1}(\rho, \delta)$, the degenerate excited diabatic states $V_{E}^{E}(\rho, \delta)$, the SOC potential between the A_1 and E states (A), and the SOC between the degenerate E states (B).

Diagonalization of the potential matrix at each geometry (indicated below by an arrow) yields eigenvalues corresponding to the ground ($V_{d}^{A_1}$) and excited (V_{E}^{E}, V_{E}^{E}) adiabatic potential surfaces that explicitly include the effects of SOC. SOC increases the reverse barrier height of $V_{d}^{A_1}$ relative to $V_{A_1}^{d}$, and splits the degeneracy of the excited diabatic surfaces into V_{E}^{E} and V_{E}^{E}, which correlate asymptotically to Cl + CH$_4$ and Cl$^+$ + CH$_4$, respectively.

$$V(\rho, \delta) = \begin{bmatrix} V_{d}^{A_1} & A & A & A \\ V_{E}^{E} & B & A & B \\ V_{E}^{E} & B & A & B \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} V_{A_1}^{d} & 0 & 0 & 0 \\ 0 & V_{E}^{E} & 0 & 0 \\ 0 & 0 & V_{E}^{E} \end{bmatrix}$$

1. Diabatic surfaces.

Diabatic potential energy surfaces were constructed by fitting the following analytical 29-parameter double-Morse function to ab initio spin-free electronic energies and spectator ZPE corrections:

$$V(\rho, \delta) = f_1 \left((1 - \exp(g_1 \delta + h_1))^2 - c_{14} \right) + f_2 \left((1 - \exp(- (g_2 \delta + h_2))^2 - c_{28} + c_{29} \right)$$

where

$$f_1 = (1 + c_{11} \rho^2 \exp(c_{31} \rho)) c_4$$

$$f_2 = (1 + c_{15} \rho^6 \exp(c_{17} \rho)) c_{18}$$

$$g_1 = c_5 + c_6 \rho + c_7 \rho^2$$

$$g_2 = c_{19} + c_{20} \rho + c_{21} \rho^2$$

$$h_1 = c_8 + c_9 \rho + c_{10} \rho^2 - \log(c_{11} + c_{12} \rho + c_{13} \rho^2)$$

$$h_2 = c_{22} + c_{23} \rho + c_{24} \rho^2 + \log(c_{25} + c_{26} \rho + c_{27} \rho^2)$$

Initial parameters for the A_1 fit were taken from reference11, adjusted for high energy limits and modified by a nonlinear least squares regression (lsqcurvefit in Matlab75). The surface fitting toolbox75 was used to identify outliers for low-energy fitting. Parameters for the E surfaces were similarly determined. To reproduce the ab initio degeneracy of the A_1 and E surfaces in the asymptotic Cl + CH$_4$ channel, asymptotic grid points (0.21 rad $< \delta < \delta_{\text{max}}$; 14 au $< \rho < 21$ au) evaluated from the final A_1 surface were included in the fit. E surfaces were fit for 0.16 rad $< \delta < \delta_{\text{max}}$, but for δ_{max} extend smoothly to collision energies too high to be of influence in the current study. The parameters for the A_1 and E surfaces are given in Table IV; the surfaces are valid for $8 \leq \rho \leq 16$ au.

The main results of this study are presented for the IB surface. The $V_{d}^{A_1}$ TS slightly favors the HCl + CH$_4$ channel and there is evidence of shallow van der Waals minima, especially in the Cl + CH$_4$ channel. A contour diagram of the overlap of $V_{d}^{A_1}$ and V_{E}^{E} shows that the excited diabatic states are much higher in energy than
Table IV. PES parameters for the IB and the Q//T surfaces. The number of ab initio grid points (#) and the sum of squared residuals (SSR / au2) are given for each surface. The total number of grid points including evaluated data is shown in parenthesis.

<table>
<thead>
<tr>
<th>#</th>
<th>A$_t$ (IB)</th>
<th>E (IB)</th>
<th>A$_t$</th>
<th>Q//T</th>
<th>E Q//T</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>33.333456</td>
<td>34.1142578</td>
<td>33.7091791</td>
<td>33.7104657</td>
<td></td>
</tr>
<tr>
<td>c3</td>
<td>-0.2885825</td>
<td>-0.2942490</td>
<td>-0.2984860</td>
<td>-0.3120208</td>
<td></td>
</tr>
<tr>
<td>c4</td>
<td>0.3394559</td>
<td>0.5232066</td>
<td>0.3408111</td>
<td>0.4585513</td>
<td></td>
</tr>
<tr>
<td>c6</td>
<td>-0.5922270</td>
<td>-0.1850375</td>
<td>-0.6199417</td>
<td>-0.1178049</td>
<td></td>
</tr>
<tr>
<td>c7</td>
<td>0.0472629</td>
<td>0.0311757</td>
<td>0.0475726</td>
<td>0.0287326</td>
<td></td>
</tr>
<tr>
<td>c8</td>
<td>3.9441463</td>
<td>4.5762280</td>
<td>3.8801101</td>
<td>4.6149913</td>
<td></td>
</tr>
<tr>
<td>c9</td>
<td>0.1981337</td>
<td>0.0718168</td>
<td>0.2009703</td>
<td>0.0489267</td>
<td></td>
</tr>
<tr>
<td>c10</td>
<td>-0.0127305</td>
<td>-0.0080245</td>
<td>-0.0127017</td>
<td>-0.0072190</td>
<td></td>
</tr>
<tr>
<td>c11</td>
<td>52.623549</td>
<td>53.4881748</td>
<td>52.8669044</td>
<td>53.3500438</td>
<td></td>
</tr>
<tr>
<td>c12</td>
<td>251.7135322</td>
<td>253.0952975</td>
<td>252.1119879</td>
<td>252.6919904</td>
<td></td>
</tr>
<tr>
<td>c13</td>
<td>28.8394669</td>
<td>17.5819660</td>
<td>27.9679782</td>
<td>21.1239275</td>
<td></td>
</tr>
<tr>
<td>c14</td>
<td>12.6212925</td>
<td>17.6900944</td>
<td>12.6352265</td>
<td>16.1588000</td>
<td></td>
</tr>
<tr>
<td>c15</td>
<td>133.5273496</td>
<td>135.5749967</td>
<td>133.4455715</td>
<td>135.0406265</td>
<td></td>
</tr>
<tr>
<td>c16</td>
<td>-5.4643681</td>
<td>-5.3084989</td>
<td>-5.4623009</td>
<td>-4.9110332</td>
<td></td>
</tr>
<tr>
<td>c17</td>
<td>0.2449930</td>
<td>0.1591238</td>
<td>0.2436439</td>
<td>0.0536798</td>
<td></td>
</tr>
<tr>
<td>c18</td>
<td>0.3523492</td>
<td>0.5038674</td>
<td>0.3520120</td>
<td>0.4571251</td>
<td></td>
</tr>
<tr>
<td>c19</td>
<td>12.302295</td>
<td>16.7745072</td>
<td>12.9251918</td>
<td>17.4120446</td>
<td></td>
</tr>
<tr>
<td>c20</td>
<td>0.9458117</td>
<td>-0.1866372</td>
<td>0.8561841</td>
<td>-0.1331262</td>
<td></td>
</tr>
<tr>
<td>c21</td>
<td>-0.0257643</td>
<td>-0.0025329</td>
<td>-0.0022855</td>
<td>-0.0019515</td>
<td></td>
</tr>
<tr>
<td>c22</td>
<td>-7.2062625</td>
<td>-7.1338497</td>
<td>-7.5700022</td>
<td>-6.8890311</td>
<td></td>
</tr>
<tr>
<td>c23</td>
<td>-0.0440650</td>
<td>-0.1630802</td>
<td>-0.0180181</td>
<td>-0.1982455</td>
<td></td>
</tr>
<tr>
<td>c24</td>
<td>0.0033420</td>
<td>0.0033680</td>
<td>0.0019791</td>
<td>0.0066089</td>
<td></td>
</tr>
<tr>
<td>c25</td>
<td>-88.3174186</td>
<td>-83.5555132</td>
<td>-87.2607480</td>
<td>-83.8842875</td>
<td></td>
</tr>
<tr>
<td>c26</td>
<td>31.8401457</td>
<td>42.0972039</td>
<td>34.5437230</td>
<td>42.2120505</td>
<td></td>
</tr>
<tr>
<td>c27</td>
<td>-0.8966595</td>
<td>1.6052569</td>
<td>-0.8172013</td>
<td>0.3440786</td>
<td></td>
</tr>
<tr>
<td>c28</td>
<td>-122.3617359</td>
<td>-120.3096212</td>
<td>-122.9947167</td>
<td>-121.4651824</td>
<td></td>
</tr>
<tr>
<td>c29</td>
<td>-540.7761851</td>
<td>-553.1711714</td>
<td>-540.9150587</td>
<td>-549.8423194</td>
<td></td>
</tr>
<tr>
<td>SSR</td>
<td>2.2×10^{-4}</td>
<td>2.2×10^{-3}</td>
<td>2.2×10^{-4}</td>
<td>1.6×10^{-4}</td>
<td></td>
</tr>
</tbody>
</table>

The number of ab initio grid points (#) and the sum of squared residuals (SSR / au2) are given for each surface. The total number of grid points including evaluated data is shown in parenthesis.

The geometry-dependent SOC terms were calculated as perturbations to the spin-free Hamiltonian at the MCSCF/cc-pVTZ level of theory in Molpro and scaled by the ratio of the experimental to ab initio SOC for the Cl atom (1.05687). The ab initio SOC terms were found to remain fairly constant across the Cl + CH$_4$ channel but to decrease quickly with δ and ρ in the interaction region. A was found to change more as a function of geometry than B; the 8-parameter analytical function

$$A/B(\rho, \delta) = \frac{c_1}{(c_2 \rho + c_3 \delta)^2} + c_8$$

was fit to ab initio data for both constants for 0.15 rad $\leq \delta \leq \delta_{\text{max}}$ via nonlinear least squares regression (lsqcurvefit in Matlab). For $\delta \leq 0.15$ rad, the functions were set to zero, reflecting the abrupt decrease in magnitude of the ab initio constants. This discontinuity has negligible effect. The diabatic excited state is much higher in energy than the ground state at this geometry making the possibility of a transition highly unlikely. The A and B surface parameters are given in Table V.

3. Surface characterisation.

The minimum energy path (MEP) of the six diabatic and adiabatic surfaces in the Cl + CH$_4$ channel is shown as a function of ρ in Figure 4, for the IB surface. The final sector ($\rho = 16$ au) diabatic surfaces are approximately degenerate as consistent with the model. Relative to the $V^d_{A_1}$ potential, $V^d_{A_1}$ and $V^d_{E_{\text{ab}}}$ are on average shifted down by $\sim 1/3$ (263 cm$^{-1}$) of the SO splitting, $V^d_{E_{\text{ab}}}$ is shifted up by $\sim 2/3$ of the same value (588 cm$^{-1}$) and the average splitting due to SOC is 852 cm$^{-1}$. This splitting is close to the experimental splitting value for the Cl atom (882 cm$^{-1}$).
Table V. SOC surface parameters. Powers of 10 in parentheses. The number of \textit{ab initio} grid points (\#) and the sum of squared residuals (SSR / au\(^2\)) are given for each surface.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>SSR \times 10^{-5}</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>1.0278043(-4)</td>
<td>1.7837221(-5)</td>
<td>199</td>
</tr>
<tr>
<td>c2</td>
<td>1.6730222(-1)</td>
<td>8.8885700(-2)</td>
<td>199</td>
</tr>
<tr>
<td>c3</td>
<td>1.9180895</td>
<td>1.1052732</td>
<td>9.0 \times 10^{-11}</td>
</tr>
<tr>
<td>c4</td>
<td>-7.6335954(-1)</td>
<td>-4.0910503(+1)</td>
<td></td>
</tr>
<tr>
<td>c5</td>
<td>-1.1925541(+2)</td>
<td>4.1022580(+2)</td>
<td></td>
</tr>
<tr>
<td>c6</td>
<td>6.2782817(+2)</td>
<td>-8.8115621(+2)</td>
<td></td>
</tr>
<tr>
<td>c7</td>
<td>2.8241506(-1)</td>
<td>3.6444004(-3)</td>
<td></td>
</tr>
<tr>
<td>c8</td>
<td>1.2686625(+3)</td>
<td>1.3401619(-3)</td>
<td></td>
</tr>
</tbody>
</table>

Table VI. Energetic properties of ground state diabatic and adiabatic IB surfaces for reaction HCl + CH\(_4\) = Cl + CH\(_4\). Energies given in kcal mol\(^{-1}\).

<table>
<thead>
<tr>
<th>(V_{\text{Ad}}^d)</th>
<th>(V_{\text{Ad}}^f)</th>
<th>(\Delta V_f)</th>
<th>(\Delta V_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6.11</td>
<td>6.09</td>
<td>6.73</td>
<td>7.47</td>
</tr>
<tr>
<td>(\Delta E)</td>
<td>-0.62</td>
<td>-1.38</td>
<td></td>
</tr>
<tr>
<td>(E_p - E_{\text{vdW},r})</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>(E_p - E_{\text{vdW},p})</td>
<td>0.01</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{f,\text{vdW}})</td>
<td>6.36</td>
<td>6.34</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{r,\text{vdW}})</td>
<td>6.74</td>
<td>7.59</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Minimum energy path for the diabatic and adiabatic basis set extrapolated surfaces in Cl + CH\(_4\) channel. Spin orbit splitting for the adiabatic surfaces (-1/3, +2/3) shown for the asymptotic region in the inset. Diabatic surfaces (black, dashed); adiabatic surfaces: \(V_{\text{Ad}}^d\) (black, solid), \(V_{\text{Ad},\text{min}}^d\) (green), \(V_{\text{Ad},\text{high}}^d\) (red).

The surface barrier heights (\(\Delta V_f\)), energy of reaction (\(\Delta E\)), the depth of the vdW wells relative to asymptotic limits (\(E_{r,p} - E_{\text{vdW},r,p}\)), and the barrier heights relative to the vdW wells (\(\Delta V_{r,f,\text{vdW}}\)) are given in Table VI for the \(V_{\text{Ad}}^d\) and \(V_{\text{Ad}}^f\) IB surfaces (where the labels “r” and “p” designate CH\(_4\) + HCl and Cl + CH\(_4\), respectively). The surface barrier heights include the effects of spectator mode vibrations and are therefore not directly comparable to \textit{ab initio} results. The forward barrier height is very similar for both surfaces but the reverse barrier height is much higher on the adiabatic surface, indicating that though SO effects do not significantly contribute to changes in the CH\(_4\) + HCl channel or at the TS, SO effects are large in the Cl + CH\(_4\) channel. In addition, the TS saddle point (\(\rho = 10.40\) au, \(\delta = 0.16\) rad) is similar to the \textit{ab initio} determined value (\(\rho = 10.24\) au, \(\delta = 0.16\) rad), providing evidence that the surface accurately reproduces \textit{ab initio} properties.

IV. SCATTERING THEORY

A. Scattering equations and R-matrix propagation

The BCRLM Hamiltonian (scaled by \(\rho^{-3/2}\))\(^{48}\) for multi-surface scattering is given in atomic units according to

\[H = -\frac{1}{2\mu} \frac{\partial^2}{\partial \rho^2} - \frac{1}{2\mu \rho^2} \frac{\partial^2}{\partial \delta^2} + \frac{3}{8 \mu \rho^2} + \frac{j^2}{2 \mu \rho^2} + H_{\text{el}}, \tag{15} \]

where \(H_{\text{el}}\) is the electronic Hamiltonian and where a collinear reaction angle and linear rigid rotor treatment of total angular momentum are assumed (\(J^2 = J(J+1)\)).

The scattering problem is solved via the inelastic R-matrix propagation method of Stechel et al.,

\[R \rightarrow \mathcal{R}(\delta; \rho_m) \]

\(R\)-matrix propagation is an iterative algorithm that divides the reaction surface into even width \((h_m)\) sectors of the scattering coordinate \(\rho\). Within each \(\rho\)-sector \(m\), the total scattering wavefunction for quantum state \(k = (i, \nu)\) is expanded in a vibronic basis\(^{78}\) of products of the diabatic (\(\Phi_i^d\) for electronic state \(i\)) and vibrational (\(\chi_{i(\nu)}\) for vibrational state \(\nu\)) basis functions:

\[\Psi_k(\rho, \delta; \rho_m) = \sum_{k'} f_{k'k}(\rho; \rho_m) \Phi_i^d \chi_{i(\nu)}(\delta; \rho_m). \tag{16} \]

The primitive basis \{\(\chi_{i(\nu)}\)\} is comprised of one-dimensional discrete variable representation (DVR) basis functions, constructed according to the fixed-node DVR basis of Muckerman et al.\(^{79}\) This basis allows for the efficient, analytical construction of \(\delta\)-dependent Hamiltonian matrix elements; for each electronic state \(i\), the basis functions \(\chi_{i(\nu)}(\delta; \rho_m)\) retain the Kronecker delta property \(\langle \chi_{i(\nu)} | \delta_{\nu\nu'} \rangle = \delta_{\nu\nu'}\).
The close-coupled equations are second order linear differential equations in the scattering coordinate ρ, constructed by applying the Hamiltonian in equation (15) to the total scattering wavefunction:

$$\frac{d^2}{d\rho^2}f_{(i,\nu)} + \sum_{(i',\nu')} f_{(i',\nu')}(i,\nu)W_{(i,\nu)(i',\nu')} = 0,$$

where $f_{(i,\nu)}(i,\nu)$ are the translational scattering functions. Elements of the coupling matrix W are given according to

$$W_{(i,\nu)(i',\nu')} = 2\mu \left[\frac{\partial^2}{\partial \rho^2} \frac{1}{2\mu \rho^2} \| \chi_{(i',\nu')} \| - \frac{J(J+1)}{2\mu \rho^2} \frac{\delta_{ii'}}{\delta_{\nu\nu'}} + V_{ii'} \delta_{\nu\nu'} \right],$$

where $E_{(i,\nu)}$ is the total energy and where the final term in the coupling matrix element reflects the fact that H_W acts upon the diabatic wavefunctions to yield the diabatic ($V_{ii'}$, $i = i'$) or coupling ($V_{ii'}$, $i \neq i'$) potentials. The number of close-coupled equations reflects the number of energetically accessible vibronic states at a particular collision energy for the two active DOF. The Schrödinger equation is equivalently and more intuitively constructed in vector form:

$$T \begin{pmatrix} \Psi_{1\nu} \\ \Psi_{2\nu} \\ \Psi_{3\nu} \end{pmatrix} = \begin{pmatrix} V_{1A} & A & A \\ A & V_{2B} & B \\ A & B & V_{3B} \end{pmatrix} \begin{pmatrix} \Psi_{1\nu} \\ \Psi_{2\nu} \\ \Psi_{3\nu} \end{pmatrix} + E \begin{pmatrix} \Psi_{1\nu} \\ \Psi_{2\nu} \\ \Psi_{3\nu} \end{pmatrix}. $$

In solving the close-coupled equations, transformation from the primitive coupled basis ($\{ \Psi_{(\nu)} \}$) to the target vibronic basis ($\{ \phi_{(\nu)} \}$) where off-diagonal coupling is removed must be performed in the center of each sector. The new target basis is expressed as an expansion in the primitive DVR basis as

$$\phi_k(\delta; \rho_m) = \sum_{k'} T_{k'k}^{m} \chi_{k'}(\delta; \rho_m).$$

This transformation is equivalent to diagonalizing W (assumed to be constant across the width of each sector):

$$T^{m}W(\rho_m)T^{m} = \lambda^2(m),$$

where T is an orthogonal matrix of the expansion coefficients of the scattering wavefunction in the primitive basis and $\lambda^2(m)$ is a diagonal matrix containing the sector-dependent eigenvalues (λ^2) of the coupling matrix, that are needed to construct the R-matrix recursion.

The global $N \times N$ R-matrix (the ratio of the translational functions to their outward normal gradients at each right sector boundary) is initiated in the first sector as

$$R^{(1)}_{jk} = \delta_{jk}\left| \lambda_j \right|^{-1}.$$

Within each subsequent sector, the elements of the local $2N \times 2N$ R-matrix $r^{(m)}$ are given by

$$r^{(m)}_{jk} = \delta_{jk}\left(\begin{array}{cc} \lambda_j^{-1} \coth |h_m\lambda_j|, & \lambda_j^2 < 0 \\ -|\lambda_j|^{-1} \cot |h_m\lambda_j|, & \lambda_j^2 \geq 0 \end{array} \right).$$

Continuity of the translational functions and their derivatives at the boundary between sectors $m-1$ and m is enforced by the orthogonal transformation matrix $O^{m,m-1}$:

$$T(m, m-1) = T^{m}O^{m,m-1}T(m-1),$$

where T is given by equation (20) and the basis function overlap $O^{m,m-1}$ is a unit operator for the normalized and unchanged DVR basis. Propagation from sector $m-1$ to m is achieved as follows: the transformation matrix $T(m, m-1)$ is used in combination with the new sector R-matrix $r^{(m)}$ and the old global R-matrix T^{m-1} to construct the new global R-matrix in sector m as

$$R^{m} = r^{m}_4 - r^{m}_3 Z^{m} r^{m}_2,$$

where

$$Z^{m} = [T^{m}_1 + T^{m,m-1}T^{m-1}T^{m}]^{-1}.$$

R-matrix propagation proceeds to the asymptotic region, where approximate boundary conditions are applied directly in hyperspherical coordinates in the uncoupled representation to extract the S-matrix. In this representation, the asymptotically diagonal states correlate with the adiabatic ones and thus transitions between diabatic states $k \rightarrow k'$ may be interpreted as electronic transitions between adiabatic states. To avoid oscillations in the reaction probability associated with inexact asymptotic separability of ρ and δ, boundary conditions were applied over a number of asymptotic sectors and probability matrix elements were averaged. Previous studies reported a negligible effect of using this approximate sector averaging approach on CI+CH$_4$ thermal rate constants. Incident and outgoing wavefunctions are assumed to resemble exactly out of phase plane waves in ρ and the S-matrix is extracted as

$$S' \langle E; n \rangle = \left[R(\rho_n)O'(\rho_n) - O(\rho_n) \right]^{-1} \times \left[R(\rho_n)I'(\rho_n) - I(\rho_n) \right],$$

where n corresponds to a p-sector in the asymptotic region, $S' \langle E; n \rangle$ is the energy and sector-dependent S-matrix for a particular total angular momentum value J, and the incident ($I_{kk'}$) and outgoing ($O_{kk'}$) wavefunctions for each E, J, and sector n depend upon the square root of the coupling matrix elements in the diagonal representation (λ_k):

$$I_{kk'} = \lambda_k^{-1/2} \exp (-i \lambda_k \rho_n) \delta_{kk'},$$

$$O_{kk'} = \lambda_k^{-1/2} \exp (i \lambda_k \rho_n) \delta_{kk'},$$

$$\lambda_k = \sqrt{W_{kk}}.$$
The probability matrix elements are defined according to the square modulus of the sector-dependent scattering matrix elements:

\[P_{kk}^J(E; n) = |S_{kk}^J(E; n)|^2. \]

(29)

Nonreactive transitions can be eliminated from the probability matrix by identifying reactant and product states via the expectation value of the hyperangle, \(\langle \delta \rangle_k \), calculated in the basis of the \(\delta \)-dependent wavefunctions:

\[
\langle \delta \rangle_k = \frac{3}{\pi} \sum_{i=1}^{3} \langle \Phi_i | \psi_{(i,\nu)} \rangle \langle \delta | \Phi_i | \psi_{(i,\nu)} \rangle
\]

(30)

\[
= \frac{3}{\pi} \sum_{j = 1}^{N} \sum_{j' = 1}^{N} c_j^{(i,\nu)} c_{j'}^{(i,\nu)} \langle \chi_j | \delta | \chi_{j'} \rangle
\]

(31)

\[
= \frac{3}{\pi} \sum_{j = 1}^{N} \sum_{j' = 1}^{N} c_j^{(i,\nu)} c_{j'}^{(i,\nu)} \langle \chi_j | \delta | \chi_{j'} \rangle
\]

(32)

The probability of a reactive transition from initial reactant state \(s = (i, \nu) \) to final product state \(s' = (i', \nu') \) is given by the probability matrix element \(P_{ss'}^J(E; n) \), which is taken to be an average over a number of asymptotic matrix elements:

\[
P_{ss'}^J(E) = \frac{P_{ss'}^J(E; n)}. \]

(33)

B. Dynamics

The \(J = 0 \) cumulative reaction probability (CRP) is defined as the sum of the state-to-state partial wave probabilities over all quantum states:

\[
P_{J=0}^s(E) = \sum_s \sum_{s'} P_{ss'}^{J=0}(E). \]

(34)

The integral cross section (\(\sigma \)) provides a measure of reactivity by predicting the effective size of its molecular components and has units of area.\(^{85-87} \) The initial state selected integral reaction cross section, \(\sigma_s(E^e_s) \), calculated as a function of collision energy \(E^e_s = E - \varepsilon_s \) is

\[
\sigma_s(E^e_s) = \frac{\pi}{q^2_s} \sum_{s} \sum_{J=0}^{J_{max}} (J + 1) P_{ss}^J(E),
\]

(35)

where the squared initial translational wavenumber, \(q^2_s \), is

\[
q^2_s = 2 \mu_R (E - \varepsilon_s),
\]

(36)

and where the reduced mass is \(\mu_R = m_{Cl} m_{CH_4}/m_{total} \) for reaction (2), and \(\mu_R = m_{HCl} m_{CH_3}/m_{total} \) for reaction (1). Provided initial populations of internal reactant states \((a, b, \ldots) \) are known, the total cross section can be calculated\(^{88} \) as

\[
\sigma_{tot} = a \sigma_0(E^0_s) + b \sigma_1(E^1_s) + \ldots.
\]

(37)

The nonadiabatic branching ratios can be determined by the ratio of final-state selected to total cross sections.

Collision time delay analysis affords an approximate method of interpreting whether features present in the cumulative reaction probability pertain to resonances in the reaction process, and is computed according to

\[
\Delta t^J(E) = \frac{1}{P_c^J(E)} \sum_{\mu a} R_e \left[S^J_{ss'}(E)^* \left(-i \hbar \frac{d}{dE} \right) S^J_{ss'}(E) \right],
\]

where the asterisk signifies complex conjugate. Resonances are identified as positive maxima on a plot of collision time delay as a function of energy, relative to the time-delay baseline.\(^{89,90} \)

C. Kinetics

Energy and J-shifting methods are used to calculate the RD thermal rate constant, \(k(T) \), such that it can be expressed as a product of the TS rotational and (spectator mode) vibrational partition functions with the \(J = 0 \) thermal rate constant:\(^{91} \)

\[
k(T) = Q_{vib}^{TS} Q_{rot}^{TS} k_J^{J=0}(T)
\]

\[
= \frac{Q_{TS}(T)}{h Q_{react}(T) Q_{trans}^{rel}(T)} \int_0^{\infty} \frac{dE}{P_c^J=0(E)} e^{-E/k_B T},
\]

where \(h \) is Planck’s constant, \(k_B \) is the Boltzmann constant, \(Q_{trans}^{rel}(T) \) is the relative translational partition function and where the partition functions for the reactants \((Q_{react}(T)) \) and TS \((Q_{TS}) \) are the product of vibrational, rotational, and electronic partition functions as specified in previous reports.\(^{11,55} \) The electronic partition function for the Cl atom is \(Q_{elec} = 4 + 2e^{-\Delta E_{SOC}/k_B T} \).

The transition state theory (TST) thermal rate constant – which neglects quantum effects such as tunneling as well as recrossing dynamics \(^{87} \) – is defined according to

\[
k(T) = \frac{k_B T}{h} \frac{Q_{TS}(T)}{Q_{react}(T) Q_{trans}^{rel}(T)} e^{-V_0/k_B T},
\]

(39)

where \(V_0 \) is the vibrationally corrected ab initio barrier height. For calculation of the TST rate constant for the reverse reaction, we adjust the zero of energy to take into account the asymptotic lowering of the adiabatic potential by 1/3 of the spin-orbit coupling splitting, such that the argument of the exponent in equation (39) is \(-(V_0 + \Delta E_{SOC}/3)/k_B T \).

D. Numerical details

Single surface \((V_{A_1}^{rad}) \) and multi-surface scattering calculations were performed for the forward and reverse reaction processes. As it was not necessary to distinguish between the asymptotically degenerate Cl + CH\(_4\) states,
symmetrized wavefunctions were not implemented. Convergence of cumulative reaction probabilities, hyperspherical adiabat energies, and cross sections were monitored with respect to the scattering parameters in Table VII. For \(J > 0 \) calculations a reduced energy grid spacing of 0.001 eV was used for computational efficiency.

V. SINGLE-SURFACE SCATTERING RESULTS

As nonadiabatic effects have previously been shown to have little effect on bimolecular rate constants\(^9\) and the low energy multi-state CRP is dominated by electronically adiabatic transitions (Figure 7(a)), rate constants for forward and reverse reactions \(\text{CH}_3 + \text{HCl} \rightarrow \text{CH}_4 + \text{Cl}^\ddagger \) were calculated by scattering on \(V_{\text{A}^1}^{\text{ad}} \). TST rate constants were estimated using the vibrationally corrected IB barrier height. The forward thermal rate constant for the IB surface compares favorably to experimental data\(^5,9\) and provides significant improvement upon the low-temperature CUS/\(\mu \)OMT results of Rangel, et al.\(^7\) (Figure 5a).

Thermal rate constants for the reverse reaction were calculated for the IB and \(Q//T \) surfaces and compared to experimental\(^7,8,10\) and evaluated\(^9\) kinetic data, as well as previous theoretical results\(^5,11,13\) (Figure 5b). Using the highest level of \textit{ab initio} theory to compute the surfaces (IB) resulted in thermal rate constants in excellent agreement with experimental results, though slightly larger than experiment at low temperatures. By contrast, the \(Q//T \) surface produces thermal rate constants much lower than experiment, thus indicating that higher-order basis sets are necessary for accurately describing this system. In addition, the difference between TST and more accurate calculations at high temperature could indicate the importance of recrossing effects in this HLH reaction. The forward and reverse thermal rate constants for the IB surface are given in Table VIII.

VI. MULTI-SURFACE SCATTERING RESULTS

A. Hyperspherical adiabats

Hyperspherical adiabats for multi-surface scattering are shown in Figure 6, grouped according to vibrational excitation. Electrovibrational states \(s = (i, \nu) \) (the \(\nu \)th vibrational level of the \(i \)th electronic state) are identified by comparison with the asymptotic hyperspherical adiabats from scattering on the three adiabatic surfaces (not...
shown). Hyperspherical adiabats pertaining to electronic quantum numbers \(i = 0, 1, \) and 2 asymptotically correlate to adiabatic electronic states \(A_1, E_{\text{low}} \) and \(E_{\text{high}} \), respectively. In the \(\text{Cl} + \text{CH}_4 \) channel, the ground \(i = 0 \) and 1 electronic states are degenerate (indistinguishable) while the \(i = 2 \) spin-orbit excited state falls much higher in energy. In the \(\text{HCl} + \text{CH}_4 \) channel (R), only ground state \(i = 0 \) hyperspherical adiabats are accessible, falling between the electronic ground and excited state product hyperspherical adiabats. The notation \(s = (i, \nu) \) is thus dropped for (R) states where the vibrational quantum number \((\nu = 0, 1, \ldots) \) alone specifies the state. For clarity of analysis in the \(\text{Cl} + \text{CH}_4 \) channel, the vibronic quantum number is redefined as \(s = (q, \nu) \) such that \(q = \frac{1}{2} \) identifies \(\text{Cl}^* + \text{CH}_4 \) states and \(q = \frac{3}{2} \) represents the sum over the degenerate \(\text{Cl} + \text{CH}_4 \) states \(i = 0, 1 \). In the \(\text{CH}_3 + \text{HCl} \) channel, the vibrational quantum number \(\nu = 0, 1, \ldots \) approximately pertains to the \(\text{H} - \text{Cl} \) stretch, whereas the vibrational quantum number in the \(\text{Cl} + \text{CH}_4 \) channel correlates to a \(\text{C} - \text{H} \) stretch.

B. Geometry of nonadiabatic transitions

A major advantage of hyperspherical coordinates is the ability to analyze reactive transitions in terms of hyperspherical adiabat avoided crossings in the vicinity of the potential ridge, defined as the dividing line between the reactant and product valleys.\(^{101,102} \) A series of complex avoided crossings take place near the potential ridge (Figure 6), especially between the reactant R and the product \(\text{Cl}^* \) states (e.g. \(\rho = 11.64 \) au / 0.321 eV and \(\rho = 12.2 \) au / 0.598 eV). It is likely that these avoided crossings pertain to (vibronic) nonadiabatic transitions.

The magnitude of the \(q = \frac{1}{2} \) diabatic state wavefunction \(|\Psi_{\frac{1}{2}, \nu}^d|^2 \) indicates the location of nonadiabatic transition in the \(\text{Cl} + \text{CH}_4 \) channel. For each \(\nu \), the wavefunction probability begins with a sharp peak approximately coinciding with the location of the hyperspherical adiabat avoided crossings. The average geometries associated with the onset of diabatic wavefunction amplitudes are given in Table IX. Nonadiabatic transition is shown to occur at larger \(\text{H} - \text{Cl} \) separation with increasing vibrational excitation, indicating that \(\text{H} - \text{Cl} \) stretch excitation makes transition between electronic states possible at larger distances.

C. \(\text{CH}_3 + \text{HCl} \rightarrow \text{CH}_4 + \text{Cl}(^2P) \)

a. Reaction probabilities.

The \(J = 0 \) CRP for the reaction (1) is shown in Figure 7(a). Oscillating reactivity typical of HLH systems\(^63\) is observed, especially at low total energies. It is a dominant feature for the \(\nu = 0 \) and \(\nu = 1 \) initial state selected reaction probabilities. Resonances are also seen to play a significant role in the reaction process; \(J = 0 \) resonances are confirmed by the presence of peaks in time delay analysis.

Table VIII. Theoretical thermal rate constants for \(\text{CH}_4 + \text{HCl} \rightarrow \text{CH}_4 + \text{Cl}(^2P) \) on \(V_{ad}^{\text{chem}} \) (IB). Rates given in \(\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1} \), powers of ten shown in parentheses.

<table>
<thead>
<tr>
<th>(T / \text{K})</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>3.70(-14)</td>
<td>5.45(-14)</td>
</tr>
<tr>
<td>300</td>
<td>5.14(-14)</td>
<td>1.28(-13)</td>
</tr>
<tr>
<td>350</td>
<td>6.45(-14)</td>
<td>2.42(-13)</td>
</tr>
<tr>
<td>400</td>
<td>7.64(-14)</td>
<td>3.98(-13)</td>
</tr>
<tr>
<td>500</td>
<td>9.81(-14)</td>
<td>8.39(-13)</td>
</tr>
<tr>
<td>600</td>
<td>1.19(-13)</td>
<td>1.46(-12)</td>
</tr>
<tr>
<td>800</td>
<td>1.67(-13)</td>
<td>3.26(-12)</td>
</tr>
<tr>
<td>1000</td>
<td>2.29(-13)</td>
<td>5.92(-12)</td>
</tr>
<tr>
<td>1500</td>
<td>4.72(-13)</td>
<td>1.69(-11)</td>
</tr>
<tr>
<td>2000</td>
<td>8.62(-13)</td>
<td>3.42(-11)</td>
</tr>
</tbody>
</table>

Figure 6. The eight lowest hyperspherical adiabats for the \(\text{HCl} + \text{CH}_4 \rightarrow \text{Cl} + \text{CH}_4 \) reaction. Quantum states \(s = (i, \nu) \) are asymptotically grouped in terms of vibrational quantum number \(\nu \). Asymptotic electronic states are \(A_1: \text{Cl}(^2P_\frac{3}{2}) + \text{CH}_4 \) (solid black), \(E: \text{Cl}(^2P_\frac{1}{2}) + \text{CH}_4 \) (green), \(\text{HCl} + \text{CH}_3 \) (blue, R) and \(E: \text{Cl}^*(^2P_\frac{3}{2}) + \text{CH}_4 \) (red). Potential ridge and minimum energy path along \(\text{Cl} + \text{CH}_4 \) channel are given as black dashed lines; TS location indicated by red triangle.

Table IX. Approximate location of nonadiabatic transition for \(\text{HCl} + \text{CH}_4 \rightarrow \text{Cl}^* + \text{CH}_4 \) reaction.

<table>
<thead>
<tr>
<th>State</th>
<th>(\rho / \text{au})</th>
<th>(\delta / \text{rad})</th>
<th>(R / \text{Å})</th>
<th>(r(\text{H–Cl}) / \text{Å})</th>
<th>(\sim \text{C–H} / \text{Å})</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>10.3925</td>
<td>0.1565</td>
<td>2.8509</td>
<td>1.4825</td>
<td>1.3684</td>
</tr>
<tr>
<td>(q, \nu = \frac{1}{2}, 0)</td>
<td>11.6181</td>
<td>0.1971</td>
<td>3.1641</td>
<td>2.0823</td>
<td>1.0817</td>
</tr>
<tr>
<td>(q, \nu = \frac{1}{2}, 1)</td>
<td>12.0603</td>
<td>0.1994</td>
<td>3.2830</td>
<td>2.1865</td>
<td>1.0965</td>
</tr>
<tr>
<td>(q, \nu = \frac{1}{2}, 2)</td>
<td>12.4623</td>
<td>0.2007</td>
<td>3.3915</td>
<td>2.2739</td>
<td>1.1176</td>
</tr>
<tr>
<td>(q, \nu = \frac{1}{2}, 3)</td>
<td>12.8643</td>
<td>0.2017</td>
<td>3.5002</td>
<td>2.3588</td>
<td>1.1414</td>
</tr>
</tbody>
</table>
The contribution of the nonadiabatic reaction HCl + CH₃ → Cl* + CH₄ to the CRP is also shown in Figure 7(a). The onset of the nonadiabatic pathway is delayed relative to the electronically adiabatic pathway on this total energy scale. Furthermore, the onset coincides with resonances confirmed by time delay analysis, that are associated with nonadiabatic state-to-state probabilities. This could indicate a mechanism of resonance mediated nonadiabatic transition.

Initial state selected probability branching ratios \(\sum_{\nu} \frac{p^{J=0}_{\nu \rightarrow (\frac{1}{2}, \nu')}}{P^{J=0}_{c}} \) afford an estimate of the contribution of specific initial vibrational quantum states \(\nu \) to nonadiabatic reaction. These ratios generally increase with energy (although some oscillation, especially for the \(\nu = 0 \) and \(\nu = 1 \) states, is present), indicating that approximately 4-6\% \(\nu = 0 \), 6-13\% \(\nu = 1 \), 20\% \(\nu = 2 \), and 25\% \(\nu = 3 \) of the reaction probability arises due to nonadiabatic production of Cl* at high energies. State-to-state reaction probabilities show that, with the exception of reaction from \(\nu = 0 \), electronically nonadiabatic transitions are generally associated with the loss of one quantum of stretch excitation:

\[
\text{HCl} (\nu = n) + \text{CH}_3 \rightarrow \text{Cl}^* + \text{CH}_4 (\nu = n - 1).
\]

For reactions from \(\nu = 1 \), the vibrationally adiabatic pathway also plays a large role, and for higher energies additional pathways become available for all channels. Finally, \(J > 0 \) calculations showed the functional form of the CRP is preserved as the angular momentum increases, thereby indicating that \(J \)-shifting is a good approximation in these calculations.

b. Integral cross sections. The initial state-selected integral cross sections for HCl + CH₃ → Cl + CH₄ are given in Figure 8 as a function of collision energy \((J_{\text{max}} = 300) \). Vibrationally excited channels open quickly once a state becomes accessible, whereas there is a delay associated with the onset of the \(\nu = 0 \) pathway.

c. Nonadiabatic branching ratio. The nonadiabatic branching ratio is constructed on a collision energy scale in order to compare the extent of predicted nonadiabaticity to experiment. Initial state selected branching ratios for the nonadiabatic production of Cl* can be calculated for each initial vibrational state according to

\[
\Gamma_{\nu} = \frac{\sum_{\nu'} \sigma_{\nu \rightarrow (\frac{1}{2}, \nu')}}{\sum_{\nu'} \sum_{q} \sigma_{\nu \rightarrow (q, \nu')}}; \quad (40)
\]

these ratios are shown in Figure 9. The correlation between nonadiabatic reaction and HCl vibrational excitation is clear; the ground state reaction from \(\nu = 0 \) occurs only for higher collision energies, whereas vibrationally excited states result in large initial spikes in the branching ratio. These peaks result from the opening of the nonadiabatic pathway via resonance mechanisms prior to the onset of the more dominant electronically adiabatic pathway. At high collision energies, the contribution of the nonadiabatic pathways levels out to between 4\% \(\nu = 0 \) to 22\% \(\nu = 3 \) of the total reactivity.

The experimental total nonadiabatic branching ratio was reported to be \(\Gamma = 0.14 \pm 0.02 \). A total theoretical nonadiabatic branching ratio is constructed according to

\[
\Gamma = \frac{\sum_{\nu'} \sigma_{\nu \rightarrow (\frac{1}{2}, \nu')}}{\sigma_{\text{tot}}}; \quad (41)
\]

and therefore requires knowledge of the initial populations of the HCl + CH₃ states. These populations have...
Initial state selected cross section / au

ous studies highlighting the importance of intramolecular
amount of vibrational excitation available for reaction.

model, and therefore the approximation is made that the
scattering calculations, describing instead the H–Cl
interaction is clear even in this reduced dimensionality
model does not account for umbrella bending vibration in
the reactants. However, the correlation between vibrational excitation and nonadiabatic transition is clear even in this reduced dimensionality model, and therefore the approximation is made that the type of vibrational motion is not as significant as the amount of vibrational excitation available for reaction. The validity of this approximation is supported by previous studies highlighting the importance of intramolecular vibrational redistribution along the reaction path.

Under the experimental conditions of reference, a bi-
modal distribution of CH₃ radicals is present; the as-
sumption is made here that only the fast channel (1.3 eV) contributes to nonadiabatic reaction, with approxi-
ately \(E_{\text{vib}}^{\max} = 1100 \text{ cm}^{-1} \) of excess vibrational energy available to the CH₃ + HCl reactants. The maximum vibrational excitation available to reactants, \(E_{\text{vib}}^{\max} \), was defined as 1.0, 1.5, 1.75 and 2.0 times the experimental quantity \(E_{\text{vib}}^{\exp} \). Using the energies of the initial reactant states relative to the ground vibrational state, the populations of states \(\nu = 0,1,2, \) and 3 (governed by pa-
rameters \(a, b, c \) and \(d \), respectively) were modeled to reproduce \(E_{\text{vib}}^{\max} \) with the constraints that all parameters are positive and sum to one, and that the lower energy states are more populated than the high energy states \((a,b \geq c,d)\). The results of this analysis are given in Table X.

The models in Table X indicate approximately 7-
10% contribution from the nonadiabatic reaction in com-
parison to the reported experimental branching ratio, 14±2%. Vibrational energy in excess of experimentally measured values is required to bring these results into better agreement; this could indicate the importance of translation-vibration coupling along the reaction path. Alternately, it could indicate that additional degrees of freedom (such as the umbrella mode) must be treated with more accuracy in order to achieve quantitative comparison to experiment. Despite the additional vibrational energy required for these models, the correlation between model and experiment indicates that the reduced dimen-
sionality, spin-orbit coupling model provides a good the-
oretical foundation from which to understand the elec-
tronic nonadiabatic transitions in this reaction system.

Table X. Branching ratio model for nonadiabatic production of Cl*. Energies in cm⁻¹, branching ratio at 1.3 eV.

<table>
<thead>
<tr>
<th>(E_{\text{vib}}^{\max})</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(\Gamma(%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>0.808</td>
<td>0.064</td>
<td>0.064</td>
<td>0.064</td>
<td>7.6 %</td>
</tr>
<tr>
<td>1649</td>
<td>0.712</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>8.9 %</td>
</tr>
<tr>
<td>1924</td>
<td>0.664</td>
<td>0.112</td>
<td>0.112</td>
<td>0.112</td>
<td>9.4 %</td>
</tr>
<tr>
<td>2199</td>
<td>0.616</td>
<td>0.128</td>
<td>0.128</td>
<td>0.128</td>
<td>10.0 %</td>
</tr>
<tr>
<td>E (cm⁻¹)</td>
<td>0</td>
<td>2928</td>
<td>5761</td>
<td>8492</td>
<td></td>
</tr>
</tbody>
</table>

D. Cl (\(^3P_J \)) + CH₄ → HCl + CH₃.

The nonadiabatic properties of reaction (2) were also investigated, where it was evident that reaction from Cl* states plays a small but significant role. State-to-state reaction probabilities showed that reaction from Cl* was generally found to be associated with the release of one quantum of stretch excitation; resulting in the mecha-

nism \((n = 1,2)\)

Cl* + CH₄ \((\nu = n)\) → HCl \((\nu' = n+1)\) + CH₃.

The ground vibrational state reaction \((\nu = 0)\), exhib-
ited both vibrationally adiabatic \((\nu' = 0)\) and nonadi-

![Figure 8. Initial state selected integral cross sections as a function of collision energy for reaction HCl(\(\nu \)) + CH₃ → Cl + CH₄.](image)

![Figure 9. Initial state selected nonadiabatic branching ratio for HCl(\(\nu \)) + CH₃ → Cl(\(^3P_J \)) + CH₄.](image)
abatic (\(\nu' = 1\)) pathways. These results are consistent with those reported in recent experiments by Wu et al., where it was noted that reaction of excited spin-orbit state Cl* was associated with production of stretch excited HCl (\(\nu = 1\)). Furthermore, release of one quantum of stretch excitation was also predicted to be a dominant pathway for the reaction of Br* + H₂.

Integral cross section data also supported the assertion of the small, but significant contribution of the nonadiabatic pathway. Experimental data for the Cl* + CH₄(\(\nu = 0\)) and Cl* + CH₂D₂(\(\nu = 0\)) systems indicate the significant contribution of the nonadiabatic pathway, associated in both cases with the production of stretch excited HCl (\(\nu = 1\)) and mediated through a resonance pathway. The ratio of integral cross sections,

\[
\frac{\sigma^*/\sigma_0}{\sum_{\nu} \sigma^*_{(4,0)\to\nu}} = \frac{\sigma^*_{(4,0)\to\nu}}{\sum_{\nu} \sigma_{(4,0)\to\nu}}
\]

was predicted to be 9% or larger for the Cl* + CH₂D₂ study of Wu and Liu at 0.867 eV, depending upon the population of Cl* in the incident beam. We have determined this ratio to be 10.3% at 0.867 eV (Figure 10), which compares favorably with the experimental value, and to the predictions of previous X + H₂ studies. The experimental threshold for the onset of reaction was reported to occur at 0.317 eV. In the current study, reaction from Cl* + CH₄(\(\nu = 0\)) opens at lower collision energies than the adiabatic path, as consistent with the conclusions of past theoretical studies, but the electronically adiabatic reaction from Cl + CH₄(\(\nu = 0\)) quickly dominates. Oscillating reactivity causes the ratio \(\sigma^*/\sigma_0\) to decrease to nearly zero again before growing in at approximately 0.3 eV, in good agreement with the conclusions of Wu and Liu. Vibrationally excited reactant states were found to produce higher nonadiabatic branching ratios.

E. Nonreactive scattering.

Inelastic nonreactive scattering of Cl + CH₄(\(\nu\)) \(\to\) Cl* + CH₄(\(\nu'\)) was also characterized, and is shown for the ground initial state \(\nu = 0\) to all vibrational levels of the spin-orbit excited states (Cl* + CH₄) in Figure 11. The \(\nu = 0\) inelastic scattering process is predominantly vibrationally adiabatic, whereas for \(\nu = n, n > 0\), the most favorable nonadiabatic transition involves loss of one quantum of stretch excitation:

\[
\text{Cl} + \text{CH}_4 (\nu = n) \to \text{Cl}^* + \text{CH}_4 (\nu' = n - 1).
\]

The loss of vibrational energy associated with nonadiabatic excitation was also previously reported for the Br + H₂ reaction system. This result further indicates the importance of vibrational energy in mediating nonadiabatic transitions, as seen in the forward and reverse reaction processes. Furthermore, strong oscillatory reaction probability characteristic of HLH processes is observed, as consistent with previous studies. Such behavior is potentially associated with interference effects arising from the two degenerate ground Cl electronic states.

VII. CONCLUSIONS

A reduced dimensional, multiple electronic surface model has been developed to provide a detailed and unified understanding of the ground and excited state properties of the forward and reverse HCl + CH₄ \(\to\) Cl + CH₄ reaction processes. Comparison to experiment provides a means of evaluating the relative importance of the approximations utilized in the current approach. The two dimensional surface system, consisting of three potentials and coupling terms between them, accurately reproduces
physical behavior; the diabatic states are degenerate in the Cl + CH₄ channel and the adiabatic states split by 852 cm⁻¹, in good agreement with experiment. The TS was confirmed to be collinear as consistent with previous characterizations. The ab initio vibrationally corrected barrier heights at Q/T level of theory were found to be 2.78 kcal mol⁻¹ and 3.57 kcal mol⁻¹ and for reactions (1) and (2), respectively. Ground state IB thermal rate constants are in excellent agreement with experiment and, especially for reaction (1), provide an improved description in comparison to previously reported theoretical results.

Coupling between the active modes and the umbrella bending mode was evident from frequency projection, as consistent with the conclusions of past studies. The close correlation between the ground state thermal rate constants and experiment indicates that despite this coupling, a two dimensional approximation is an effective simplification. The curvilinear projection method was found to be more accurate than its rectilinear counterpart in describing post-projected frequencies; unlike in previous studies, a small number of imaginary frequencies were still observed post-projection.

The nonadiabatic transition occurs in the Cl + CH₄ reaction channel. The approximate location of nonadiabatic transition was also found to be dependent upon vibrational excitation; H–Cl bond lengths were seen to vary between 1.48–2.35 Å for final vibrational states ν = 0–3. Larger vibrational excitation allows nonadiabatic transition to occur for increased values of molecular separation. This location of nonadiabatic transition supports the two-step reaction mechanism model; electronic relaxation (or excitation) is followed (or preceded) by reaction on the ground state surface. Strong resonance features were observed in state-to-state nonadiabatic reaction probabilities and confirmed by time-delay analysis. Some resonances were associated with the opening of the nonadiabatic pathway, causing a dominant contribution from nonadiabatic pathways at low collision energies for reaction (1). The importance of resonance features in the nonadiabatic reaction of Cl* + CH₄ was also reported by Wu et al. where it was hypothesised that nonadiabatic relaxation to produce the ν = 1 vibrationally excited state was followed by reaction through a ground state resonance pathway. In the current study, it is difficult to ascertain whether the resonance features are directly associated with the nonadiabatic transitions or occur separately on the ground state post (or pre) nonadiabatic transition. The correlation between vibrational energy and nonadiabatic reaction reported in experiment was witnessed for reactive forward, reverse, and nonreactive transitions. Reactive transitions of type:

\[
\text{Cl}^* + \text{CH}_4 (ν = n) \rightarrow \text{HCl} (ν' = n+1) + \text{CH}_3
\]

were found to dominate the reverse reaction mechanism (n = 1, 2). The ground state ν = 0 reaction also exhibited this behavior, but additionally possessed a significant vibrationally adiabatic component. This behavior was also clear for reaction (1), where the nonadiabatic production of spin-orbit excited product states was associated with the loss of one quantum of stretch excitation. This mechanism was dominant for (n > 0):

\[
\text{HCl} + \text{CH}_3 (ν = n) \rightarrow \text{Cl}^* + \text{CH}_4 (ν' = n-1).
\]

A vibrationally adiabatic pathway was also found to be significant for the n = 1 transition. Nonreactive, nonadiabatic production of Cl* also exhibited vibrational energy dependence; excitation of ground Cl to excited state Cl* was generally associated with the release of one quantum of vibrational energy, with the obvious exception of the ground state transition. The dominant pathway was thus observed to be (n > 0):

\[
\text{Cl} + \text{CH}_4 (ν = n) \rightarrow \text{Cl}^* + \text{CH}_4 (ν' = n - 1)
\]

Nonadiabatic pathways for the forward reaction were found to account for between approximately 7-10% of reactivity for reaction (1), in comparison to the 14 ± 2% predicted by experiment. The comparison is approximate; more vibrational energy than available to experiment is required in order to achieve quantitative agreement. This could indicate that coupling of translation into vibrational motion plays an important role or that the 2D approach needs to be extended to more dimensions to completely describe the nonadiabatic pathway. Regardless, the model provides qualitative agreement with experiment regarding the extent of nonadiabaticity. Conversely, the description of reaction (2) did afford quantitative comparison; the ratio σ*/σ₀ was reported to be 10.3%, in excellent agreement with the experimental value of 9% for reaction Cl + CH₂D₂.

ACKNOWLEDGMENTS

This work was supported by the Engineering and Physical Sciences Research Council (Grant No. EP/G00224X/1) and the United States Office for Naval Research (Grant No. N00014-05-1-0460). S.M.R. acknowledges the Oxford University Press for receipt of a Clarendon Scholarship. Calculations were run in part using the Oxford Supercomputing Centre resources. We would like to thank Dr. Frank von Horsten, Dr. Ivan Ljubič, Dr. Stuart Greaves, Dr. Rebecca Rose, Professor Joel Bowman and Professor Kopin Liu for useful discussions.

REFERENCES

81 D. E. Manolopoulos, State to State Reactive Scattering (John Wiley & Sons, Ltd, 2002).
88 D. J. Feller, Computational Chemistry 17, 1571 (1996).
95 Matlab, version 7.1.0.183 (r14) service pack 3 (2007).
107 H. E. Henriksen and F. Y. Hansen, Theories of Molecular Reaction Dynamics (Oxford University Press, 2008).