
Publisher's PDF, also known as Version of record

Link to published version (if available):
10.1103/PhysRevB.84.235111

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Maximum entropy deconvolution of resonant inelastic x-ray scattering spectra

J. Laverock, A. R. H. Preston, D. Newby Jr., and K. E. Smith
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

S. B. Dugdale
H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
(Received 20 July 2011; revised manuscript received 30 September 2011; published 5 December 2011)

Resonant inelastic x-ray scattering (RIXS) has become a powerful tool in the study of the electronic structure of condensed matter. Although the linewidths of many RIXS features are narrow, the experimental broadening can often hamper the identification of spectral features. Here we show that the maximum entropy technique can successfully be applied in the deconvolution of RIXS spectra, improving the interpretation of the loss features without a severe increase in the noise ratio.

DOI: 10.1103/PhysRevB.84.235111
PACS number(s): 78.70.En, 78.70.Ck, 71.20.–b

I. INTRODUCTION

Over the last decade or so, the technique of resonant inelastic soft x-ray scattering (RIXS) has developed into a formidable tool in the study of the electronic structure of the solid state, nanomaterials, and even liquids and gases. The strengths of RIXS using soft x-rays result from its bulk sensitivity, atomic (and even orbital) selectivity, ability to sample finite momentum transfer, and narrow linewidth. Indeed, the recent development of sub-100-meV-resolution grating spectrometers has opened up the possibility of using soft x-rays to study low-energy collective excitations, such as magnons or orbitons, and even to track their dispersion in momentum.

In the RIXS process, a core electron is excited into an unoccupied valence orbital, creating a core hole in the intermediate state that then rapidly (and coherently) decays to the final state via x-ray emission (see, for example, Refs. 1 and 2). The incident x-ray is tuned near the threshold of a particular core electron excitation, granting RIXS its site and orbital selectivity. For example, for transition-metal L-edges the process is of the form \(2p^6 3d^n \rightarrow 2p^5 3d^{n+1} \rightarrow 2p^5 3d^{n+2} \), in which the asterisk (*) denotes an excited state. The final state may be an excited configuration (e.g., \(dd^* \) crystal-field transition) or a collective excitation, and the energy difference between the incident and emitted x-rays represents the excitation energy.

Typically, however, for soft x-ray RIXS where charge-transfer and/or crystal-field excitations are of interest, the combined energy resolution of the incident photons and RIXS spectrometer amounts to 0.5–1.0 eV near the O K-edge (~520 eV). On the other hand, the typical energy of transition-metal \(dd^* \) crystal-field excitations is of the order of 1–4 eV, and their separation can be close to the limit of the resolving power of moderate-resolution instruments (for example, low-energy \(dd^* \) transitions in VO\(_2\) (Refs. 9 and 10)). Moreover, even in high-resolution measurements, different low-energy collective excitations can lie in close proximity relative to the resolution function, for example, bimagnon and single-magnon peaks as well as phonon contributions within 400 meV in La\(_2\)CuO\(_4\). There is therefore a sensitive trade-off between statistical precision and resolution for these kinds of measurements, which are perfectly poised to take advantage of the benefits of a reliable deconvolution procedure.

The technique of maximum entropy (MaxEnt) owes its origins to the study of communication theory introduced by Shannon, in which the proposed measure of information content \(S \) had the same form as the thermodynamic entropy,

\[
S = -k \sum p_{i,j} \ln p_{i,j},
\]

in which \(p_{i,j} \) is the number of counts in a pixel \((i, j)\) and \(k \) is an arbitrary constant. The basic idea of MaxEnt is relatively simple: one maximizes the information content \(S \) of the processed (deconvoluted) probability distribution subject to it being consistent with the measured data. This consistency test is achieved through a \(\chi^2 \) comparison between the processed distribution, convoluted with the (known) resolution function, and the measured distribution. The outcome of this process is a distribution that is “most likely” to have been responsible for the measured data, given the properties of the resolution function.

The algorithm employed here is the Cambridge algorithm and has been successfully applied to many fields of data analysis, e.g., positron annihilation, image analysis, astrophysics, and extended x-ray-absorption fine-structure data. The solution of the algorithm is iteratively updated in three “search directions” \(d_{i,j,n} \), with coefficients \(\alpha_n \):

\[
p'_{i,j} = p_{i,j} + \sum_{n=1}^{3} \alpha_n d_{i,j,n}.
\]

The search directions used in this algorithm are \(VS \) (to maximize the entropy), \(\nabla \chi^2 \) (to minimize the \(\chi^2 \)), and a third direction involving higher derivatives. The solution \(p'_{i,j} \) and coefficients \(\alpha_n \) are updated at each iteration until convergence in the solution is achieved. The particular benefit of the MaxEnt procedure over more traditional Fourier-transform-based deconvolution methods is the substantially improved signal-to-noise ratio (which will be discussed in more detail in Sec. V), even when faced with sparse (or missing) data.

In the following, all measurements were performed at the AXS endstation of beamline 7.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory, employing a
Nordgren-type grating spectrometer. Spectra were recorded on a two-dimensional (2D) multichannel plate detector. Correction for the curvature introduced by the optical components of the spectrometer was achieved by fitting the peak position of several well-characterized sharp emission features across the nondispersive axis of the detector. This correction was then used for all subsequent spectra. The MaxEnt procedure was applied to the raw 2D spectra before curvature correction. This was found to produce more favorable results compared with processing corrected, integrated one-dimensional (1D) spectra, a finding that is expected owing to the greater information content of the 2D images. The MaxEnt deconvolution process involves convolving the processed data with the known resolution function (the “broadening” function), for which there are two components in RIXS measurements: (i) the energy resolution of the incident photons and (ii) the spectrometer resolution. The second of these, predominantly arising from the finite source size, is much more easily dealt with: it is approximately Gaussian with respect to the wavelength of the emitted photons. An accurate knowledge of the incident photon resolution is much more challenging since its impact on emission spectra is nontrivial and depends in part on the specific excitations involved in the vicinity of the incident photon energy (i.e., the absorption spectrum); no attempt has been made to remove this component from the experimental data.

II. DECONVOLUTION OF REFERENCE SPECTRA

As an initial diagnosis of the performance of the MaxEnt procedure, x-ray emission spectra of the $L_{3,2}$-edge of Zn were obtained at various different spectrometer slit widths, corresponding to different spectrometer resolutions. These spectra represent transitions of the form $3d \rightarrow 2p$ with the spin-orbit split L_{3}-edge at a lower energy than the L_{2} emission line. Since we are dealing with emission features, excited well above the absorption threshold, the incident photon energy does not contribute to the overall resolution of these measurements, and they therefore provide a robust test of the MaxEnt procedure in removing the spectrometer part of the resolution function. In Fig. 1, Zn spectra recorded (in second order) with spectrometer resolutions of 0.28 and 0.78 eV at FWHM are shown alongside the results of the MaxEnt deconvolution of the 0.78 eV spectrum. A broadening function of 0.66 eV (85% of the spectrometer resolution) was used in the MaxEnt deconvolution routine. It is clear from Fig. 1 that the width of the deconvoluted spectrum is much narrower than the raw spectrum and indeed approaches the width of the narrower 0.28 eV spectrum, indicating that a large portion of the instrument resolution has been removed from the spectrum. In fact, this narrowing of the linewidth of the emission lines is already visible in the raw 2D spectra shown in Figs. 1(b)–1(d). The FWHM of the L_{3}-edge (including the natural width of this feature) is 1.29 eV for the raw spectrum, compared with 1.06 eV after deconvolution. For comparison, the FWHM of the same feature in the narrower raw spectrum is 1.00 eV. Moreover, there are no additional artifacts introduced in the deconvolution procedure: the MaxEnt spectrum closely resembles the 0.28 eV spectrum. The behavior of the deconvolution with varying broadening functions was also investigated and was found to be very stable for functions of FWHM $\leq 90\%$ of the total resolution function. Above this, some artificial sharpening close to the emission peaks was observed. Finally, it is worth noting that the signal-to-noise ratio is not significantly decreased in the deconvoluted spectra (a subject to which we will return in Sec. V).

III. DECONVOLUTION OF CRYSTAL-FIELD EXCITATIONS

In order to test its performance in resolving close spectral features, the MaxEnt deconvolution procedure was applied to Co L-edge RIXS data of Co$_3$V$_2$O$_8$, which is a kagome staircase compound consisting of Co$^{2+}$O$_6$ octahedra separated
Spectra and the energies of these features are similar to RIXS loss features can be seen in the spectra: (i) at −0.83 eV, clearly visible in spectra (d) and (f), (ii) at −2.08 eV in spectra (c)–(f), and (iii) at −3.37 eV in spectrum (d). These spectra and the energies of these features are similar to RIXS L-edge measurements of other Co$^{2+}$ compounds, for example, CoO$^{2+}$.

The MaxEnt deconvoluted spectra are shown in Fig. 2(b) and show obvious improvement in the linewidth of the features. In these spectra, the loss features previously identified are now much more clearly visible. For example, features (i) and (ii) are directly visible in all spectra, and feature (iii) is visible in all but the lowest-energy spectrum (a). It is emphasized that no attempt to redetermine the energy locations of these features with the new information provided by the MaxEnt algorithm has been made, yet they agree within ~0.1 eV in all spectra. It is noted that the noise level of the MaxEnt spectra is slightly higher than for the raw data, as might be expected in any deconvolution procedure. Nevertheless, focusing on features that persist across several incident photon energies allows one to be sure that the origin of a feature is intrinsic to the system under study and not an artifact of the increased noise floor. The strength of this approach is anticipated to be when spectral features are difficult to identify in raw data, as, for example, in spectrum (c), in which the −0.83 eV feature is hard to separate from the elastic peak.

IV. Deconvolution of Elastic Peaks

As an additional test, the MaxEnt procedure has been applied to V L$_3$-edge RIXS data of NdVO$_3$ at room temperature, a system in which the occupation of the V 3d orbitals becomes ordered at low temperature. Spectra were recorded with a spectrometer and incident photon resolution of 0.36 eV, yielding a total energy resolution of around 0.51 eV. Seven spectra were obtained approximately equally spaced across the V L$_3$-edge absorption feature (and are shown in Fig. 3), and each spectrum was treated with the MaxEnt procedure with a broadening function of 0.36 eV. Again, the same procedure was applied to a Zn L$_2$-edge emission reference spectrum to ensure no artifacts were introduced in the deconvolution. The relative intensity of RIXS spectra at the V L-edge is weak, and so the spectra here have been summed together to yield “averaged” loss spectra, shown in Fig. 3(d) for both the raw and MaxEnt deconvoluted spectra. The idea behind this procedure is that fluorescent features, which are dispersive in loss energy, contribute a broad and weak background, whereas loss features will reinforce in the summed spectra. Note that there will be a slight additional broadening of the features due to uncertainty in the initial photon energy.

The individual raw spectra are shown in Fig. 3(b). The first spectrum is on the onset of the V L$_3$-edge, in a location most suitable for exploring loss features. At higher excitation energies, V 3d fluorescence begins to contribute more strongly in the spectra but is mostly concentrated beyond 2.5 eV from the elastic peak. Therefore, the subsequent interpretation of features in the summed spectra below this energy is less influenced by the presence of fluorescence. Moreover, the contributions from fluorescence do not reinforce across spectra and provide a weak background to the summed spectra presented in the manuscript. In the raw summed spectra [Fig. 3(d)], two principle features are present: the elastic peak at 0 eV and broadened feature at around −2 eV. Shoulders on either side of this second peak indicate the presence of other spectral features. Once the MaxEnt procedure is applied, however, the locations of these weaker features become clear, at −2.62 and −1.09 eV on either side of the −1.85 eV peak, and represent crystal-field d^{n} excitations. These features are also clearly identifiable in the individual deconvoluted spectra shown in Fig. 3(c), particularly the lowest-energy spectrum. Furthermore, a relatively weak shoulder is evident close to the elastic peak at −0.42 eV and may represent an orbital excitation in the form of a biorbiton, previously observed for YVO$_3$ at 0.4 eV. Its presence can also be inferred in the raw spectra from the slight asymmetry of the elastic peak in this spectrum. Finally, an additional feature at −3.74 eV, not visible in the raw spectrum, becomes clear after the MaxEnt deconvolution. This peak is harder to identify in the individual
The symmetry of the excitations are labeled in (d); the dotted line of Fig. 3(d), and indeed, this peak still persists. However, the peak has been removed from the summation in the dotted fluorescent part of the spectrum), the highest-energy MaxEnt feature (at around -5.5 eV) disappears in this process; although this may be a loss feature of the spectrum, the resulting deconvoluted spectra are shown in Fig. 4(b). These test spectra $P_i(E)$ were each deconvoluted with a Gaussian function of 0.82 eV FWHM, approximating the spectrometer resolution, and scaled to contain 1000 counts in the peak data channel. The M simulated spectra were then created by adding randomly generated noise following a normal distribution with $\sigma(E) = \sqrt{T(E)}$ and are shown in Fig. 4(a). These test spectra $P_i(E)$ were each deconvoluted with the same parameters as used for the Co$_3$V$_2$O$_8$ data shown in Fig. 2.

The resulting deconvoluted spectra are shown in Fig. 4(b). Comparison between the deconvoluted spectra and the initial test spectrum $T(E)$ [shown by the dashed line in Fig. 4(b)] is very encouraging and provides a direct visualization of the power of the MaxEnt algorithm. In order to ensure that the mean and variance are meaningful quantities, the inset shows the distribution of the data about the mean, in units of the standard deviation, for data between -9 and 1 eV (to restrict the contribution to the finite-signal region of the spectra). Although there is a weak positive skewness in the distribution of the deconvoluted spectra (emphasizing the complexity of the MaxEnt noise problem), it is sufficiently close to a normal distribution that the mean and variance are.

V. NOISE PROPAGATION

The propagation of noise through the MaxEnt procedure is a complex problem; indeed, with only a slightly different setup of the problem, MaxEnt can be used to “denoise” data or reconstruct missing information from sparse data.\(^{16,23}\) In order to quantify the propagation of noise through the MaxEnt procedure, we have simulated a series (of $M = 100$) of noisy RIXS spectra $P_i(E)$. These have then been passed through the MaxEnt deconvolution, and the variance in the resulting deconvoluted spectra has been analyzed,

$$\sigma^2[P(E)] = \frac{1}{M} \sum_{i=1}^{M} [P_i(E) - \bar{P}(E)]^2,$$

where $\bar{P}(E)$ is the mean of the M simulated spectra. The test spectrum $T(E)$ was chosen to approximate spectrum (d) in Fig. 2: a linear combination of Gaussian functions of 0.4 eV FWHM (similar to the beamline resolution used in the measurements) centered at $0, -0.83, -2.08,$ and -3.37 eV were added to a Gaussian function of 4 eV FWHM centered at -6.73 eV to approximate the elastic, dd^*, and charge-transfer features, respectively. This spectrum was then convoluted with a Gaussian function of 0.82 eV FWHM, approximating the spectrometer resolution, and scaled to contain 1000 counts in the peak data channel. The M simulated spectra were then created by adding randomly generated noise following a normal distribution with $\sigma(E) = \sqrt{T(E)}$ and are shown in Fig. 4(a). These test spectra $P_i(E)$ were each deconvoluted with the same parameters as used for the Co$_3$V$_2$O$_8$ data shown in Fig. 2.

FIG. 3. (Color online) V L-edge RIXS data of NdVO$_3$. (a) The absorption spectrum and excitation energies used for RIXS. Raw RIXS data are shown on (b) an emission-energy and (c) a loss-energy scale, for which the individual MaxEnt spectra are also shown. (d) Summed RIXS spectra before and after MaxEnt deconvolution. The symmetry of the excitations is labeled in (d); the dotted line represents the MaxEnt summed data with one spectrum missing (see text).
still useful indicators of the distribution. This is important since it allows us to attach meaningful (statistical) errors to the deconvoluted spectra.

FIG. 4. (Color online) The results of deconvoluting $M = 100$ simulated noisy spectra with the MaxEnt procedure. (a) Input spectra and (b) deconvoluted spectra. The individual spectra $P_i(E)$ are shown in light gray, with the mean spectra $\bar{P}(E)$ in blue (dark gray). The error bars shown represent the standard deviation $\sigma[P(E)]$ of the M spectra for each energy. The inset shows the distribution of each simulated spectrum from its mean, normalized to its standard deviation. In (b), the initial test spectrum $T(E)$ is shown by the dashed line. (c) Comparison between the mean of the input spectra and their variance σ^2. (d) Comparison between the mean of the deconvoluted spectra and $\sigma^{1.54}$. For (c) and (d) the solid line represents $\bar{P} = \sigma^2$ and $\bar{P} = \sigma^{1.54}$, respectively.

FIG. 5. The (a) raw and (b) MaxEnt deconvoluted RIXS spectra shown in Fig. 2, reproduced here with error bars. In (a), the statistical error is shown ($\sigma = \sqrt{N}$), whereas in (b) the empirical error $\sigma = N^{1/1.54}$ is used (see text). It is evident from Figs. 4(a) and 4(b) that, as expected, the noise level is slightly higher for the deconvoluted spectra [for example, compare the error bars for the peaks at 0 eV in Fig. 4(a) and at -2 eV in Fig. 4(b), for which the intensity is similar]. For Poisson statistics, relevant in counting problems, the variance of a datum scales with its expected value (for $\bar{x} \gtrsim 10$), as shown in Fig. 4(c), in which the variance σ^2 of the input data is plotted against its mean \bar{P}. However, this is not the case for the deconvoluted spectra, indicating the propagation of errors through the MaxEnt process is nonlinear with respect to the pixel intensity. Qualitatively, the relationship is superlinear, meaning that pixels of high intensity (in the deconvoluted spectra) are more sensitive to statistical noise than those of lower intensity. Such behavior is connected with the tendency of the deconvolution to move counts from low-intensity regions of the input spectrum toward higher-intensity regions. Empirically, we find that the variance and mean are connected by $\bar{P} \sim \sigma^{1.54}$ for the range of \bar{P} investigated here (approximately 50–2000), as shown in Fig. 4(d), which corresponds to an approximate doubling of the noise ratio for a typical spectrum. It is emphasized that this analysis only reflects the propagation of statistical noise and does not account for systematic errors that may be present in the process itself. The result of applying these empirical errors to the Co$_3$V$_2$O$_8$ RIXS data is shown in Fig. 5 for some representative spectra before and after the MaxEnt procedure. In each case, the visual scatter of the data points is consistent with the magnitude of the error bars, and the loss features that were previously identified are well above the noise level. Moreover, the apparent structure at high energies in the deconvoluted spectrum (g) is of the order of the noise and is due to the poorer statistics recorded for this spectrum.

VI. CONCLUSIONS

In summary, the MaxEnt deconvolution procedure has been successfully applied to soft x-ray RIXS spectra. The deconvoluted spectra show a marked improvement in the
resolution of spectral features without introduction of artifacts associated with the process or excessive increase in the noise ratio, allowing for greater confidence in separating and identifying loss features, such as crystal-field dd transitions or low-energy collective excitations. For example, a very recent application of MaxEnt has helped to clarify the RIXS features of La1−xSr2MnO4. Detailed analysis of the propagation of noise through the MaxEnt procedure has been presented, and the noise ratio of deconvoluted spectra has been found to be approximately double for the features of typical spectra. The process is quite general and is not limited to the soft x-ray regime or 2D data and is expected to perform equally well with, for example, x-ray absorption spectra or high-resolution RIXS. It is anticipated that the strength of the procedure is when spectral features are difficult to identify in raw data (but whose presence may already be inferred from that data, albeit indirectly).

ACKNOWLEDGMENTS

The Boston University (BU) program is supported in part by the Department of Energy under Contract No. DE-FG02-98ER45680. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.